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ABSTRACT 28 

Conventional high-throughput technologies for mapping regulatory element activities such as ChIP-seq, 29 

DNase-seq and FAIRE-seq cannot analyze samples with small number of cells. The recently developed 30 

ATAC-seq allows regulome mapping in small-cell-number samples, but its signal in single cell or samples 31 

with ≤500 cells remains discrete or noisy. Compared to these technologies, measuring transcriptome by 32 

RNA-seq in single-cell and small-cell-number samples is more mature. Here we show that one can 33 

globally predict chromatin accessibility and infer regulome using RNA-seq. Genome-wide chromatin 34 

accessibility predicted by RNA-seq from 30 cells is comparable with ATAC-seq from 500 cells. Predictions 35 

based on single-cell RNA-seq can more accurately reconstruct bulk chromatin accessibility than using 36 

single-cell ATAC-seq by pooling the same number of cells. Integrating ATAC-seq with predictions from 37 

RNA-seq increases power of both methods. Thus, transcriptome-based prediction can provide a new 38 

tool for decoding gene regulatory programs in small-cell-number samples.  39 

 40 
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INTRODUCTION 55 

Decoding gene regulatory network in developmental systems, precious clinical samples, and purified 56 

cells often requires measuring transcriptome (i.e., genes’ transcriptional activities) and regulome (i.e., 57 

regulatory element activities) in samples with small number of cells. While significant progress has been 58 

made to measure transcriptome in single cell (Tang et al. 2010; Ramsköld et al. 2012) and in small-cell-59 

number (Marinov et al. 2014) samples using RNA sequencing (RNA-seq), accurately measuring regulome 60 

in single-cell and small-cell-number samples remains a challenge. Conventional high-throughput 61 

technologies such as chromatin immunoprecipitation followed by sequencing (ChIP-seq) (Johnson et al. 62 

2007), sequencing of DNase I hypersensitive sites (DNase-seq) (Crawford et al. 2006), and 63 

Formaldehyde-Assisted Isolation of Regulatory Elements coupled with sequencing (FAIRE-seq) (Giresi et 64 

al. 2007) require large amounts of input material (~106 cells). They cannot analyze samples with small 65 

number of cells. The state-of-the-art technology ATAC-seq – assay for transposase-accessible chromatin 66 

using sequencing – can analyze chromatin accessibility in bulk samples with 500-50,000 cells 67 

(Buenrostro et al. 2013). However, ATAC-seq data are noisy when the cell number is small (e.g., ≤500). 68 

Most recently, single-cell ATAC-seq (Cusanovich et al. 2015; Buenrostro et al. 2015) (scATAC-seq) has 69 

been invented to analyze individual cells. Nevertheless, signals from scATAC-seq are intrinsically discrete 70 

since each genomic locus only has up to two copies of chromatin that can be assayed within a cell, and 71 

scATAC-seq only provides a snapshot of chromatin accessibility of a cell at the time when it is assayed 72 

and destroyed. As a surrogate for regulatory element activity, chromatin accessibility is arguably a 73 

continuous signal. This is because molecular events such as transcription-factor–DNA binding and 74 

dissociation are stochastic over time, and the overall activity of a regulatory element in a cell is 75 

determined by the probability – a continuous measure – that such stochastic events occur if one were to 76 

repeatedly observe the same cell at random time points. The discrete signal measured by scATAC-seq at 77 

a single time point cannot accurately describe this continuum of chromatin accessibility (Supplementary 78 

Fig. 1). Parallel to ATAC-seq, microfluidic oscillatory washing-based ChIP-seq (MOWChIP-seq) is a 79 

recently developed method for measuring histone modifications in small-cell-number samples (100-600 80 

cells) (Cao et al. 2015). Similar to ATAC-seq, MOWChIP-seq remains noisy when the cell number is small.  81 
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 82 

In a companion study, we found that chromatin accessibility measured by DNase I hypersensitivity (DH) 83 

in a bulk sample can be predicted with good accuracy using the sample’s gene expression profile 84 

measured by Affymetrix exon array (Zhou et al. submitted). We also developed a computational method 85 

BIRD to handle this big data prediction problem (Supplementary Methods, Supplementary Fig. 2). Here 86 

we investigate whether one can use a similar approach to predict regulome based on RNA-seq, and 87 

importantly, whether this approach allows one to use small-cell-number and single-cell RNA-seq (scRNA-88 

seq) to predict regulome in samples with limited amounts of materials (Fig. 1a).  89 

 90 

RESULTS 91 

Predicting Chromatin Accessibility Using Bulk RNA-seq 92 

We begin with evaluating the feasibility of using bulk RNA-seq to predict DH. We downloaded DNase-93 

seq and matching RNA-seq data for 70 human samples representing 30 different cell types 94 

(Supplementary Table 1) from the Roadmap Epigenomics project (Kundaje et al. 2015) (also called 95 

Epigenome Roadmap below). After preprocessing and normalization, 37,335 transcripts with expression 96 

measurements from RNA-seq and 1,136,465 genomic loci with DH measurements from DNase-seq were 97 

obtained and served as predictors and responses respectively (Methods). Our goal is to predict DH at 98 

these 1,136,465 loci using the 37,335 predictors. We evaluate the prediction using leave-one-out cross-99 

validation. In each fold of the cross-validation, the 30 cell types were partitioned into a training dataset 100 

consisting of 29 cell types and a test dataset consisting of 1 cell type. BIRD prediction models were 101 

trained using samples in the training data and then applied to RNA-seq samples in the test data to 102 

predict DH (Methods). Prediction performance was evaluated using true DNase-seq signals in the test 103 

data and the following statistics (Fig. 1c): (1) Pearson correlation between the predicted and true DH 104 

values across all genomic loci within each sample (“cross-locus correlation” rL), (2) Pearson correlation 105 

between the predicted and true DH values across all samples at each genomic locus (“cross-sample 106 

correlation” rC), and (3) total squared prediction error scaled by the total DH data variance (τ). As a 107 

control, we also constructed random prediction models (“BIRD-Permute”) by permuting the link 108 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 1, 2016. ; https://doi.org/10.1101/035816doi: bioRxiv preprint 

https://doi.org/10.1101/035816
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

between the DNase-seq and RNA-seq samples in the training data and then applied them to the test 109 

data.  110 

 111 

Based on rL, RNA-seq was able to accurately predict how DH varied across different genomic loci (mean 112 

rL=0.87), and the prediction accuracy of BIRD was significantly higher than random expectation (Fig. 1d, 113 

BIRD vs. BIRD-Permute: two-sided Wilcoxon signed-rank test p-value = 3.6x10-13). Of note, BIRD-Permute 114 

also explained a large amount of cross-locus DH variation (Fig. 1d, mean rL = 0.70). This was caused by 115 

strong locus-dependent DH propensities not perturbed by permutation (Supplementary Fig. 3, 116 

Methods). Due to these locus effects, simply using the mean DH profile across training samples can 117 

predict cross-locus DH variation to certain extent (Supplementary Fig. 4), although such prediction is 118 

independent of test sample and therefore less accurate compared to BIRD predictions which utilize test-119 

sample-dependent transcriptome information.  120 

 121 

Based on rC, RNA-seq was also able to predict how DH varied across samples with substantially higher 122 

accuracy than random expectation (Fig. 1e, mean rC of BIRD vs. BIRD-Permute = 0.51 vs.  -0.15, two-123 

sided Wilcoxon signed-rank test p-value < 2.2x10-16). Figure 1b shows two examples of such prediction. 124 

Prediction of cross-sample variation was less accurate than prediction of cross-locus variation (Fig. 1d-e, 125 

BIRD mean rC  vs. mean rL = 0.51 vs. 0.87), because cross-sample prediction performance was evaluated 126 

within each locus and not affected by the locus effects. Cross-sample prediction accuracy varied 127 

substantially across loci (Fig. 1e). A large proportion of loci can be predicted with good accuracy: 57% 128 

and 23% of loci had rC >0.5 and >0.75, respectively. For each locus, the coefficient of variation (CV) of the 129 

predicted DH values across samples was computed to characterize its cross-sample DH variability 130 

(Methods). It was observed that loci with smaller rC also tend to have smaller CV (Fig. 1g). On average, 131 

prediction of cross-sample variability was more accurate for loci with higher variability (Fig. 1h). For 132 

instance, for loci with CV>0.4, the mean rC  was 0.69 (>0.51, the mean rC of all loci), and 84% and 47% of 133 

such loci had rC >0.5 and >0.75 respectively.  134 

 135 
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By grouping genomic loci with similar cross-sample DH variation patterns into clusters and treating each 136 

cluster as a “pathway” of co-activated regulatory elements (Methods), cross-sample variation of the 137 

pathway activity (i.e., mean DH of all loci in each pathway) can be predicted more accurately (mean 138 

rC=0.71, 85% and 55% of pathways had rC > 0.5 and >0.75) than predicting cross-sample variability of 139 

individual loci (Fig. 1i).  140 

 141 

BIRD prediction also substantially reduced the squared prediction error compared to random 142 

expectation (Fig. 1f, BIRD vs. BIRD-Permute; τ=0.24 vs. 0.55). Together, the above results are consistent 143 

with the results in the companion study where DH was predicted using exon arrays (Zhou et al. 144 

submitted).  145 

 146 

Predicting Transcription Factor Binding Sites Using Bulk RNA-seq 147 

We tested if the predicted DH at DNA motif sites can predict transcription factor (TF) binding sites 148 

(TFBSs) by analyzing 34 TFs in GM12878 and 25 TFs in K562 cells. BIRD models trained using the 149 

Epigenome Roadmap data (70 samples, GM12878 and K562 were not part of the 70 samples) were 150 

applied to predict DH in GM12878 and K562 using RNA-seq. The DNA motif of each TF was mapped to 151 

the genome, and motif sites with high predicted DH were identified and ranked as predicted TFBSs. For 152 

each TF and cell type, the corresponding ChIP-seq data were obtained from ENCODE (ENCODE Project 153 

Consortium 2012). Motif-containing ChIP-seq peaks were used as gold standard to evaluate the 154 

prediction accuracy (Methods). Figure 1j-k and Supplementary Figures 5-6 show the percentage of gold 155 

standard TFBSs that were discovered by the top predicted sites. For comparison, we also predicted 156 

TFBSs using the true DNase-seq data (positive control) and the mean DH profile of the training samples 157 

(negative control). The results show that BIRD predictions based on RNA-seq were able to discover a 158 

substantial proportion of the true TFBSs. For instance, the top 15,000 predictions for YY1 in GM12878 159 

(q-value = 0.01) covered 76% of the gold standard YY1 binding sites (Fig. 1j). As expected, predictions 160 

based on true DNase-seq were more accurate than BIRD predictions. However, compared to the cell-161 
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type-independent prediction based on the mean DH profile, BIRD predictions were substantially better 162 

because BIRD used cell-type-specific information contained in the transcriptome.  163 

 164 

Predicting Chromatin Accessibility Using Small-cell-number RNA-seq 165 

Our next question is whether BIRD trained using bulk RNA-seq data from the Epigenome Roadmap can 166 

be applied to RNA-seq generated using small-cell-number samples to predict DH. We obtained published 167 

bulk RNA-seq and RNA-seq from samples with 10, 30 and 100 cells for GM12878 (Marinov et al. 2014). 168 

BIRD models trained using the Epigenome Roadmap data were applied to each sample. For evaluation, 169 

true chromatin accessibility profiles for these small-cell-number samples are not available. However, 170 

according to statistical theory, if cells in a small-cell-number sample are randomly drawn from a bulk cell 171 

population, the mean DH profile of the small-cell-number sample and that of the bulk sample should 172 

have the same expectation. Therefore, one can use the bulk DNase-seq data for GM12878 (ENCODE 173 

Project Consortium 2012) from the ENCODE as the “truth”. Based on this gold standard, we compared 174 

BIRD predictions with GM12878 ATAC-seq from 500 and 50,000 cells. Our evaluation was primarily 175 

based on cross-locus correlation rL, because reliably estimating cross-sample correlation rC requires a 176 

large number of test cell types which were not available here. It turns out that ATAC-seq from 50,000 177 

cells (“ATAC-b50k”) showed the highest cross-locus correlation with the true DNase-seq signal (Fig. 2a-b, 178 

rL=0.76). Surprisingly, however, BIRD-predicted DH signals from 30 and 100 cells consistently predicted 179 

the truth better than ATAC-seq from 500 cells (Fig. 2a-b, rL=0.63, 0.69 and 0.69 for “ATAC-b500”, “BIRD-180 

b30” and “BIRD-b100”). Of note, using the mean DH profile from the training data alone was able to 181 

predict DH to certain degree (Fig. 2a-b, rL=0.56 for “Mean”). The prediction accuracy of BIRD increased 182 

with increasing cell number. BIRD predictions based on ≥30 cells were almost as accurate as predictions 183 

based on bulk RNA-seq (Fig. 2a-b, rL=0.70 for “BIRD-bulk”). Figure 2b provides an example illustrating 184 

signals from different methods.    185 

 186 

Interestingly, combining the ATAC-seq signal from 500 cells and the BIRD-predicted DH from 30 cells by 187 

average (530 cells used in total) allowed one to better predict the gold standard DNase-seq signal (Fig. 188 
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2a-b, “BIRD-b30+ATAC-b500”, rL=0.76). The combined signal achieved the same accuracy as ATAC-seq 189 

using 50,000 cells (rL=0.76) and was better than using BIRD-b30 (rL=0.69) or ATAC-b500 (rL=0.63) alone 190 

(Fig. 2c-f). Similarly, by averaging ATAC-seq from 50,000 cells and BIRD predictions from 30 cells, we 191 

were able to predict the gold standard better than ATAC-b50k (Fig. 2a-b, rL=0.80 for “BIRD-b30+ATAC-192 

b50k”). The same improvement was not observed when the BIRD prediction was replaced by the 193 

prediction based on the mean DH profile (Fig. 2a-b, rL=0.69 and 0.75 for “Mean+ATAC-b500” and 194 

“Mean+ATAC-b50k”). These results show that DH predicted from small-cell-number RNA-seq can be 195 

integrated with small-cell-number ATAC-seq data (BIRD+ATAC-seq) to obtain better signal.  196 

 197 

We repeated the above evaluation by using ATAC-seq from 50,000 cells to replace bulk DNase-seq to 198 

serve as gold standard. Similar conclusions were obtained (Methods, Supplementary Fig. 7). Unlike the 199 

DNase-seq gold standard which came from a study different from the studies that generated the test 200 

ATAC-seq and RNA-seq data, the ATAC-50k gold standard was collected from the same study as ATAC-201 

b500 (RNA-seq was from a different study). Thus, the ATAC-50k gold standard should intrinsically favor 202 

ATAC-b500 over BIRD due to potential lab effects. Despite this, BIRD predictions based on ≥30 cells 203 

performed close to ATAC-b500 in this comparison, and BIRD-b30+ATAC-b500 outperformed ATAC-b500 204 

(Supplementary Fig. 7).  205 

 206 

Predicting Transcription Factor Binding Sites Using Small-cell-number RNA-seq 207 

We further evaluated whether DH predicted using small-cell-number RNA-seq coupled with DNA motif 208 

information can predict TFBSs. Similar to the analyses performed for the bulk RNA-seq, we predicted 209 

TFBSs for 34 TFs in GM12878 using BIRD-b30, BIRD-hybrid (i.e. BIRD-b30+ATAC-b500), ATAC-b50k, 210 

ATAC-b500, true DNase-seq (“True”), and mean DH of training samples (“Mean”). Figure 3a-f and 211 

Supplementary Figure 8 show the performance curves. To facilitate method comparison, we calculated 212 

the area under the curve (AUC) for each method, normalized by dividing the AUC of the “True” DNase-213 

seq (Fig. 3g, Supplementary Table 3, Methods). Comparison of the normalized AUC shows that BIRD-214 

b30 outperformed mean DH in all 34 tested TFs. Furthermore, BIRD-b30 outperformed ATAC-b500 in 23 215 
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of 34 TFs (Fig. 3g, Supplementary Fig. 8). Interestingly, BIRD-hybrid (BIRD-b30+ATAC-b500) 216 

outperformed ATAC-b500 in 32 of 34 TFs, and outperformed ATAC-b50k in 21 of 34 TFs. Thus, DH 217 

predicted by BIRD from 30 cells more accurately predicted TFBSs than ATAC-seq from 500 cells, and 218 

combining BIRD predictions with ATAC-seq from small number of cells better predicted TFBSs than bulk 219 

ATAC-seq.  220 

 221 

A Comparison of BIRD, ATAC-seq and MOWChIP-seq for Small-cell-number Samples 222 

Next, we compared DH predicted by BIRD using 30 cells, ATAC-seq, and histone modification H3K27ac 223 

and H3K4me3 profiles measured by MOWChIP-seq using 100 and 600 GM12878 cells. Since the genomic 224 

distribution of histone modification signal is different from that of chromatin accessibility due to 225 

nucleosome displacement around TFBSs (He et al. 2010), we first optimized the parameter for analyzing 226 

MOWChIP-seq data (Methods, Supplementary Fig. 9). The comparisons below are based on the optimal 227 

MOWChIP-seq performance. It was observed that predictions or measurements for each data type 228 

correlated better with the bulk data from the same data type than the bulk data from other data types 229 

(Supplementary Fig. 10). For instance, H3K27ac MOWChIP-seq using 100 and 600 cells (H3K27ac-b100 230 

and H3K27ac-b600) performed better than BIRD-b30 when H3K27ac bulk ChIP-seq was used as gold 231 

standard for evaluation, but the same MOWChIP-seq data performed worse than BIRD-30 when bulk 232 

DNase-seq was used as gold standard (Supplementary Fig. 10, Fig. 2a,b,g,h). This suggests that there 233 

were substantial differences among data types, making a fair comparison difficult. For predicting TFBSs, 234 

however, both BIRD-b30 and ATAC-b500 substantially outperformed MOWChIP-seq based on the overall 235 

performance in all 34 tested TFs (Fig. 3a-f, Supplementary Fig. 8). Among the MOWChIP-seq data, 236 

H3K27ac-b600 had the best overall performance for predicting TFBSs (Fig. 3g, Supplementary Table 3). 237 

BIRD-b30 outperformed H3K27ac-b600 MOWChIP-seq in 27 of 34 tested TFs. ATAC-b500 outperformed 238 

H3K27ac-b600 in 31 of 34 tested TFs. Finally, BIRD-hybrid (BIRD-b30+ATAC-b500) outperformed 239 

H3K27ac-b600 in 33 out of 34 TFs. 240 

 241 

 242 
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Predicting Chromatin Accessibility and TFBSs Using Single-cell RNA-seq 243 

We proceeded to investigate whether one can use single-cell RNA-seq data to predict DH. We analyzed a 244 

single-cell RNA-seq dataset with 28 single cells for GM12878 (Marinov et al. 2014). After calculating 245 

gene expression for each cell, we pooled k (k = 1, 5, 10, 20, 28) cells randomly drawn from the dataset 246 

together and used their average expression profile to predict DH based on BIRD models trained from the 247 

Epigenome Roadmap bulk RNA-seq data. For comparison, we analyzed published single-cell ATAC-seq 248 

data in GM12878 generated by two different protocols (“ATAC1” (Cusanovich et al. 2015): 222 cells; 249 

“ATAC2” (Buenrostro et al. 2015): 340 cells). We computed average scATAC-seq profile for k (k = 1, 5, 10, 250 

20, 28, 50, 100, 222 and 340) cells randomly drawn from each dataset respectively. Figure 4 shows the 251 

performance of different methods evaluated using bulk DNase-seq as gold standard. Holding the cell 252 

number the same, BIRD based on pooled scRNA-seq was consistently better than pooled scATAC-seq for 253 

predicting bulk DNase-seq (Fig. 4b,c). BIRD predictions based on a single cell and pooled scATAC-seq 254 

using ≤50 cells from ATAC1 or ≤20 cells from ATAC2 were less accurate than predictions based on the 255 

mean DH profile (Fig. 4b). However, prediction accuracy increased as more cells were pooled together. 256 

BIRD with 10 cells performed better than the mean DH profile, and it was comparable to pooling 100 257 

cells from ATAC1 or pooling 50 cells from ATAC2.  The results remained similar when the gold standard 258 

was changed to bulk ATAC-seq data from 50,000 or 500 cells (Supplementary Fig. 11). 259 

 260 

We also combined BIRD predictions based on pooling scRNA-seq from 28 cells with the pooled scATAC-261 

seq profile from x cells (x = 22, 72, 194 and 312) by taking the average of the two profiles (“BIRD-262 

hybrid”). We then compared BIRD-hybrid with pooled scATAC-seq data using the same number of cells 263 

(i.e., k = 28 + x = 50, 100, 222, 340). BIRD-hybrid also outperformed pooled scATAC-seq (Fig. 4a-c, 264 

Supplementary Fig. 11). 265 

 266 

To test whether predictions from scRNA-seq can predict TFBSs in a similar fashion as small-cell-number 267 

RNA-seq, we again analyzed 34 TFs in GM12878 (Fig. 5a-f, Supplementary Figs. 12-15, Supplementary 268 

Table 4). Once again, BIRD and BIRD-hybrid performed better than pooled scATAC-seq. For instance, 269 
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when pooling 10 cells, BIRD prediction outperformed ATAC1 and ATAC2 in all 34 TFs, and it 270 

outperformed mean DH in 33 of 34 TFs. Using 28 cells, BIRD outperformed ATAC1, ATAC2 and mean DH 271 

in 34, 32 and 33 out of 34 tested TFs respectively. Using 222 single cells, BIRD-hybrid outperformed 272 

ATAC1, ATAC2 and mean DH in 33, 33 and 31 out of the 34 tested TFs respectively (Supplementary Fig. 273 

15, Supplementary Table 4). 274 

 275 

We applied BIRD to another scRNA-seq dataset (Trapnell et al. 2014) (69 cells) from human skeletal 276 

muscle myoblasts (HSMM) (Fig. 5g, “approach 1”, pooling k= 1, 5, 10, 20, 30, 40, 50 and 69 cells). For 277 

this dataset, scATAC-seq was not available and therefore not compared. We used bulk DNase-seq data 278 

in HSMM as gold standard for evaluation. The prediction accuracy of BIRD by pooling ≥5 cells was better 279 

than the accuracy based on the mean DH profile, and the accuracy of BIRD by pooling ≥30 cells was 280 

comparable to BIRD predictions based on bulk RNA-seq (Fig. 5g). This further demonstrates that one can 281 

predict DH from scRNA-seq by pooling a small number of cells. 282 

 283 

When applying BIRD to scRNA-seq data, it is important to pool RNA-seq data from multiple cells first and 284 

then make predictions based on the pooled gene expression profile. When we tried to first predict DH 285 

based on each single cell and then average the predictions from multiple cells, the prediction 286 

performance was substantially worse for both the GM12878 and HSMM data (Fig. 5g-h, “approach 2”). 287 

This is because expression measurements from scRNA-seq have substantial biases (e.g., zero-inflation by 288 

dropout events (Kharchenko et al. 2014)) that cannot be removed by the usual normalization. Impacts 289 

on prediction by such bias can be reduced when multiple cells are pooled together to measure gene 290 

expression and the pooled expression profile is then normalized against the bulk RNA-seq data in the 291 

training dataset.  292 

 293 

DISCUSSION 294 

To summarize, our analyses demonstrate that predicting chromatin accessibility using RNA-seq can 295 

provide a new approach for regulome mapping both in bulk samples and in samples with small number 296 
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of cells. The study compared multiple state-of-the-art technologies for mapping regulome in small-cell-297 

number samples including ATAC-seq, scATAC-seq, MOWChIP-seq and BIRD. Our results show that for 298 

analyzing small-cell-number samples, BIRD can offer competitive performance compared to ATAC-seq 299 

and scATAC-seq. In particular, using 5-10 folds fewer cells, BIRD reached the same accuracy as ATAC-seq 300 

and pooled scATAC-seq for predicting bulk chromatin accessibility. Also, BIRD based on scRNA-seq more 301 

accurately predicted bulk chromatin accessibility than using scATAC-seq by pooling the same number of 302 

cells. Besides ATAC-seq, BIRD based on fewer cells also offered competitive or better performance 303 

compared to MOWChIP-seq using more cells.  304 

 305 

Based on our analyses, the minimum number of cells required by the current technology to recover 306 

chromatin accessibility in a bulk sample is approximately 10 cells. This was achieved by BIRD. Averaging 307 

single-cell ATAC-seq from 10 cells predicted bulk chromatin accessibility worse than the trivial prediction 308 

based on the mean DH profile. By contrast, BIRD predictions based on pooling scRNA-seq from 10 cells 309 

were better than predictions based on the mean DH profile. This highlights the limitation of scATAC-seq 310 

due to its intrinsic discreteness (Supplementary Fig. 1). Compared to scATAC-seq, scRNA-seq data are 311 

less discrete since each gene can have more than two copies of transcripts in a cell.  312 

 313 

Most recently, single-cell ChIP-seq (Drop-ChIP) for histone modifications and single-cell DNase-seq 314 

(scDNase-seq) have been reported (Rotem et al. 2015; Jin et al. 2015). Since the current Drop-ChIP and 315 

scDNase-seq data for single cells are in mouse and we do not have enough training samples in mouse to 316 

build BIRD models, we were unable to directly compare BIRD with Drop-ChIP and scDNase-seq here. Of 317 

note, Drop-ChIP data are highly discrete, with 500~10,000 reads and an average of ~800 peaks detected 318 

per cell. Our results on scATAC-seq (ATAC1 and ATAC2 had an average of ~2,700 and ~14,000 reads per 319 

cell respectively) suggest that discreteness of the signal will remain a problem for Drop-ChIP. Although 320 

scDNase-seq has also been applied to pooled human cells dissected from formalin-fixed paraffin-321 

embedded tissues, there is no gold standard available for a direct comparison between BIRD and 322 
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scDNase-seq for that application. In the future, it will be interesting to compare BIRD with Drop-ChIP 323 

and scDNase-seq when appropriate test and benchmark data become available. 324 

        325 

Our study has important practical relevance on future data analyses. It shows that transcriptome-based 326 

regulome prediction can greatly increase the value of current and future bulk, small-cell-number and 327 

single-cell RNA-seq experiments. By adding a new component to the standard RNA-seq analysis pipeline, 328 

this approach allows one to use RNA-seq not only for studying transcriptome but also for studying 329 

regulome. This can greatly impact how to most effectively use existing and future RNA-seq data, which is 330 

particularly relevant given that enormous amounts of RNA-seq data will be generated in the years to 331 

come. 332 

 333 

Our study also has important implications for future experiment design. When a sample contains only a 334 

very limited number of cells, researchers have to decide how these cells should be wisely used. For 335 

example, should one use all cells for transcriptome profiling by RNA-seq or regulome mapping by ATAC-336 

seq? Results from this study show that one may divide the samples into two parts, one for RNA-seq or 337 

scRNA-seq, and one for ATAC-seq or scATAC-seq. This strategy has two advantages. First, one can obtain 338 

information for two different data types instead of only one data type. Second, by spending some cells 339 

on RNA-seq, BIRD-hybrid allows one to combine the two data types to produce comparable or better 340 

regulome mapping than spending all cells on ATAC-seq. This study also shows that if one decides to use 341 

all cells for RNA-seq, one can still obtain information on regulome through prediction. Thus, it is also 342 

possible to analyze transcriptome and regulome simultaneously in a small-cell-number sample by 343 

measuring only transcriptome.  344 

 345 

Currently, BIRD predictions based on RNA-seq from a single cell were less accurate than the mean DH 346 

profile for predicting the bulk chromatin accessibility. One possible reason is that technical biases in the 347 

single-cell RNA-seq data (e.g., excessive zeros in the data) cannot be easily removed by normalization 348 

when there is only one cell, making the prediction inaccurate. Another possible reason is that the small 349 
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sample size (n=1 cell) is not sufficient to overcome the random variation in single-cell expression to 350 

recover the behavior of a bulk sample. Naturally, an important question for future research is whether 351 

one can develop methods insensitive to the biases in scRNA-seq to improve predictions in a single cell. 352 

More generally, there is still great demand for new experimental or computational methods for single-353 

cell regulome mapping, particularly in the context that the discrete signals generated at one random 354 

time point by current experimental technologies such as scATAC-seq may not adequately describe the 355 

average steady-state behavior of a cell over time. 356 

 357 

As a proof-of-concept, this study shows that predicting chromatin accessibility using bulk and small-cell-358 

number RNA-seq is feasible. Another important next step is to explore whether other functional 359 

genomic data types can be predicted in a similar fashion in small-cell-number samples. 360 

 361 

 362 

METHODS 363 

DNase-seq data processing 364 

The aligned DNase-seq data (alignment based on hg19) from 70 samples were downloaded from the 365 

Roadmap Epigenomics project (Kundaje et al. 2015) (ftp://ftp.genboree.org/EpigenomeAtlas/Current-366 

Release/experiment-sample/Chromatin_Accessibility/). The analyses in this study were focused on 367 

chromosomes 1 to X. Excluding chromosome Y, the genome was divided into 200 base pair (bp) non-368 

overlapping bins. The number of reads mapped to each bin was counted for each DNase-seq sample. To 369 

adjust for different sequencing depths, bin read counts for each sample 𝑖𝑖 were first divided by the 370 

sample’s total read count 𝑁𝑁𝑖𝑖  and then scaled by multiplying a constant 𝑁𝑁 (𝑁𝑁 = min
𝑖𝑖

{𝑁𝑁𝑖𝑖} = 12,422,306, 371 

which is the minimum sample read count of all samples). The normalized read counts were then log2 372 

transformed after adding a pseudocount 1. The normalized and log2-transformed read counts were 373 

used to represent DH levels of genomic bins.  374 

 375 
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DNase-seq data for GM12878, K562 and HSMM were downloaded from the ENCODE project (ENCODE 376 

Project Consortium 2012). The data were aligned to human genome hg19 using bowtie (Langmead et al. 377 

2009)  (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase). The 378 

aligned reads were processed in the same way as the Epigenome Roadmap data to derive DH levels. Of 379 

note, the ENCODE data contained replicate samples for each cell type. The normalized read counts from 380 

replicate samples were first averaged to characterize the DH level for each bin in each cell type. The DH 381 

level was then log2 transformed after adding a pseudocount 1.  382 

 383 

Genomic loci filtering 384 

Since most genomic loci are noise rather than regulatory elements, we filtered genomic loci to exclude 385 

those without strong DH signal in any Epigenome Roadmap DNase-seq sample. The filtering was done in 386 

three steps. First, genomic bins with normalized read count ≤8 in all samples were excluded. Second, 387 

bins with normalized read count larger than 10,000 in ≥1 sample were considered abnormal and 388 

therefore also excluded. Third, a signal-to-noise ratio (SNR) was computed for each bin in each sample, 389 

and bins with SNR ≤ 2 in all samples were considered as noise and filtered out. In order to compute SNR 390 

of a genomic bin in a sample, we first collected 500 bins in the neighborhood of the bin in question. The 391 

average DH level of these bins was computed and then log2 transformed after adding a pseudocount 1 392 

to serve as the background. The log2(SNR) was defined as the difference between the normalized and 393 

log2 transformed DH level of the bin in question and the background.  SNR ≤ 2 is equivalent to log2(SNR) 394 

≤ 1. 395 

 396 

After filtering, 1,136,465 genomic bins (called DNase I hypersensitive sites, or DHSs, hereinafter) with 397 

unambiguous DNase-seq signal in at least one sample were identified. All analyses in this study were 398 

performed on these genomic loci, except for the leave-one-out cross-validation analysis in Figure 1d-i 399 

which will be described in a separate section below. 400 

 401 

 402 
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Bulk RNA-seq data processing 403 

The aligned RNA-seq data (alignment based on hg19) for the same 70 Epigenome Roadmap samples 404 

were downloaded from ftp://ftp.genboree.org/EpigenomeAtlas/Current-Release/experiment-405 

sample/mRNA-Seq/. Cufflinks (Trapnell et al. 2010) was used to compute the expression values (i.e., 406 

FPKM: fragments per kilobase of exon per million mapped fragments) using gene annotations in 407 

GENCODE (Harrow et al. 2012) (Release 19 (GRCh37.p13)). 37,335 transcripts (called “genes” hereinafter 408 

for simplicity) with FPKM > 1 in at least one sample were identified. These FPKM values were log2 409 

transformed after adding a pseudocount 1 and then quantile normalized across samples. After 410 

normalization, the quantiles of the Epignome Roadmap training data were stored for future use. When 411 

new RNA-seq samples need to be analyzed, they will be quantile normalized against these stored 412 

quantiles. 413 

 414 

For evaluation, we downloaded the following data from GEO: (1) GM12878 and K562 bulk RNA-seq data 415 

(GSM958728, GSM958729), (2) GM12878 RNA-seq data from small-cell-number samples with 10, 30 and 416 

100 cells (GSM1087860, GSM1087861, GSM1087858, GSM1087859, GSM1087856, GSM1087857). For 417 

these samples, reads were mapped to human genome hg19 using Tophat (Kim et al. 2013). Gene 418 

expression values were then computed using Cufflinks in the same way as how we processed the 419 

Epigenome Roadmap RNA-seq data. Finally the gene expression values were quantile normalized with 420 

the Epigenome Roadmap RNA-seq data using the stored quantiles.  421 

 422 

BIRD Model 423 

The BIRD (BIg data Regression for predicting DNase I hypersensitivity) algorithm is described and 424 

systematically evaluated in a companion article. For readers’ convenience, we review its workflow in 425 

Supplementary Methods. Readers are referred to Zhou et al. (Zhou et al. submitted) for more details. 426 

BIRD software is available at https://github.com/WeiqiangZhou/BIRD. Models trained using the 70 427 

Epigenome Roadmap samples have been stored in the software package. 428 

 429 
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Prediction performance evaluation 430 

Three statistics were used in this article for evaluating prediction accuracy in different analyses. Let 𝑦𝑦�𝑙𝑙𝑙𝑙 431 

be the predicted DH level of locus 𝑙𝑙 (=1, … , 𝐿𝐿) in test sample 𝑚𝑚 (=1, … ,𝑀𝑀), and let 𝑦𝑦𝑙𝑙𝑙𝑙 be the true DH 432 

level measured by DNase-seq. The three statistics include: 433 

 434 

(1) Cross-locus correlation (𝑟𝑟𝐿𝐿). This is the Pearson’s correlation between the predicted signals 𝒚𝒚�∗𝒎𝒎 =435 

(𝑦𝑦�1𝑙𝑙, … ,𝑦𝑦�𝐿𝐿𝑙𝑙)𝑇𝑇 and the true signals 𝒚𝒚∗𝒎𝒎 = (𝑦𝑦1𝑙𝑙, … ,𝑦𝑦𝐿𝐿𝑙𝑙)𝑇𝑇 across different loci for each test sample 𝑚𝑚. 436 

The cross-locus correlation measures the extent to which the DH signal within each sample can be 437 

predicted.  438 

 439 

(2) Cross-sample correlation (𝑟𝑟𝐶𝐶). This is the Pearson’s correlation between the predicted signals 𝒚𝒚�𝒍𝒍∗ =440 

(𝑦𝑦�𝑙𝑙1, … ,𝑦𝑦�𝑙𝑙𝑙𝑙) and the true signals  𝒚𝒚𝒍𝒍∗ = (𝑦𝑦𝑙𝑙1, … , 𝑦𝑦𝑙𝑙𝑙𝑙) across different samples for each locus 𝑙𝑙. The 441 

cross-sample correlation measures how much of the DH variation across samples can be predicted.  442 

 443 

(3) Squared prediction error (𝜏𝜏). This is measured by the total squared prediction error scaled by the 444 

total DH data variance in the test dataset: τ = ∑ ∑ (𝑦𝑦𝑙𝑙𝑙𝑙−𝑦𝑦�𝑙𝑙𝑙𝑙)2𝑙𝑙𝑙𝑙
∑ ∑ (𝑦𝑦𝑙𝑙𝑙𝑙−𝑦𝑦�)2𝑙𝑙𝑙𝑙

 , where 𝑦𝑦� is the mean of 𝑦𝑦𝑙𝑙𝑙𝑙 across all 445 

DHSs and test samples. 446 

 447 

Leave-one-out cross-validation 448 

Leave-one-out cross-validation was used to evaluate BIRD prediction accuracy when bulk RNA-seq data 449 

were used as predictors. In each fold of the cross-validation, the 30 Epigenome Roadmap cell types 450 

(consisting of 70 samples) were partitioned into a training dataset with 29 cell types and a test dataset 451 

with 1 cell type. In other words, all samples from one cell type were used as test data, and all samples 452 

from the remaining 29 cell types were used as the training data. BIRD was then trained using all samples 453 

in the training dataset and applied to predict DH for all samples in the test dataset. 454 

 455 
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To ensure that the test data are not used in the construction of prediction models, the predictor and 456 

genomic loci filtering procedure was applied to each fold of cross-validation by using the training data 457 

only. For instance, we identified genes with FPKM > 1 in at least one RNA-seq sample in the training data 458 

as predictors. The identified predictors were a subset of the 37,335 genes described before (note: the 459 

37,335 genes were identified using all 70 samples rather than using only the training samples). For 460 

different folds of cross-validation, a slightly different set of predictors was identified.  Similarly, genomic 461 

loci (i.e. DHSs) to be predicted were selected by applying the previously described filtering protocol to 462 

the training data only: (1) normalized bin read count ≥8 in at least one sample; (2) normalized bin read 463 

count < 10,000 in all samples; (3) SNR ≥ 2 in at least one sample. Prediction models were constructed for 464 

the identified genomic loci. These loci varied from fold to fold, and they were also slightly different from 465 

the 1,136,465 genomic loci derived from all 70 samples. Of note, the parameters of BIRD (i.e. K and N in 466 

Supplementary Methods) were selected following the same procedure described in Supplementary 467 

Methods using 1% loci randomly chosen from the training dataset (i.e., samples from 29 cell types in 468 

each fold). Since the training data were different in each fold, the parameters also varied from fold to 469 

fold.  470 

 471 

After predictions were made for all samples, rL, rC and τ were calculated between the true and predicted 472 

DH profiles. Conceptually, one can organize the predicted values into a matrix. Rows of the matrix 473 

correspond to genomic loci, and columns of the matrix correspond to samples. The matrix has missing 474 

values as not all genomic loci have prediction models in all samples. This is because genomic loci filtering 475 

was dependent on the training data. As a result, in each fold of cross-validation, prediction models were 476 

built for a slightly different set of genomic loci. To compute rL, rC and τ, missing data points in the 477 

prediction matrix were excluded, and only data points with predicted DH values were used. This 478 

produces Figure 1d-f. 479 

 480 
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Random prediction models by permutation 481 

To construct random prediction models, sample labels of the DNase-seq data in the training dataset 482 

were shuffled. This permutation broke the connection between DNase-seq and RNA-seq samples. Then, 483 

BIRD was trained by the permuted training dataset and applied to predict DH in the test dataset. The 484 

permutation was performed in each fold of the leave-one-out cross-validation and the prediction 485 

performance was then evaluated by 𝑟𝑟𝐿𝐿, 𝑟𝑟𝐶𝐶  and 𝜏𝜏. Of note, our permutation here did not perturb the 486 

locus effects of DH profile. Therefore, predictions from the random prediction models mostly captured 487 

the average DH level of each genomic locus in the training dataset.  488 

 489 

Wilcoxon signed-rank test 490 

Two-sided Wilcoxon signed-rank test (Wilcoxon 1945) was performed to obtain p-values for comparing 491 

prediction accuracy of BIRD and random prediction models. In order to test whether two methods 492 

perform equally in terms of 𝑟𝑟𝐿𝐿, the paired 𝑟𝑟𝐿𝐿 values from these two methods for each sample was 493 

obtained. Then the 𝑟𝑟𝐿𝐿 pairs from all samples are used for Wilcoxon signed-rank test. Similarly, to 494 

compare two methods in terms of 𝑟𝑟𝐶𝐶, the paired 𝑟𝑟𝐶𝐶  values for each locus were obtained, and 𝑟𝑟𝐶𝐶  pairs 495 

from all genomic loci were used for the Wilcoxon signed-rank test.  496 

 497 

Categorization of genomic loci based on cross-sample variability 498 

When studying the cross-sample prediction performance (i.e., 𝑟𝑟𝐶𝐶) in Figure 1g-h, genomic loci were 499 

grouped into different categories based on their cross-sample variability of the predicted DH profile. 500 

First, loci with predicted DH value (at log2 scale) smaller than 2 across all cell types were treated as noisy 501 

loci (Fig. 1g-h, indicated by “Noisy loci”). For such loci, the observed DH level may contain substantial 502 

noise, and the cross-sample correlation between the predicted and the true DH is expected to be low 503 

(since the correlation between random noise and another independent random variable is expected to 504 

be zero). After excluding the noisy loci, the other loci were then categorized based on the coefficient of 505 

variation (CV) of the cross-sample DH values. For each locus, CV was calculated as the ratio of the 506 

standard deviation to mean of the predicted DH at this locus across all samples. Loci were divided into 507 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 1, 2016. ; https://doi.org/10.1101/035816doi: bioRxiv preprint 

https://doi.org/10.1101/035816
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

three categories: CV≤0.2, 0.2<CV≤0.4, CV>0.4 (Fig. 1g-h). A large CV indicates that the DH of a locus has 508 

more variation across samples. Figure 1g shows the distribution of rC. Genomic loci are grouped into bins 509 

based on rC values. For each bin, the number of loci in different CV categories is shown. Figure 1h shows 510 

the distribution of rC in each CV category.  511 

 512 

Chromatin accessibility prediction for clusters of co-activated DHSs 513 

A transcriptional regulation process often involves co-activation of multiple cis-regulatory elements. 514 

Such co-activated regulatory elements can be viewed as regulatory “pathways”. Previously, DHSs 515 

discovered from the ENCODE DNase-seq data have been clustered into 2500 clusters based on their 516 

cross-sample co-variation patterns (Sheffield et al. 2013). Using these pre-defined clusters as 517 

“pathways”, we investigated how accurate the pathway activity can be predicted using bulk RNA-seq. To 518 

do so, we first identified the cluster membership of the 1,136,465 genomic loci studied here based on 519 

the clustering results provided by Sheffield et al. (2013) (obtained from 520 

http://big.databio.org/RED/TableS03-dhs-to-cluster.txt.tar.gz, the “original cluster” assignment was 521 

used). For each cluster, we then computed its mean DH level (missing values were excluded) in each 522 

sample using all DHSs in the cluster. Next, we built prediction models to predict the mean DH level of 523 

each cluster (i.e., “pathway activity”) in the same way as BIRDX�,Y� . The prediction accuracy was 524 

evaluated using leave-one-out cross-validation (i.e., using 29 cell types as training and 1 cell type as test 525 

data). After cross-validation, the average DH level for each DHS cluster and each sample was obtained, 526 

and the cross-sample correlation was calculated between the true and predicted mean DH level for each 527 

cluster (Fig. 1i).   528 

 529 

Transcription factor binding site prediction 530 

BIRD models trained using the 70 Epigenome Roadmap samples were applied to predict binding sites for 531 

34 TFs in GM12878 cells and 25 TFs in K562 cells. For each TF, DNA motif obtained from TRANSFAC 532 

(Matys et al. 2006) and JASPAR (Mathelier et al. 2014) (Supplementary Table 2) was computationally 533 

mapped to the human genome using CisGenome (Ji et al. 2008) (using default likelihood ratio ≥ 500 534 
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cutoff). DHSs (i.e., the 1,136,465 genomic bins) that overlapped with motif sites were retained for 535 

subsequent analyses. These motif-containing DHSs were ranked in decreasing order based on the 536 

predicted DH level to serve as the predicted TFBSs. As a comparison, DHSs were also ranked based on 537 

two other methods: the true DH level at each DHS from the corresponding DNase-seq data (“True”) and 538 

the DH level predicted based on the mean DH profile of the 70 training samples (“Mean”).  539 

 540 

To evaluate the prediction performance of different methods, the transcription factor ChIP-seq uniform 541 

peaks data for the 34 TFs in GM12878 and 25 TFs in K562 were downloaded from the ENCODE project to 542 

serve as the truth (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbs 543 

Uniform/).  ChIP-seq peaks overlapped with motif sites were used as the gold standard. The percentage 544 

of these gold standard peaks that were recovered by the top ranked predicted TFBSs was computed to 545 

measure the sensitivity of each prediction method.  Different methods were compared by plotting the 546 

sensitivity as a function of the number of predicted TFBSs (Fig. 1j-k, Supplementary Figs. 5-6). 547 

 548 

To evaluate statistical significance of the predicted TFBSs, the same BIRD models were applied to a set of 549 

randomly sampled genomic bins (n= 984,213, sampled from non-repeat genomic regions) to make 550 

predictions. Using the predicted DH values in the random genomic loci as the null distribution, a p-value 551 

was computed for each studied DHS to evaluate the significance of its predicted DH level (p-value of the 552 

predicted DH level at a DHS = [no. of random loci with equal or larger predicted DH levels] / [the total no. 553 

of random loci]). To adjust for multiple testing, the p-values were converted to q-values based on the 554 

previously described method (Dabney and Storey). q-values for BIRD predictions were labeled on top of 555 

each sensitivity-rank plot (e.g., Fig. 1j-k). 556 

 557 

To generate Figure 3g and Supplementary Figure 15 that compare different TFBS prediction methods 558 

using small-cell-number or single-cell RNA-seq data, we computed the area under the curve (AUC) for 559 

each method using the sensitivity rank curves in Figure 3a-f, Supplementary Figure 8, Figure 5a-f, and 560 

Supplementary Figures 12-14. The AUC of each method was then scaled by (i.e., divided by) the AUC 561 
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obtained using the true DNase-seq data (Supplementary Tables 3-4). To show a clear comparison of 562 

different methods for predicting binding sites of each TF, colors in the heatmap (Fig. 3g and 563 

Supplementary Fig. 15) reflect the transformed AUC values. For instance, values within each row were 564 

transformed to the range between 0 and 1 by: [AUC value – min(value)]/[max(value) – min(value)], here 565 

min(value) and max(value) represent the minimum and maximum AUC value within each row. Of note, 566 

within each TF, the minimum AUC was transformed to 0 and the maximum AUC was transformed to 1. 567 

As a reference, the untransformed minimum AUC value from all methods was shown for each TF using a 568 

blue bar beside the TF name in Figure 3g and Supplementary Figure 15. 569 

 570 

To measure the overall prediction performance of each method, we calculated the average rank score 571 

(shown using red bars under the name of each method in Fig. 3g and Supplementary Fig. 15) across all 572 

34 test TFs. First, for each TF, different methods were ranked according to their AUC values. For instance, 573 

in Figure 3g, the best performing method has rank 1 and the worst performing method has rank 9. Then, 574 

we calculated the average rank across all test TFs for each method. Smaller average rank indicates 575 

better overall prediction performance.  576 

 577 

Bulk ATAC-seq data processing 578 

ATAC-seq data for GM12878 with 50,000 and 500 cells were obtained from GEO (GSE47753). The 579 

paired-end reads were aligned to human genome hg19 using bowtie (Langmead et al. 2009) with 580 

parameters (-X2000 -m 1) which specify that paired reads (a pair of reads was referred to as a fragment) 581 

with insertion up to 2,000 base pair (bp) were allowed to align and only uniquely aligned fragments 582 

were retained. Then, PCR duplicates (i.e. fragments that aligned to exactly the same genomic location) 583 

were determined using Picard (http://broadinstitute.github.io/picard/) where only one fragment was 584 

kept and the others were removed. Next, we measured the bin-level fragment coverage by counting 585 

how many fragments covered each 200bp genomic bin. Similar to the DNase-seq data, bin-level 586 

fragment coverage for each sample was first divided by the sample’s whole-genome fragment coverage 587 

(i.e., sum of bin-level fragment coverage across the genome) and then scaled by a constant N 588 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 1, 2016. ; https://doi.org/10.1101/035816doi: bioRxiv preprint 

http://broadinstitute.github.io/picard/
https://doi.org/10.1101/035816
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

(=12,422,306, to be consistent with the DNase-seq data). Finally, the normalized bin fragment coverage 589 

from different replicate samples were averaged and log2 transformed after adding a pseudocount 1.  590 

 591 

Histone modification ChIP-seq and MOWChIP-seq data processing 592 

H3K27ac and H3K4me3 MOWChIP-seq data for GM12878 with 100 and 600 cells were obtained from 593 

GEO (GSE65516: GSM1666202, GSM1666203, GSM1666204, GSM1666205, GSM1666206, GSM1666207, 594 

GSM1666208, GSM1666209). For both histone marks, the processed signal files provided by the 595 

MOWChIP-seq authors were downloaded from GEO. These files contained normalized read counts for 596 

the whole genome divided by 100 bp bins (Cao et al. 2015). The data were converted to 200 bp 597 

resolution by merging adjacent two 100 bp bins (i.e., adding the read counts of the two 100 bp bins).  598 

 599 

Due to nucleosome displacement, the spatial distribution of histone modification signal surrounding 600 

each regulatory element (e.g., transcription factor binding site) may differ from the peak of the DNase-601 

seq and ATAC-seq signal (He et al. 2010). Therefore we first explored different ways to summarize the 602 

histone modification signal in order to maximize its correlation with the bulk DNase-seq data. To do so, 603 

we considered a W-bp long window centered at each genomic locus (200bp bin). The normalized read 604 

counts of all 200bp bins covered by the window were averaged to serve as the summary of the histone 605 

modification signal at the locus. The summarized signals from replicate samples were averaged and log2 606 

transformed after adding pseudocount 1. We then tested different window sizes (W=200, 600, 1000, 607 

1400, 1800, 2200, 2600 bp) to find the optimal W that maximizes the correlation between the 608 

summarized histone modification signal and the bulk DNase-seq signal (i.e., DH level at 200-bp 609 

resolution as described before) across all genomic loci (Supplementary Fig. 9a). For H3K27ac with 100 610 

and 600 cells, the optimal W was 2200. For H3K4me3 with 100 cells, the optimal W was 2200. For 611 

H3K4me3 with 600 cells, the optimal W was 1800. The summarized MOWChIP-seq signals using these 612 

optimal W were then compared with BIRD and ATAC-seq in Figure 2 and Supplementary Figure 10.  613 

 614 
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H3K27ac and H3K4me3 ChIP-seq data for bulk GM12878 samples were obtained from ENCODE 615 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHistone/). For each 616 

200bp genomic bin, reads from the bulk ChIP and input control samples were counted. Bin read counts 617 

in each sample were normalized by the sample’s total read count and then scaled by multiplying 618 

1,000,000. Signals were then calculated as the difference between the ChIP and input samples. Similar 619 

to MOWChIP-seq, we used the average signal of a W-bp long window (W=200, 600, 1000, 1400, 1800, 620 

2200, 2600 bp) centered at each genomic locus to represent its summarized histone modification signal. 621 

The summarized signals from replicate samples were then averaged and log2 transformed after adding 622 

pseudocount 1. The optimal W was determined by maximizing the correlation with the bulk DNase-seq 623 

signal. For bulk H3K27ac and H3K4me3, the optimal W was 1000 and 1400 respectively (Supplementary 624 

Fig. 9c).  The summarized ChIP-seq signals using these optimal W were then used for generating 625 

Supplementary Figure 10. 626 

 627 

For TFBS prediction using MOWChIP-seq data, we also first optimized the window size W for each 628 

MOWChIP-seq dataset. For each histone mark and cell number, we obtained the scaled AUC (scaling is 629 

done by dividing the AUC of using true DNase-seq data to predict TFBSs) for all 34 TFs using different 630 

window sizes. For each TF, different window sizes were then ranked based on the scaled AUC. The 631 

average rank of each window size W across all 34 TFs was computed (Supplementary Fig. 9b). W with 632 

the best average rank was identified. For H3K27ac MOWChIP-seq with 100 and 600 cells, the optimal W 633 

was 1800. For H3K4me3 MOWChIP-seq with 100 cells, the optimal W was 2200. For H3K4me3 634 

MOWChIP-seq with 600 cells, the optimal W was 1800. The summarized MOWChIP-seq signals using 635 

these optimal W were then compared with BIRD and ATAC-seq in Figure 3 and Supplementary Figure 8. 636 

We note that since TFBSs of different TFs may be associated with different histone modification 637 

signatures (e.g., different types of histone modifications), a better way to predict TFBS might be to use 638 

multiple types of histone modification data and develop a prediction model specific for each TF. 639 

However, that would make the TFBS prediction more difficult to apply in reality because one would 640 

need to collect more MOWChIP-seq data and have knowledge on the histone modification signature for 641 
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each TF. For this reason, our analyses here were primarily focused on evaluating the performance of 642 

using one data type (i.e., H3K27ac, H3K4me3, ATAC-seq, or RNA-seq) and a common prediction 643 

procedure for all TFs. This makes the comparison among MOWChIP-seq, ATAC-seq (ATAC-b500) and 644 

BIRD (BIRD-b30) relatively fair in the sense that different TFBS prediction methods have similar level of 645 

complexity in terms of data collection and computational analysis. 646 

 647 

Chromatin accessibility prediction based on single-cell RNA-seq data 648 

We downloaded two datasets from GEO: (1) GM12878 single-cell RNA-seq data (GSE44618, 28 cells in 649 

total), (2) HSMM single-cell RNA-seq data (GSE52529, 69 cells from undifferentiated HSMM were used 650 

for our analysis). For these samples, reads were mapped to human genome hg19 using Tophat (Kim et al. 651 

2013). Gene expression values were then computed using Cufflinks in the same way as how we 652 

processed the Epigenome Roadmap RNA-seq data. For each dataset, we randomly sampled k cells (k = 1, 653 

5, 10, 20, 28 for GM12878; k= 1, 5, 10, 20, 30, 40, 50, 69 for HSMM) and calculated their average gene 654 

expression profile. The average gene expression profile was then used as the input for BIRD to predict 655 

the DH profile. This is the “approach 1” in Figure 5g-h. For each k (except for k = 1 and 28 for GM12878, 656 

and k = 1 and 69 for HSMM), the random sampling was repeated 10 times. The mean and standard 657 

deviation (SD) of the results from the 10 analyses were shown in Figures 4b and 5g-h. For k=1, the 658 

analysis was performed for every single cell.   659 

 660 

We also tried a second approach to predict DH using single-cell RNA-seq (i.e., “approach 2” in Fig. 5g-h). 661 

In this approach, we first applied BIRD to predict DH for every single cell using the single-cell RNA-seq 662 

data. Then, we pooled a random group of k cells (note: the same cells sampled in “approach 1” were 663 

used to keep the comparison consistent) and computed the average of their predicted DH profile. The 664 

random sampling was repeated 10 times as above, and the mean and SD of the prediction performance 665 

from the 10 analyses were shown in Figure 5g-h. A comparison between approach 1 and approach 2 666 

shows that using multiple cells’ average expression as predictor had much higher prediction accuracy 667 

than using each cell’s expression to make prediction and then average the predicted DH profile.  668 
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 669 

Chromatin accessibility based on single-cell ATAC-seq data  670 

Two single-cell ATAC-seq datasets for GM12878 were obtained. Dataset 1 (ATAC1) was obtained from 671 

GEO (GSM1647121). This dataset was a mixture of human GM12878 cells and mouse Patski cells. Paired-672 

end reads were trimmed by Trimmomatic (Bolger et al. 2014) to remove adaptor content and aligned to 673 

human genome hg19 using bowtie2 (Langmead and Salzberg 2012) with parameter -X2000. PCR 674 

duplicates were removed using Picard. The aligned reads were then assigned to individual cells based on 675 

the barcode information and only GM12878 cells were retained for subsequent analyses. For each cell, 676 

bin-level fragment coverage was obtained for each genomic locus (i.e., 200bp bin), and bin fragment 677 

coverage was normalized in the same way as the bulk ATAC-seq data. The single-cell ATAC-seq data are 678 

highly discrete. According to the original report describing this data (Cusanovich et al. 2015), the 679 

sequencing has reached saturation and the median value of total read counts per cell was 2503. We 680 

identified GM12878 cells (n=222) with more than 500 non-zero-coverage loci and used them for the 681 

subsequent analyses. Dataset 2 (i.e. ATAC2) was obtained from GEO (GSE65360). This dataset contains 682 

GM12878 ATAC-seq for 384 single cells. For each single cell, paired-end reads were trimmed by 683 

Trimmomatic to remove adaptor content and aligned to human genome hg19 using bowtie2 with 684 

parameter -X2000. PCR duplicates were removed using Picard. Then, bin-level fragment coverage for 685 

each cell was computed, normalized and transformed in the same way as single-cell ATAC-seq dataset 1. 686 

340 cells with more than 500 non-zero-coverage loci were retained for the subsequent analyses. 687 

 688 

For the single-cell ATAC-seq dataset 1, we randomly sampled a group of k cells (k = 1, 5, 10, 20, 28, 50, 689 

100, 222) and calculated their average ATAC-seq profile (i.e., average of the normalized bin fragment 690 

coverage). The average profile was then log2-transformed after adding pseudocount 1. For each k 691 

(except for k=1 and 222), we repeated the random sampling 10 times. The mean and SD of results from 692 

the 10 analyses were shown in Figure 4b. For k=1, the analysis was performed on every single cell. The 693 

same analysis was also performed for the single-cell ATAC-seq dataset 2 with k cells (k = 1, 5, 10, 20, 28, 694 

50, 100, 222 and 340). 695 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 1, 2016. ; https://doi.org/10.1101/035816doi: bioRxiv preprint 

https://doi.org/10.1101/035816
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

 696 

Hybrid prediction based on combining single-cell RNA-seq and single-cell ATAC-seq 697 

For the hybrid approach, we randomly sampled x (x = 22, 72, 194 and 312) cells from the single-cell 698 

ATAC-seq dataset 2. Dataset 2 was used since it performed better than dataset 1 based on analyses in 699 

Figure 4b. We obtained the average ATAC-seq profile of the sampled cells using the protocol described 700 

above. We also obtained BIRD-predicted DH from pooled single-cell RNA-seq using 28 cells. The average 701 

of the ATAC-seq profile and BIRD predicted DH profile was then computed. The total number of cells 702 

used by this hybrid approach was k = x+28 (i.e., k= 50, 100, 222 and 340). In Figure 4b, this hybrid 703 

approach was compared to pooled single-cell ATAC-seq using the same number of cells. For the hybrid 704 

approach, the sampling of cells from scATAC-seq was repeated 10 times. The mean and SD of results 705 

from the 10 analyses were shown in Figure 4b. 706 

 707 
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FIGURE LEGENDS  723 

Figure 1. BIRD predicts DH and TFBSs using bulk RNA-seq.  724 

(a) Overview of the study. Roadmap Epigenomics DNase-seq and RNA-seq data are used to train BIRD 725 

prediction models which are then applied to new RNA-seq samples to predict DH. The predicted DH can 726 

be coupled with DNA motifs to predict TFBSs.  727 

(b) Two examples of true and predicted DH signals across five different samples. Each track is a sample. 728 

Regions highlighted with boxes demonstrate that the predicted DH captures the true DH variation.  729 

(c) Statistics used to evaluate prediction performance. 730 

(d)-(f) Prediction performance of BIRD and random prediction models (“BIRD-permute”) in leave-one-731 

cell-type-out cross-validation. 732 

(d) Distribution and mean of cross-locus correlation rL from all samples. 733 

(e) Distribution and mean of cross-sample correlation rC from all loci. 734 

(f) Squared prediction error (τ). 735 

(g) Genomic loci are grouped into four categories by coefficient of variation (CV) of the predicted DH 736 

across samples at each locus. Distribution of rC of all loci, stratified using the four CV categories, is shown 737 

for BIRD. 738 

(h) Distribution and mean of rC in each CV category.  739 

(i) Distribution of rC for locus-level predictions vs. pathway-level predictions.  740 

(j)-(k) Sensitivity-rank curve for predicting YY1 binding sites in GM12878 and JUN binding sites in K562 741 

cells using true DNase-seq (“True”), BIRD, and mean DH profile of training samples (“Mean”). For each 742 

method, the curve shows the percentage of true TFBSs discovered by top predicted motif sites. q-values 743 

corresponding to top 5000, 15000, and 25000 BIRD predictions are shown on top of each plot. 744 

 745 

Figure 2. Predicting DH using small-cell-number RNA-seq data.  746 

(a) Cross-locus correlation between the bulk GM12878 DNase-seq signal and chromatin accessibility 747 

predicted or measured by different methods. “Mean”: mean DH profile of training samples. “BIRD-b10”, 748 

“BIRD-b30”, “BIRD-b100”: BIRD-predicted DH based on small-cell-number RNA-seq samples with 10, 30 749 
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and 100 cells. “BIRD-bulk”: BIRD-predicted DH based on bulk RNA-seq. “ATAC-b500”, “ATAC-b50k”: 750 

ATAC-seq with 500 and 50,000 cells. “BIRD-b30+ATAC-b500”, ”BIRD-b30+ATAC-b50k”: average of BIRD-751 

predicted DH from 30 cells and ATAC-seq from 500 or 50,000 cells. “Mean+ATAC-b500”, “Mean+ATAC-752 

b50k”: average of mean DH profile of training samples and ATAC-seq from 500 or 50,000 cells. 753 

“H3K27ac-b100”, ”H3K27ac-b600”, “H3K4me3-b100” and “H3K4me3-b600”: MOWChIP-seq for histone 754 

modification H3K27ac or H3K4me3 with 100 or 600 cells.  755 

(b) An example that compares chromatin accessibility predicted or measured by different methods. True 756 

bulk DNase-seq signal is shown on the bottom track as a reference. Regions highlighted by boxes 757 

illustrate that BIRD predicted DH better than “Mean” and “ATAC-b500”. 758 

(c)-(h) Scatterplots comparing true bulk DNase-seq signal with chromatin accessibility predicted or 759 

measured by ATAC-b50k, ATAC-b500, BIRD-b30, BIRD-b30+ATAC-b500, H3K27ac-b600 and H3K4me3-760 

b600. Each dot is a genomic locus. The cross-locus correlation is shown on top of each plot. 761 

 762 

Figure 3. Predicting TFBSs using small-cell-number RNA-seq data.  763 

(a)-(f) Sensitivity-rank curve for predicting E2F4, MAX, SPI1, ELF1, RFX5 and USF2 binding sites in 764 

GM12878 using true DNase-seq (“True”), ATAC-seq from 500 or 50,000 cells (“ATAC-500”, “ATAC-b50k”), 765 

mean DH profile of training samples (“Mean”), BIRD-predicted DH using 30 cells (“BIRD-b30”), the 766 

average of BIRD-predicted DH using 30 cells and ATAC-seq using 500 cells (“BIRD-hybrid”), and 767 

MOWChIP-seq for H3K27ac and H3K4me3 using 600 cells (“H3K27ac-b600”, “H3K4me3-b600”). The 768 

performance for MOWChIP-seq using 100 cells was generally worse than using 600 cells and hence is 769 

shown in Supplementary Figure 8 but not shown here for clarity of display. The q-values for BIRD-b30 770 

predictions are shown on the top of each plot. 771 

(g) Scaled area under the curve (AUC) for different methods in TFBS prediction. Each row is a TF, and 772 

each column is a method. For each TF, different methods are ranked based on the AUC value, and the 773 

worst AUC value of all methods is shown on the right using a blue bar. The average rank of each method 774 

across all TFs is shown on the bottom using a red bar. Smaller rank means better performance.    775 

 776 
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Figure 4. BIRD predicts DH using pooled single-cell RNA-seq data. 777 

(a) An example comparing chromatin accessibility reported by different single-cell methods. “ATAC1-778 

sc10”, “ATAC1-sc28” and “ATAC1-sc222”: pooled single-cell ATAC-seq from 10, 28 or 222 cells using 779 

scATAC-seq dataset 1. “ATAC2-sc10”, “ATAC2-sc28” and “ATAC2-sc222”: pooled single-cell ATAC-seq 780 

from 10, 28 or 222 cells using scATAC-seq dataset 2.  “BIRD-sc10”, “BIRD-sc28”: BIRD-predicted DH 781 

based on pooled single-cell RNA-seq data from 10 or 28 cells. “BIRD-hybrid-sc222”: the average of BIRD-782 

sc28 and single-cell ATAC-seq from 194 cells using scATAC-seq dataset 2. As references, bulk ATAC-seq 783 

from 50,000 cells (“ATAC-b50k”) and DNase-seq are shown on the top and bottom respectively. 784 

(b) Cross-locus correlation between the true bulk DNase-seq signal and chromatin accessibility predicted 785 

or measured by different single-cell methods. The correlation is shown as a function of pooled cell 786 

number. Error bars are standard deviation based on 10 independent samplings of cells (Methods). 787 

“ATAC1”: scATAC-seq dataset 1. “ATAC2”: scATAC-seq dataset 2. “BIRD”: BIRD-predicted DH using 788 

pooled single-cell RNA-seq. “BIRD-hybrid”: the average of BIRD-predictions based on 28 cells and pooled 789 

ATAC-seq from scATAC-seq dataset 2 (here x-axis is the total number of cells used by scRNA-seq and 790 

scATAC-seq). Prediction performance using the mean DH profile of training samples (“Mean”) is shown 791 

as a dashed line.  792 

(c) Scatterplots comparing true bulk DNase-seq signal with chromatin accessibility predicted or 793 

measured by ATAC1, ATAC2 and BIRD (or BIRD-hybrid for 222 cells) using 10, 28 and 222 cells. Each dot 794 

is a genomic locus. The cross-locus correlation is shown on top of each plot.  795 

 796 

Figure 5. BIRD predicts TFBSs using pooled single-cell RNA-seq data and a comparison between two 797 

different prediction strategies.  798 

(a)-(f) Sensitivity-rank curve for predicting BHLHE40 and SP1 binding sites in GM12878 using true DNase-799 

seq (“True”), mean DH profile of training samples (“Mean”), and BIRD and scATAC-seq by pooling 800 

different number of cells. (a,d) Pooled scATAC-seq and BIRD using 10 cells. (b,e) Pooled scATAC-seq and 801 

BIRD using 28 cells. (c,f) Pooled scATAC-seq and BIRD-hybrid using a total of 222 cells. “ATAC1” and 802 
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“ATAC2” correspond to two different scATAC-seq datasets. q-values shown in each plot are calculated 803 

based on BIRD-sc10, BIRD-sc28 and BIRD-hybrid-sc222 predictions, respectively. 804 

(g) Cross-locus correlation between the true bulk DNase-seq signal and BIRD-predicted DH using two 805 

different prediction strategies in the HSMM dataset. Approach 1 (“5 cells(1)”, …, “69 cells(1)”): pool 806 

scRNA-seq from multiple cells first and then use the pooled scRNA-seq to make predictions; Approach 2 807 

(“5 cells(2)”, …, “69 cells(2)”): use scRNA-seq from each single cell to make prediction first and then pool 808 

predictions from different cells by averaging. Error bars are standard deviation based on 10 independent 809 

samplings of cells (Methods). 810 

(h) Cross-locus correlation between the true bulk DNase-seq signal and BIRD-predicted DH using two 811 

different prediction strategies in GM12878. Approach 1 (“5 cells(1)”, …, “28 cells(1)”) and Approach 2 (“5 812 

cells(2)”, …, “28 cells(2)”) are the same as above. 813 

 814 

 815 

 816 

 817 

 818 

 819 
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Figure 1. BIRD predicts DH and TFBSs using bulk RNA-seq data. 
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Figure 2. Predicting DH using small-cell-number RNA-seq data. 
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Figure 3. Predicting TFBSs using small-cell-number RNA-seq data. 
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Figure 4. BIRD predicts DH using pooled single-cell RNA-seq data. 
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Figure 5. BIRD predicts TFBSs using pooled single-cell RNA-seq data and a comparison between two different prediction strategies. 
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