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Abstract — A current challenge in data-driven mathematical 

modeling of cancer is identifying biologically-relevant parame-

ters of mathematical models from sparse and often noisy exper-

imental data of mixed types. We describe a cell cycle model and 

outline how to use the Optimization Toolbox in Matlab to esti-

mate its timescale parameters, given flow cytometry and cell 

viability (synthetic) data, and illustrate the technique with sim-

ulated data. This technique can be similarly applied to a variety 

of cell cycle models, particularly as more laboratories begin to 

use high-content, quantitative cell screening and imaging plat-

forms. An advanced version of this work (CellPD: cell line phe-

notype digitizer) will be released as open source in early 2016 at 

MultiCellDS.org. 

I. INTRODUCTION  

Cell cycle time scales are parameters often needed when 

developing a mathematical model to describe a (cancer) cell 

population. Measuring these time scales experimentally can 

be very challenging, and it often requires technologies that 

are not accessible in most labs. However, using cell flow 

cytometry [1] we can measure the fraction of cells at three 

different stages of the cell cycle (G0/G1, S, G2/M). Addition-

ally, propidium iodide (PI) can be used to measure the unvia-

ble/apoptotic fraction of the same cell population [2]. Com-

bining these fractions with an automated cell counter (such as 

the Bio-Rad TC20), we can measure the number of cells at 

each stage of the cell cycle, and the number of cells undergo-

ing apoptosis. 

 

 

Figure 1 - Synthetic data representative of experimental data. 

Sample mean ± standard deviation are plotted. 
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To study the cell cycle of a cell line, in the lab we would 
typically record these measurements at a few time points per 
microenvironmental condition. In this example, we have syn-
thetized data by running the model with a given set of param-
eters (referred to as the “true parameters”) and multiplying 
each sample point by a "noise" factor f with Gaussian distri-
bution (with a mean of 1 and a standard deviation of 0.2). 
This process was repeated 3 times (the mean and standard 
deviation of those 3 samples was computed) to mimic the low 
number of replicates in many experiments. Fig. 1 summarizes 
these synthetic data. The methods described in this example 
can be directly applied to lab data under each specified mi-
croenvironmental condition to understand the impact of the 
microenvironment on the parameters of the model (e.g. cell 
cycle timescales). 

Authors' note: The methods described in this work will 
be released in a more advanced form through the CellPD (cell 
line phenotype digitizer) tool. Please check MathCancer.org 
and MultiCellDS.org/Tools.php for the most up-to-date pro-
ject information and downloads. 

II. MODEL DESCRIPTION AND PARAMETER ESTIMATION 

We can use a system of ordinary differential equations 
(ODEs) to describe the cell cycle dynamics: 

 

Each equation represents the net change on the number of 
cells in each modeled stage of the cell cycle (G0/G1, S, G2, 
and M) and nonviable (apoptotic) cells (A). The parameters 
(𝜏𝐺1,𝜏𝑆,𝜏𝐺2,𝜏𝑀 ,𝜏𝐴, 𝑟𝐴) represent the mean values of an un-
known distribution and are, in general, microenvironment- 
and time-dependent. For this demonstration, we assume them 
to be constant in time, and we also assume that the microen-
vironment does not change significantly enough to modify 
the value of those parameters during the experiment. Our 
goal will be to find the set of parameters that best describes 
the data. 

In order to find this optimal parameter set, we select an ini-
tial guess for each of the parameters based on literature [3-5] 

and observations from the lab. We define an error vector, Ε⃑ , 
to quantify the discrepancy between the experimental meas-
urements and the model predictions. For any data observation 

time t, we define the raw error vector E⃑⃑ (𝑡) to be the differ-
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ence between the simulated and experimental values of each 
cell –sub-population. In order to account for measurement 
errors, we divide each vector component by its corresponding 
coefficient of variation (CV); this gives the greatest 
weighting to data with the least uncertainty. The overall error 

vector Ε⃑  concatenates each sample time’s error vector. In the 
example presented here, after including cell viability, flow 
cytometry and cell count data we have 5 “Target” popula-
tions: Viable, Apoptosing, G0/G1, S, and G2/M cells. Each of 

these target populations have 4 time points, so Ε⃑  has 20 ele-

ments. The sum of the squares of the elements on Ε⃑  can be 
computed to find the Sum of Squared Errors (SSE). We can 
now define an optimization problem by attempting to mini-
mize the SSE while maintaining the timescales within prede-
fined constraints. This minimization is performed by using 
Matlab’s lsqnonlin function. 

 
Sample code to generate the synthetic data and estimate 

the timescales of the cell cycle model used in this example 
will be made available for download from:  

 
http://MathCancer.org/NCI_handbook_parameters, and  
 
http://MultiCellDS.org/Tools.php. 

 

III. RESULTS OF METHOD 

After applying the optimization described above, to the op-

timal parameters (as shown in Table 1, column “Estimated 

parameter, dataset 1”) lead to a good fit of the data as shown 

in Fig. 2. But it is worth noting that due to the low number 

and sparse frequency of the samples, the true parameters 

could not be recovered exactly. But if we repeat this method 

and we sample the data more often, more times, and with 

smaller noise, we can recover the true parameters even if we 

start from the same initial guess as before. Table 1, column 

“Estimated parameter, dataset 2” shows the results of the 

optimization after sampling the data twice per day, and take 

30 samples each time with a Gaussian noise with mean 1 and 

standard deviation of 0.001. Synthetic dataset 2 is virtually 

impossible to replicate in the lab given the large number of 

samples and the low level of measurement error required, but 

it shows that it is possible to extract the true parameters given 

a sufficiently clean set of data. Furthermore, even with the 

noisier dataset, we can obtain parameters that not only lead to 

a good simulation fit but are also close to the true parameters.  

 

Table 1: Optimization Results 

Parameter 

name 

Estimated 

parameter, 

dataset 1 

Estimated 

parameter,  

dataset 2 

True  

parameter 

Units 

𝜏𝐺1 16.3 15.998 16 Hours 

𝜏𝑆 5.2 5.999 6 Hours 

𝜏𝐺2 3.1 3.016 3 Hours 

𝜏𝑀 1.4 1.984 2 Hours 

𝜏𝐴 42.9 23.963 24 Hours 

𝑟𝐴 0.001 0.001 0.001 1/Hour 

 

 
Figure 2: Simulation results using estimated parameters from da-

taset 1 (3 samples every 24h with a Gaussian noise of mean 1 and 

standard deviation of 0.2). Sample mean ± standard deviation are 

plotted, dotted lines represent simulation output. 

IV. TYPE OF SETTINGS IN WHICH THESE METHODS ARE 

USEFUL 

This method can be applied in virtually the same way to 
other cell cycle models, where the errors and model are cho-
sen to suit the available data. The same methodology can be 
used to calibrate agent-based models by defining an error 
metric and tuning simulation parameters to minimize that 
error function. Lastly, we note that the optimization tech-
nique can be iterated to help quantify uncertainty in the pa-
rameters. 
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