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Summary

Single-cell RNA sequencing (scRNA-seq) can be used to characterise differences in gene
expression patterns between pre-specified populations of cells. Traditionally, differential
expression tools are restricted to the study of changes in overall expression between cell
populations. However, such analyses do not take full advantage of the rich information pro-
vided by scRNA-seq. In this article, we present a Bayesian hierarchical model which can be
used to study changes in expression that lie beyond comparisons of means. In particular, our
method can highlight genes that undergo changes in cell-to-cell heterogeneity between the
populations but whose overall expression is preserved. Evidence supporting these changes
is quantified using a probabilistic approach based on tail posterior probabilities, where a
probability cut-off is calibrated through the expected false discovery rate. Our method in-
corporates a built-in normalisation strategy and quantifies technical artefacts by borrowing
information from technical spike-in genes. Control experiments validate the performance
of our approach. Finally, we compare expression patterns of mouse embryonic stem cells
between different stages of the cell cycle, revealing substantial differences in cellular hetero-
geneity.
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Background

The transcriptomics’ revolution — moving from bulk samples to single-cell resolution — pro-
vides novel insights into a tissue’s function and regulation. In particular, single-cell RNA se-
quencing (scRNA-seq) has led to the identification of novel sub-populations of cells in multiple
contexts [26, 11, 20]. However, compared to bulk RNA-seq, a critical aspect of scRNA-seq
datasets is an increased cell-to-cell variability among the expression counts. Part of this variance
inflation is related to biological differences in the expression profiles of the cells (e.g. changes
in mRNA content and the existence of cell sub-populations or transient states), which disappears
when measuring bulk gene expression as an average across thousands of cells. Nonetheless, this
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increase in variability is also due in part to technical noise arising from the manipulation of small
amounts of starting material, which is reflected in weak correlations between technical replicates
[4]. Such technical artefacts are confounded with genuine transcriptional heterogeneity and can
mask biological signal.

Among others, one objective of RNA-seq experiments is to characterise transcriptional differ-
ences between pre-specified populations of cells (given by experimental conditions or cell-types).
This is a key step for understanding a cell’s fate and functionality. In the context of bulk RNA-seq,
two popular methods for this purpose are edgeR [23] and DESeq [1]. Nonetheless, these are not
designed to capture features that are specific to scRNA-seq datasets. In contrast, SAMstrt [13]
and SCDE [14] have been specifically developed to deal with scRNA-seq datasets. All of these
methods target the detection of differentially expressed genes based on log fold changes (LFC)
of overall expression between the populations. However, restricting the analysis to changes in
overall expression does not take full advantage of the rich information provided by scRNA-seq.
In particular — and unlike bulk RNA-seq — scRNA-seq can also reveal information regarding
cell-to-cell expression heterogeneity. Critically, traditional approaches will fail to highlight genes
whose expression is less stable in any given population but whose overall expression remains un-
changed.

More flexible approaches, capable of studying changes that lie beyond comparisons of means
are required in order to better characterise differences between distinct populations of cells. In
this article, we develop a quantitative method to fill this gap, allowing the identification of genes
whose cell-to-cell heterogeneity pattern changes between pre-specified populations of cells. This
analysis allows the identification of genes with less variation in expression levels within a specific
population of cells, which might indicate that they are under more stringent regulatory control.
Additionally, genes with increased biological variability in a given population of cells could
suggest the existence of additional sub-groups within the analysed populations. To the best of
our knowledge, this is the first probabilistic tool developed for this purpose in the context of
scRNA-seq analyses. We demonstrate the performance of our method using control experiments
and by comparing expression patterns of mouse embryonic stem cells (mESCs) between different
stages of the cell cycle.
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Results and discussion

A statistical model to detect changes in expression patterns for scRNA-seq datasets

We propose a statistical approach for the comparison of expression patterns between P pre-
specified populations of cells. It builds upon BASiCS [25], a Bayesian model for the analysis
of scRNA-seq data. As in traditional differential expression analyses, for any given gene i,
changes in overall expression are identified by comparing population-specific expression rates
µip (p = 1, . . . , P ). However, the main focus of our approach is to assess differences in biolog-
ical cell-to-cell heterogeneity between the populations. These are quantified through changes in
population-specific biological over-dispersion parameters δip (p = 1, . . . , P ), designed to cap-
ture residual variance inflation (after normalisation, technical noise removal and adjustment for
overall expression), avoiding the well-known confounding relationship between mean and vari-
ance in count-based datasets [16]. Importantly, such changes cannot be uncovered by standard
differential expression methods, which are restricted to changes in overall expression. Hence,
our approach provides novel biological insights by highlighting genes that undergo changes in
cell-to-cell heterogeneity between the populations despite the overall expression level being pre-
served.

To disentangle technical from biological effects, we exploit spike-in genes that are added to
the lysis buffer and thence theoretically present at the same amount in every cell (e.g. the 92
ERCC molecules developed by the External RNA Control Consortium [12]). These provide an
internal control or “gold standard”, to estimate the strength of technical variability and to aid
normalisation. In particular, these control genes allow inference on cell-to-cell differences in
mRNA content, providing additional information about the analysed populations of cells. These
are quantified through changes between cell-specific normalising constants φjp (the sub-index
jp indicates the jp-th cell within the p-th population). A graphical representation of our model
is displayed in Figure 1 (based on a two-groups comparison). It illustrates how our method
borrows information across all cells and genes (biological transcripts and spike-in genes) in order
to perform inference.

Posterior inference is implemented via a Markov Chain Monte Carlo (MCMC) algorithm,
generating draws from the posterior distribution of all model parameters (see supplementary ma-
terial). Post-processing of these draws allows quantification of supporting evidence regarding
changes in expression patterns (mean and over-dispersion). These are measured using a prob-
abilistic approach based on tail posterior probabilities, where a probability cut-off is calibrated
through the expected false discovery rate (EFDR) [19]. Our strategy is flexible and can be com-
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bined with a variety of decision rules. As an illustration, the examples described in this article fo-
cus on the detection of genes whose absolute LFC in biological cell-to-cell heterogeneity between
populations p and p′ exceeds a minimum tolerance threshold ω0, i.e. when | log(δip/δip′)| > ω0,
for a given ω0 ≥ 0. Similarly, our examples assess changes in overall expression using the
decision rule | log(µip/µip′)| > τ0, where τ0 ≥ 0 is an a priori chosen threshold for LFC in over-
all expression. These LFC thresholds can be used, e.g. to avoid highlighting genes with small
changes in expression which are likely to be less biologically relevant.

More details regarding the model setup and the implementation of posterior inference can be
found in the Methods.

A control experiment: comparing single-cells versus pool-and-split samples

To demonstrate the efficacy of our method, we use the control experiment described in [9], where
single mouse embryonic stem cells (mESCs) are compared against pool-and-split samples, con-
sisting of pooled RNA from thousands of mESCs split into single-cell equivalent volumes. Such
a controlled setting provides a situation where substantial changes in overall expression are not
expected as, on average, the overall expression of single cells should match the levels measured
on pool-and-split samples. Additionally, the design of pool-and-split samples removes biological
variation, leading to a homogenous set of samples. Hence, pool-and-split samples are expected to
show a genuine reduction in biological cell-to-cell heterogeneity when compared to single-cells.

Here, we display the analysis of samples cultured in a 2i media. In these data, expression
counts correspond to the number of molecules mapping to each gene within each cell. This is
achieved by using unique molecular identifiers (UMIs), which remove amplification biases and
reduce sources of technical variation [10]. Our analysis includes 74 single cells and 76 pool-
and-split samples (same inclusion criteria as in [9]) and expression counts for 9,378 genes (9,343
biological and 35 ERCC spikes) defined as those with at least 50 detected molecules in total
across all cells. As expected, our method does not reveal major changes in overall expression
between single-cells and pool-and-split samples as the distribution of LFC estimates is roughly
symmetric with respect to the origin (see upper panels in Figure 2) and the majority of genes are
not classified as differentially expressed at 5% EFDR (see Figure 3b). However, this analysis
suggests that setting the minimum LFC tolerance threshold τ0 equal to 0 is too liberal as small
log-fold changes are associated with high posterior probabilities of changes in expression (see
Figure 3a) and the number of differentially expressed genes is inflated (see Figure 3b). In fact,
counter-intuitively, 4,710 genes (∼ 50% of all analysed genes) are highlighted to have a change
in overall expression when using τ0 = 0 (a similar issue is also observed when analysing bulk
RNA-seq data [17]). In contrast, this number is reduced to 559 genes (∼ 6% of all analysed
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genes) when setting τ0 = 0.4.

Posterior inference regarding biological over-dispersion is consistent with the experimental
design, where the pool-and-split samples are expected to have more homogeneous expression
patterns. In fact, as shown in the right hand panel of Figure 2, the distribution of estimated LFCs
in biological over-dispersion is skewed towards positive values (higher biological over-dispersion
in single-cells). This is also supported by the results shown in Figure 3b, where slightly more than
2,000 genes exhibit increased biological over-dispersion in single cells and almost no genes (∼
60 genes) are highlighted to have higher biological over-dispersion in the pool-and-split samples
(EFDR = 5%). In this case, the choice of ω0 is less critical (within the range explored here).
This is illustrated by the left panels in Figure 3a, where tail posterior probabilities exceeding the
cut-off defined by EFDR = 5% correspond to similar ranges of LFC estimates.

mESCs across different cell cycle stages

Our second example shows the analysis of the mESC dataset presented in [5], which contains
cells for which the cell cycle phase is known (G1, S and G2M). After applying the same quality
control criteria as in [5], our analysis considers 182 cells (59, 58 and 65 cells in stages G1, S
and G2M, respectively). To remove genes with consistently low expression across all cells, we
excluded those genes with less than 20 RPM, on average, across all cells. After this filter, 5,687
genes remain (including 5,634 intrinsic transcripts, and 53 ERCC spike-in genes). As a proof
of concept, to demonstrate the efficacy of our approach under a negative control, we performed
permutation experiments, where cell labels were randomly permuted into 3 groups (containing
60, 60 and 62 samples, respectively). In such a case, our method correctly infers that mRNA
content as well as gene expression profiles do not vary across groups of randomly permuted cells
(see Figure 4).

As cells progress through the cell cycle, cellular mRNA content increases. In particular, our
model infers that mRNA content is roughly doubled when comparing cells in G1 versus G2M,
which is consistent with the duplication of genetic material prior to cell division (see Figure 5a).
After normalisation, we rule out a global shift in expression levels between cell cycle stages (see
Figure 5b and upper triangular panels in Figure 5d). Nonetheless, a small number of genes are
identified as displaying changes in overall expression between cell cycle phases at 5% EFDR
(see Figure 6). The actual number of differentially expressed genes depends on whether we use
τ0 = 0 or τ0 = 0.4. However, the permutations described above suggest that τ0 = 0.4 is more
appropriate as, just by chance, it is likely to observe LFCs below this threshold (in fact, τ0 = 0.4

roughly coincides with the 90-th percentile of the empirical distribution of posterior estimates for
LFC in overall expression across all genes and permutations). Additionally, this LFC threshold
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is equivalent to a minimum 50% increase in overall expression (in whichever group the gene
has higher expression). To validate our results, we performed Gene Ontology (GO) enrichment
analysis within those genes classified as differentially expressed between cell cycle phases (see
supplementary material). Here, we discuss results related to τ0 = 0.4. Not surprisingly, we
found an enrichment of mitotic genes among the 545 genes classified as differentially expressed
between G1 and G2M cells. In addition, the 209 differentially expressed genes between S and
G2M are enriched for regulators of cytokinesis, which is the final stage of the cell cycle where a
progenitor cell is divided into two daughter cells [7].

Our method uncovers a substantial decrease in biological over-dispersion when cells move
from G1 to S phase, followed by a slight increase after the transition from S to G2M phase (see
Figure 5c and the lower triangular panels in Figure 5d). This is consistent with the findings in
[7], where the increased gene expression variability observed in G2M cells is attributed to an
unequal distribution of genetic material during cytokinesis and the S phase is shown to have the
most stable expression patterns within the cell cycle. Here, we discuss GO enrichment of those
genes whose overall expression rate remains constant but that exhibit changes in biological over-
dispersion between cell cycle stages (EFDR = 5%, ω0 = 0.4). Critically, these genes will not
be highlighted by traditional differential expression tools, which are restricted to differences in
overall expression rates. For example, among the genes with higher biological over-dispersion in
G1 with respect to S phase, we found an enrichment of genes related to protein dephosphoryla-
tion. These are known regulators of the cell cycle [6]. Moreover, we found that genes with lower
biological over-dispersion in G2M cells are enriched for genes related to DNA replication check-
point regulation (which delays entry into mitosis until DNA synthesis is completed [3]) relative
to G1 cells and mitotic cytokinesis when comparing to S cells. Both of these processes are likely
to be more tightly regulated in G2M phase.

A full table with GO enrichment analysis of the results described here is provided in the
supplementary material.

Conclusions

Our method provides a quantitative tool to study changes in gene expression patterns between
pre-specified populations of cells. Unlike traditional differential expression analyses, our model
is able to identify changes in expression that are not necessarily reflected by shifts in mean.
This allows a better understanding of the differences underlying distinct populations of cells.
In particular, we focus on the detection of genes whose residual biological heterogeneity (after
normalisation and technical noise removal) varies between the populations. This is quantified
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through biological over-dispersion parameters, which capture variance inflation with respect to
the level that would be expected in a homogeneous population of cells. A decision rule is defined
through a probabilistic approach based on tail posterior probabilities and calibrated using the ex-
pected false discovery rate. The performance of our method was demonstrated using a controlled
experiment where we recovered the expected behaviour of gene expression patterns.

Currently, our approach requires pre-defined populations of cells (e.g. defined by cell types or
experimental conditions). However, a large number of scRNA-seq experiments involve a mixed
population of cells, where cell-types are not known a priori (e.g. [26, 11, 20]). In such cases,
expression profiles can be used to cluster cells into distinct groups and to characterise markers
for such sub-populations. Nonetheless, unknown group structures introduce additional challenges
for normalisation and quantification of technical variability. A future extension of our work is
to combine the estimation procedure within our model with a clustering step, propagating the
uncertainty associated with each of these steps into downstream analysis.

Until recently, most scRNA-seq datasets consisted of hundreds (and sometimes thousands)
of cells. However, droplet-based approaches [15, 18] have recently allowed parallel sequencing
of substantially larger numbers of cells in an effective manner. This brings additional challenges
to the statistical analysis of scRNA-seq datasets. In particular, current protocols do not allow the
addition of technical spike-in genes. As a result, the deconvolution of biological and technical
artefacts becomes less straightforward. Moreover, the increased sample sizes emphasise the need
for more computationally efficient approaches that are still able to capture the complex structure
embedded within scRNA-seq datasets. To this end, we foresee the use of parallel programming as
a tool for reducing computing times. Additionally, we are also exploring approximated posterior
inference based, for example, on an Integrated Nested Laplace Approximation (INLA) [24].

Finally, our approach lies within a generalised linear mixed model framework. Hence, it can
be easily extended to include additional information such as covariates (e.g. cell cycle stage, gene
length) and experimental design (e.g. batch effects) using fixed and/or random effects.

Methods

A statistical model to detect changes in expression patterns for scRNA-seq datasets

In this article, we introduce a statistical model for identifying genes whose expression patterns
change between pre-defined populations (given by experimental conditions or cell types) of cells.
Such changes can be reflected via the overall expression level of each gene as well as through
changes in cell-to-cell biological heterogeneity. Our method is motivated by features that are

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2016. ; https://doi.org/10.1101/035949doi: bioRxiv preprint 

https://doi.org/10.1101/035949
http://creativecommons.org/licenses/by-nc-nd/4.0/


specific to scRNA-seq datasets. In this context, it is essential to appropriately normalise and
remove technical artefacts from the data before extracting biological signal. This is particularly
critical when there are substantial differences in cellular mRNA content, amplification biases and
other sources of technical variation. For this purpose, we exploit technical spike-in genes which
are added at the same quantity to each cell’s lysate. A typical example is the set of 92 ERCC
molecules developed by the External RNA Control Consortium [12]. Our method builds upon
BASiCS [25] and can perform comparisons between multiple populations of cells using a single
model. Importantly, our strategy avoids stepwise procedures where datasets are normalised prior
to any downstream analysis. This is an advantage over methods using pre-normalised counts, as
the normalisation step can be distorted by technical artefacts.

We assume that there are P groups of cells to be compared, each containing np cells (p =

1, . . . , P ). Let Xijp be a random variable representing the expression count of a gene i (i =

1, . . . , q) in the jp-th cell from group p. Without loss of generality, we assume the first q0 genes are
biological and the remaining q − q0 are technical spikes. Extending the formulation in BASiCS,
we assume that

E(Xijp) =

{
φjpsjpµip, i = 1, . . . , q0;
sjpµip, i = q0 + 1, . . . , q.

and (1)

CV2(Xijp) =

{
(φjpsjpµip)

−1 + θp + δip(θp + 1), i = 1, . . . , q0;
(sjpµip)

−1 + θp, i = q0 + 1, . . . , q,
(2)

where CV stands for coefficient of variation (i.e. the ratio between standard deviation and mean).
These expressions are the result of a Poisson hierarchical structure (see supplementary mate-
rial). Here, φjp’s act as cell-specific normalising constants (fixed effects), capturing differences
in input mRNA content across cells (reflected by the expression counts of intrinsic transcripts
only). A second set of normalising constants, sjp’s, capture cell-specific scale differences affect-
ing the expression counts of all genes (intrinsic and technical). Among others, these differences
can relate to sequencing depth, capture efficiency and amplification biases. However, a precise
interpretation of the sjp’s varies across experimental protocols, e.g. amplification biases are re-
moved when using UMIs[10]. In addition, θp’s are global technical noise parameters controlling
the over-dispersion (with respect to Poisson sampling) of all genes within group p. The overall
expression rate of a gene i in group p is denoted by µip. These are used to quantify changes in the
overall expression of a gene across groups. Similarly, the δip’s capture residual over-dispersion
(beyond what is due to technical artefacts) of every gene within each group. These so-called bio-
logical over-dispersion parameters relate to heterogeneous expression of a gene across cells. For
each group, stable “housekeeping-like” genes lead to δip ≈ 0 (low residual variance in expression
across cells) and highly variable genes are linked to large values of δip. A novelty of our approach
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is the use of δip’s to quantify changes in biological over-dispersion. Importantly — and unlike the
CV — this avoids confounding effects due to changes in overall expression between the groups.

A graphical representation of this model is displayed in Figure 1. To ensure identifiability
of all model parameters, we assume that µip’s are known in the case of the spike-in genes (and
given by the number of spike-in molecules that are added to each well). Additionally, we impose
the identifiability restriction

1

np

np∑
jp=1

φjp = 1, for p = 1, . . . , P . (3)

Here, we discuss the priors assigned to parameters that are gene and group-specific (see
Additional file 2 for the remaining elements of the prior). These are given by

µip,
iid∼ log-N(0, a2µ) and δip

iid∼ log-N(0, a2δ) for i = 1, . . . , q0, (4)

Hereafter, without loss of generality, we simplify our notation to focus on two-group compar-
isons. This is equivalent to assigning Gaussian prior distributions for LFCs in overall expression
(τi) or biological over-dispersion (ωi). In such a case, it follows that

τi ≡ log(µi1
/
µi2) ∼ N(0, 2a2µ) and ωi ≡ log(δi1

/
δi2) ∼ N(0, 2a2δ). (5)

Hence, our prior is symmetric, meaning that we do not a priori expect changes in expression to
be skewed towards either group of cells. Values for a2µ and a2δ can be elicited using an expected
range of values for LFC in expression and biological over-dispersion, respectively. The latter
is particularly useful in situations where a gene is not expressed (or very lowly expressed) in
one of the groups, where e.g. LFCs in overall expression are undefined (the maximum likelihood
estimate of τi would be ±∞, the sign depending on which group expresses gene i). A popular
solution to this issue is the addition of pseudo-counts, where an arbitrary number is added to all
expression counts (in all genes and cells). While the latter guarantees that τi is well-defined, it
leads to artificial estimates for τi (see Table 1). Instead, our approach exploits an informative
prior (indexed by a2µ) to shrink extreme estimates of τi towards an expected range. This strategy
leads to a meaningful shrinkage strength, which is based on prior knowledge. Importantly — and
unlike the addition of pseudo-counts — our approach is also helpful when comparing biological
over-dispersion between the groups. In fact, if a gene i is not expressed in one of the groups,
this will lead to a non-finite estimate of ωi (if all expression counts in a group are equal to zero,
the corresponding estimate of the biological over-dispersion parameters would be equal to zero).
Adding pseudo-counts cannot resolve this issue, but imposing an informative prior for ωi (indexed
by a2ω) will shrink estimates towards the appropriate range.
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Generally, posterior estimates of τi and ωi are robust to the choice of a2µ and a2δ , as the data
is informative and dominates posterior inference. In fact, these values are only influential when
shrinkage is needed, e.g. when there are zero total counts in one of the groups. In such cases,
posterior estimates of τi and ωi are dominated by the prior, yet the method described below
still provides a tool to quantify evidence of changes in expression. As a default option, we use
a2µ = a2δ = 0.5.

Posterior samples for all model parameters are generated via an Adaptive Metropolis within
Gibbs Sampling algorithm [22]. A detailed description of our implementation can be found in
the supplementary material.

Post-hoc correction of global shifts in input mRNA content between the groups

The identifiability restriction in (3) does only apply to cells within each group. As a consequence,
if they exist, global shifts in cellular mRNA content between groups (e.g. if all mRNAs where
present at twice the level in one population related to another) are absorbed by the µip’s. To
correct this bias, we adopt a 2-step strategy where: (i) model parameters are estimated using
the identifiability restriction in (3) and (ii) global shifts in input mRNA content are treated as a
fixed offset and corrected post-hoc. For this purpose, we use the sum of overall expression rates
(intrinsic genes only) as a proxy for the overall mRNA content within each group. Without loss
of generality, we use the first group of cells as a reference population. For each population p
(p = 1, . . . , P ), we define a population specific offset effect

Λp =

(
q0∑
i=1

µip

)/(
q0∑
i=1

µi1

)
(6)

and perform the following offset correction

µ∗ip = µip
/

Λp, φ∗jp = φjp × Λp, i = 1, . . . , q0; jp = 1, . . . np. (7)

This is equivalent to replacing the identifiability restriction in (3) by

1

np

np∑
jp=1

φjp = Λp, for p = 1, . . . , P . (8)

Technical details regarding the implantation of this post-hoc offset correction are explained in
the supplementary material. The effect of this correction is illustrated in Figure 7 using the cell
cycle dataset described in the main text. As an alternative, we also explored the use of the ratio
between the total intrinsic counts over total spike-in counts to define a similar offset correction
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based on

Λ′p =

(
median
jp=1,...,np

{ ∑q0
i=1Xijp∑q

i=q0+1Xijp

})/(
median
j1=1,...,n1

{ ∑q0
i=1Xij1∑q

i=q0+1Xij1

})
(9)

In the case of the cell cycle dataset, both alternatives are equivalent. Nonetheless, the first op-
tion is more robust in cases where a large number of differentially expressed genes are present.
Hereafter, we use µip and φjp to denote µ∗ip and φ∗jp , respectively.

A probabilistic approach to quantify evidence of changes in expression patterns

A probabilistic approach is adopted, assessing changes in expression patterns (mean and over-
dispersion) through a simple and intuitive scale of evidence. Our strategy is flexible and can
be combined with a variety of decision rules. In particular, here we focus on highlighting genes
whose absolute LFC in overall expression and biological over-dispersion between the populations
exceeds minimum tolerance thresholds τ0 and ω0, respectively (τ0, ω0 ≥ 0), set a priori.

For a given probability threshold α
M

(0.5 < α
M
< 1), a gene i is identified as exhibiting a

change in overall expression between populations p and p′ if

πMipp′(τ0) ≡ P(| log(µip/µip′)| > τ0|{data}) > α
M
, i = 1, . . . q0. (10)

If τ0 → 0, πMi (τ0) → 1 becoming uninformative to detect changes in expression. As in [2], in
the limiting case where τ0 = 0, we define

πMipp′(0) = 2 max
{
π̃Mipp′ , 1− π̃Mipp′

}
− 1 with (11)

π̃Mipp′ = P(log(µip/µip′) > 0|{data}). (12)

A similar approach is adopted to study changes in biological over-dispersion between popu-
lations p and p′, using

πDipp′(ω0) ≡ P(| log(δip/δip′)| > ω0|{data}) > α
D
, (13)

for a fixed probability threshold α
D

(0.5 < α
D
< 1). In line with (11) and (12), we also define

πDipp′(0) = 2 max
{
π̃Dipp′ , 1− π̃Dipp′

}
− 1 with (14)

π̃Dipp′ = P(log(δip/δip′) > 0|{data}). (15)

Evidence thresholds α
M

and α
D

can be fixed a priori. Otherwise, these can be defined by
controlling the expected false discovery rate (EFDR) [19]. In our context, these are given by

EFDRα
M

(τ0) =

∑q0
i=1(1− πMi (τ0))I(πMi (τ0) > α

M
)∑q0

i=1 I(πMi (τ0) > α
M

)
, and (16)
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EFDRα
D

(ω0) =

∑q0
i=1(1− πDi (ω0))I(πDi (ω0) > α

D
)∑q0

i=1 I(πDi (ω0) > α
D

)
, (17)

where I(A) = 1 if event A is true, 0 otherwise.

The posterior probabilities in (10), (11), (13) and (15) can be easily estimated — as a post-
processing step — once the model has been fitted (see supplementary material). In addition, our
strategy is flexible and can be easily extended to investigate of more complex hypotheses, which
can be defined post-hoc, e.g. to identify those genes that show significant changes in cell-to-cell
biological over-dispersion but that maintain a constant level of overall expression between the
groups.

Software

Our implementation is freely available as an R package [21], using a combination of R and C++
functions through the Rcpp library [8].

This can be found in https://github.com/catavallejos/BASiCS.
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All datasets analysed in this article are publicly available in the cited references.
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Figure 1: Graphical representation of our model for detecting changes in expression pat-
terns (mean and over-dispersion) based on the comparison of two pre-defined population
of cells. The diagram considers expression counts of 2 genes (i: biological and i′: technical)
and 2 cells (jp and j′p) from each population p = 1, 2. Observed expression counts are repre-
sented by square nodes. The central rhomboid node denotes the known input number of mRNA
molecules for a technical gene i′, which is assumed to be constant across all cells. The remain-
ing circular nodes represent unknown elements, using black to denote random effects and red to
denote model parameters (fixed effects) that lie on the top of the model’s hierarchy. Here, φjp’s
and sjp’s act as normalising constants that are cell-specific and θp’s are global over-dispersion
parameters capturing technical variability, which affects the expression counts of all genes and
cells within each population. Finally, µip’s and δip’s respectively measure overall expression of a
gene i and its residual biological cell-to-cell over-dispersion (after normalisation, technical noise
removal and adjustment for overall expression) within each population. Coloured areas highlight
elements that are shared within a gene and/or cell. The latter emphasises how our model borrows
information across all cells to estimate parameters that are gene-specific and all genes to estimate
parameters that are cell-specific. More details regarding the model setup can be found in the
Methods section of this article.

.
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Figure 2: Estimated LFCs in expression (mean and over-dispersion) when comparing single-
cells versus pool-and-split samples (2i serum culture). Posterior medians of LFC in overall
expression log(µiSC/µiP&S) (left panel) and biological over-dispersion log(δiSC/δiP&S)(right panel)
against the average between estimates of overall expression rates for single-cells (SC) and pool-
and-split (P&S) samples. Average values are defined as a weighted average between groups,
with weights given by the number of samples within each group of cells. As expected, our
analysis does not reveal major changes in expression levels between SC and P&S samples. In
fact, the distribution of estimated LFCs in overall expression is roughly symmetric with respect
to the origin. In contrast, we infer a substantial decrease in biological over-dispersion in the
P&S samples. This is reflected by a skewed distribution of estimated LFCs in biological over-
dispersion towards positive values.
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Figure 3: Summary of changes in expression patterns (mean and over-dispersion) for single-
cells versus pool-and-split samples (EFDR = 5%). (a) Volcano plots showing posterior medi-
ans of LFCs against estimated tail posterior probabilities. Left panels relate to the test where
we assess if the absolute LFC in overall expression between single-cells (SC) and pool-and-split
(P&S) samples exceeds a minimum threshold τ0. Estimates for LFCs in overall expression are
truncated to the range (−1.5, 1.5). Pink and green dots represent genes highlighted to have higher
overall expression in the SC and P&S samples, respectively. Right panels relate to the test where
we assess if the absolute LFC in biological over-dispersion between SC and P&S samples ex-
ceeds a minimum threshold ω0. In all cases, horizontal dashed lines are located at probability
cutoffs defined by EFDR = 5%. Pink and green dots represent genes highlighted to have higher
biological over-dispersion in the SC and P&S samples, respectively. (b) Bins in the horizontal
axis summarise changes in overall expression between the groups. We use SC+ and P&S+ to
denote higher overall expression was detected in SC and P&S+ samples, respectively (the central
group of bars (No diff.) corresponds to those genes where no significant differences were found).
Coloured bars within each group summarise changes in biological over-dispersion between the
groups. We use pink and green bars to denote higher biological over-dispersion in SC and P&S+
samples, respectively (and grey to denote no significant differences were found). Number of
genes are displayed in log-scale.
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Figure 4: Posterior estimates of model parameters based on random permutations of the
mESC cell cycle dataset. For a single permuted dataset (a) Empirical distribution of posterior
medians for mRNA content normalising constants φjp across all cells. (b) Empirical distribution
of posterior medians for gene-specific expression rates µip across all genes. (c) Empirical dis-
tribution of posterior medians for gene-specific biological over-dispersion parameters δip across
all genes. (d) As an average across 10 random permutations. Upper diagonal panels compare
estimates for gene-specific expression rates µip between groups of cells. Lower diagonal panels
compare gene-specific biological over-dispersion parameters δip between groups of cells.
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Figure 5: Posterior estimates of model parameters for mESCs across different cell cycle
phases. (a) Empirical distribution of posterior medians for mRNA content normalising constants
φjp across all cells. (b) Empirical distribution of posterior medians for gene-specific expression
rates µip across all genes. (c) Empirical distribution of posterior medians for gene-specific biolog-
ical over-dispersion parameters δip across all genes. (d) Upper diagonal panels compare estimates
for gene-specific expression rates µip between groups of cells. Lower diagonal panels compare
gene-specific biological over-dispersion parameters δip between groups of cells.
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Figure 6: Summary of changes in expression patterns (mean and over-dispersion) for the
mESC cell cycle dataset (EFDR = 5%). Bins in the horizontal axis summarise changes in
overall expression between each pair of groups. We use G1+, S+ and G2M+ to denote higher
overall expression was detected in cell cycle phase G1, S and G2M, respectively (the central
group of bars (No diff.) corresponds to those genes where no significant differences were found).
Coloured bars within each group summarise changes in biological over-dispersion between the
groups. We use pink, green and yellow bars to denote higher biological over-dispersion in cell
cycle phases G1, S and G2M, respectively (and grey to denote no significant differences were
found). Number of genes are displayed in log-scale.
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Figure 7: Post-hoc offset correction for cell cycle dataset. Upper panels display posterior me-
dians for LFC in overall expression against the weighted average between estimates of overall
expression rates for G1, S and G2M cells (weights defined by the number of cells in each group).
Lower panels illustrate the effect of the offset correction upon the empirical distribution of pos-
terior estimates for mRNA content normalising constants φjp . These figures illustrate a shift in
mRNA content throughout cell cycle phases. In particular, our model infers that cellular mRNA
is roughly duplicated when comparing G1 to G2M cells.
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Tables

Table 1: Synthetic example to illustrate the effect of pseudo-counts addition over the estima-
tion of log-fold changes in overall expression. For simplicity, we assume that normalisation is
not required so that pseudo-counts are linearly reflected in the overall expression rates. While
pseudo-counts introduce an additive effect, log-fold change estimates measure changes on a mul-
tiplicative scale. Hence, pseudo-counts addition leads to an artificial deflation of log-fold change
estimates. As a consequence, such estimates cannot be meaningfully interpreted.

Empirical Adding 0.5 Adding 1
estimate pseudo-counts pseudo-count

Overall expression rate in population 1 (µi1) 10 10.5 11
Overall expression rate in population 2 (µi2) 0 0.5 1
Log-fold change in overall expression 1 vs 2 +∞ 3.04 2.40

Additional Files

Additional file 1 — Supplementary material

This document contain additional details regarding the statistical model presented in this article
and the implementation of Bayesian inference. Additionally, it displays the R code used for the
data analysis.
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