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Abstract1

Characterizing transcriptomes in both model and non-model organisms has resulted in a2

massive increase in our understanding of biological phenomena. This boon, largely made3

possible via high-throughput sequencing, means that studies of functional, evolutionary4

and population genomics are now being done by hundreds or even thousands of labs5

around the world. For many, these studies begin with a de novo transcriptome assembly,6

which is a technically complicated process involving several discrete steps. Each step7

may be accomplished in one of several different ways, using different software packages,8

each producing different results. This analytical complexity begs the question – Which9

method(s) are optimal? Using reference and non-reference based evaluative methods, I10

propose a set of guidelines that aim to standardize and facilitate the process of transcrip-11

tome assembly. These recommendations include the generation of between 20 million12

and 40 million sequencing reads from single individual where possible, error correction of13

reads, gentle quality trimming, assembly filtering using Transrate and/or gene expres-14

sion, annotation using dammit, and appropriate reporting. These recommendations have15

been extensively benchmarked and applied to publicly available transcriptomes, result-16

ing in improvements in both content and contiguity. To facilitate the implementation17

of the proposed standardized methods, I have released a set of version controlled open-18

sourced code, The Oyster River Protocol for Transcriptome Assembly, available at19

http://oyster-river-protocol.rtfd.org/.20

Introduction21

For all biology, modern sequencing technologies has provided for an unprecedented oppor-22

tunity to gain a deep understanding of genome level processes that underlie a very wide23
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array of natural phenomenon, from intracellular metabolic processes to global patterns24

of population variability. Transcriptome sequencing has been influential, particularly in25

functional genomics, and has resulted in discoveries not possible even just a few years26

ago. This in large part is due to the scale at which these studies may be conducted.27

Unlike studies of adaptation based on one or a small number of candidate genes (e.g.28

(Fitzpatrick et al., 2005; Panhuis, 2006)), modern studies may assay the entire suite of29

expressed transcripts – the transcriptome – simultaneously. In addition to issues of scale,30

as a direct result of enhanced dynamic range, newer sequencing studies have increased abil-31

ity to simultaneously reconstruct and quantitate lowly- and highly-expressed transcripts,32

(Wolf, 2013; Vijay et al., 2013). Lastly, improved methods for the detection of differences33

in gene expression (e.g., Robinson et al. (2010); Love et al. (2014)) across experimental34

treatments has resulted in increased resolution for studies aimed at understanding changes35

in gene expression.36

37

As a direct result of their widespread popularity, a diverse toolset for the assembly38

and analysis of transcriptome exists. Notable amongst the wide array of tools include sev-39

eral for quality visualization - FastQC (available here) and SolexaQA (Cox et al., 2010),40

read trimming (e.g. Skewer (Jiang et al., 2014), Trimmomatic (Bolger et al., 2014) and41

Cutadapt (Martin, 2011)), read normalization (khmer (Pell et al., 2012)), error correction42

(Le et al., 2013), assembly (Trinity (Haas et al., 2013), SOAPdenovoTrans (Xie et al.,43

2014)), and assembly verification (Transrate (Smith-Unna et al., 2015)), BUSCO (Simão et al.,44

2015), and RSEM-eval (Li et al., 2014)). The ease with which these tools may be used to45

produce transcriptome assemblies belies the true complexity underlying the overall pro-46

cess. Indeed, the subtle (and not so subtle) methodological challenges associated with47

transcriptome reconstruction may result in highly variable assembly quality. Amongst48

the most challenging include isoform reconstruction and simultaneous assembly of low-49

and high-coverage transcripts (Modrek et al., 2001; Johnson et al., 2003), which together50

make accurate transcriptome assembly technically challenging. As in child rearing, pro-51

duction of a respectable transcriptome sequence requires a large investment in time and52

resources. At every step in development, care must be taken correct, but not overcorrect.53

Here, I propose a set of guidelines for the care and feeding that will result in the produc-54

tion of an accurate, useful, and well-adjusted transcriptome.55

56

In particular, I focus my efforts on the early- and mid-development of the transcrip-57
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tome – which, unfortunately are steps often neglected or abused – and reporting. Par-58

ticularly flagrant are abuses related to the selection and quality control of input data,59

and lack of appropriate post-assembly quality evaluation. Here, I aim to define a set of60

evidence based analyses and methods aimed at improving transcriptome assembly, which61

in turn has significant effects on all downstream analyses.62

63

Methods64

To demonstrate the merits of my recommendations, a large number of assemblies were65

produced using a variety of methods. For all assemblies performed, Illumina sequencing66

adapters were removed from both ends of the sequencing reads, as were nucleotides with67

quality Phred ≤ 2, using the program Trimmomatic version 0.32 (Bolger et al., 2014). The68

reads were assembled using Trinity release 2.1.1 (Haas et al., 2013) using default settings.69

Trinity was used as the default assembler as it has been previously reported to be best70

in class (Li et al., 2014; Smith-Unna et al., 2015). Assemblies were characterized using71

Transrate version 1.0.1 (Smith-Unna et al., 2015). Using this software, I generated three72

kinds of metrics: contig metrics; mapping metrics which used as input the same reads73

that were fed into the assembler for each assembly; and comparative metrics which used74

as input the Mus musculus version 75 transcriptome. In addition to the metrics provided75

by Transrate, I evaluated completeness of each assembly by use of BUSCO, a software76

package that searches for highly conserved, near-universal, single copy orthologs.77

78

To understand the influence of read depth on assembly quality, I produced subsets of79

size 1,2,5,10,20,40,60,80,100 million paired end reads of two publicly available paired-end80

datasets - A Mus dataset -SRR797058 described in Macfarlan et al. (2012) and a human81

dataset - SRR1659968. The subsampling procedure was accomplished via the software82

package seqtk (https://github.com/lh3/seqtk). For the evaluation of the effects of83

sequence polymorphism on assembly quality, I use reads from BioProject PRJNA15789584

described in Macmanes and Lacey (2012), a Ctenomys dataset which consists of 10 read85

files from the hypothalami of 10 different individuals. This dataset was assembled two86

ways. First, the reads from all 10 individuals were jointly assembled in one large assem-87

bly [CODE]. This assembly was compared to the assembly of a single individual [CODE].88

Assemblies were generated and evaluated as per above.89
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90

To evaluate the effects of error correction, I used the subsampled read datasets, which91

were subsequently error corrected using the following software packages: SEECER ver-92

sion 0.1.3 (Le et al., 2013), Lighter version 1.0.7 (Song et al., 2014), SGA version 0.10.1393

(Simpson and Durbin, 2012), bfc version r177 (Li, 2015), RCorrector (Song and Florea,94

2015),and BLESS version 0.24 (Heo et al., 2014). In correction algorithms (SGA, BLESS,95

bfc) that allowed for the use of larger kmer lengths, I elected to error correct with a small96

(k = 31) and a long (k = 55) kmer, while for the other software (RCorrector, SEECER97

and Lighter) that does not allow for longer kmer values, I set k = 31. bfc requires98

interleaved reads, which was accomplished using khmer version 2.0 (Brown et al., 2015,99

2012; McDonald and Brown, 2013). Code for performing these steps is available [here].100

101

The effects of khmer digital normalization (Pell et al., 2012) were characterized by102

generating three 20 million, 40 million, and 80 million read subsets of the larger Mus103

dataset. Digital normalization was performed using a median kmer abundance threshold104

of 30. The resulting datasets were assembled using Trinity, and evaluated using BUSCO105

and Transrate. Code for performing these steps is available in the diginorm target of106

the [Makefile].107

108

Post-assembly processing was evaluated using several assembly datasets of various109

sizes, generated above. Each assembly was evaluated using Transrate. Transrate pro-110

duces a score based on contig and mapping metrics, as well as a more optimal assembly111

where poorly supported contigs (putative assembly artifacts) are removed. Both the origi-112

nal and Transrate optimal assembly are evaluated using BUSCO, to help better understand113

if filtration results in the loss of non-artifactual transcripts. In addition to Transrate fil-114

tration, an additional, or alternative filtration step is performed using estimates of gene115

expression (TPM=transcripts per million). TPM is estimated by two different software116

packages that implement two distinct methods - Salmon (Patro et al., 2015) and Kallisto117

(Bray et al., 2015). Transcripts whose expression is estimated to be greater than a given118

threshold, typically TPM=1 or TPM=0.5 are retained. As above, the filtered assemblies119

are evaluated using BUSCO, to help better understand if filtration results in the loss of120

non-artifactual transcripts. Code for performing these steps is available in the QC target121

of the makefile available [here].122

123
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Recommendations124

0.1 Input Data125

Summary Statement: Sequence 1 or more tissues from 1 individual to a depth126

of between 20 million and 40 million 100bp or longer paired-end reads.127

When planning to construct a transcriptome, the first question to ponder is the type128

and quantity of data required. While this will be somewhat determined by the specific129

goals of the study and availability of tissues, there are some general guiding principals.130

As of 2014, Illumina continues to offer the most flexibility in terms of throughout, ana-131

lytical tractability, and cost (GLENN, 2011). It is worth noting however, that long-read132

(e.g. PacBio) transcriptome sequencing is just beginning to emerge as an alternative133

(Au et al., 2013), particularly for researchers interested in understanding isoform com-134

plexity. Though currently lacking the throughput for accurate quantitation of gene ex-135

pression, long read technologies, much like they have done for de novo genome assembly,136

seem likely to replace short-read-based de novo transcriptome assembly at some point in137

the future.138

139

For the typical transcriptome study, one should plan to generate a reference based140

on 1 or more tissue types, with each tissue adding unique tissue-specific transcripts and141

isoforms. Though increasing the amount of sequence data collected does increase the accu-142

racy and completeness of the assembly (Figure 1, 3) albeit marginally, a balance between143

cost and quality exists. For the datasets examined here (mammal tissues), sequencing144

more than between 20M and 40M paired-end reads is associated with the discovery of145

very few additional transcripts, and only minor improvement in other assembly metrics.146

Read length should be at least 100bp, with longer reads likely aiding in isoform recon-147

struction and contiguity (Garber et al., 2011).148

149

Because sequence polymorphism increases the complexity of the de bruijn graph150

(Iqbal et al., 2012; Studholme, 2010), and therefore may negatively effect the assembly151

itself, the reference transcriptome should be generated from reads corresponding to as ho-152

mogeneous a sample as possible. For outbred, non-model organisms, this usually means153

generating reads from a single individual. When more then one individual is required to154
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meet other requirements (e.g. number of reads or experimental treatment conditions),155

keeping the number of individuals to a minimum is paramount. For instance, when156

performing an experiment where a distinct set of genes may be expressed in different157

treatments (or sexes), the recommendation is to sequence one individual from each treat-158

ment class.159

160

To illustrate this effect, I examined the effects of assembling reads from 10 individuals161

jointly, versus assembling a representative individual. This individual was selected based162

on having the highest number of reads. The individual assembly of 38 million paired end163

read took approximately 23 hours and 20Gb of RAM, while the joint assembly took five164

days and 150Gb of RAM. Per Table 1, the joint assembly used more than eight times more165

reads, and is more than four times larger than the assembly of a single individual. Despite166

the additional read data, the Transrate score is markedly decreased, although the BUSCO167

statistics are slightly better. The large joint assembly suffers from major structural prob-168

lems that are unfixable via the proposed filtering procedures. Specifically, read-mapping169

data suggests that 28.7% of the contigs in the joint assembly could be merged, versus 15%170

in the single assembly. This structural problem is likely the result of sequence polymor-171

phism and may cause significant issues for many common downstream processes.172

173

Table 1174

175

Name Num. Reads Num. Contigs Assembly Size Score BUSCO

Single Ind. 38M 205812 131.6Mb 0.3064 C:81%,D:41%,M:9%

10 Ind. 269M 913295 440.2Mb 0.22011 C:88%,D:51%,M:5%

176

Table 1. A comparison of the raw assemblies resulting from a single individuals177

versus the joint assembly of 10 individuals. The individual assembly of 38 million178

reads resulted in an assembly of size 131.6 million bases, a Transrate score of179

0.3064. 81% of BUSCOs were found to be complete, with 9% missing from the180

dataset. The joint assembly of 10 individuals, consisting of 269 million paired-end181

reads resulted in an assembly of size 440.2 million bases and a Transrate score of182

0.22011.183
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Figure 1184
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Figure 1. Assembly of multiple subsetted datasets suggests that sequencing beyond186

20-40 million paired end reads does not results in further sequence discovery. Pro-187

portion complete indicates the proportion of BUSCOs that were found to be full188

length. Proportion duplicates are those BUSCOs that were found multiple times189

in the assembly dataset. Reference coverage is a Transrate generated metric in-190

dicating the proportion of the reference Mus transcriptome found in the de novo191

assembly. Higher numbers for reference coverage and proportion complete indicate192

a more complete assembly.193
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0.2 Quality Control of Sequence Read Data194

Summary Statement:Visualize your read data. Error correct reads using195

bfc for low to moderately sized datasets and RCorrector for higher coverage196

datasets. Remove adapters, and employ gentle quality filtering using PHRED197

≤ 2 as a threshold.198

Before assembly, it is critical that appropriate quality control steps are implemented.199

It is often helpful to generate some metrics of read quality on the raw data. Several200

software packages are available – I am fond of SolexaQA (Cox et al., 2010) and FastQC.201

Immediately upon download of the read dataset from the sequence provider, metrics of202

read quality, generated by either of these two software packages, should be generated.203

Of note – a copy of the raw reads should be compressed and archived, preferably on a204

physically separated device for long term archival storage. For this, I have successfully205

used Amazon S3 cloud storage, though many options exist.206

207

Immediately after visualizing the raw data, error correction of the sequencing reads208

should be done (MacManes and Eisen, 2013). A very large number of read correction209

software packages exist, and several of them are benchmarked here using the Mus (Figure210

2, and Tables S1-S11) and Homo datasets (Tables S12-S21). In all evaluated datasets, the211

error correction bfc was the best when correcting less than approximately 20M paired-end212

reads. When correcting more, the software RCorrector provided the optimal correction.213

The effects of error correction on assembly were evaluated using BUSCO and Transrate.214

While error correction did not result in significant improvements in BUSCO metrics, the215

transrate scores were substantially improved (Figure 3). These scores were largely im-216

proved by the fact that assemblies using error corrected reads had fewer low-covered based217

and contigs, and a slightly higher mapping rate.218

219

The error corrected reads are then subjected to vigorous adapter sequence removal,220

typically using Trimmomatic (Bolger et al., 2014) or Skewer (Jiang et al., 2014). With221

adapter sequence removal may be a quality trimming step. Here, substantial caution is222

required, as aggressive trimming has detrimental effects on assembly quality (MacManes,223

2014). Specifically, I recommend trimming at Phred=2, a threshold associated with re-224

moval of only the lowest quality bases. After adapter removal and quality trimming, the225
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previously error corrected reads are now ready for de novo transcriptome assembly.226

227

Figure 2228
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Figure 2. Error correction of reads results in a performance gain (defined as: (perfect230

error corrected reads - perfect raw reads) + reads made better - reads made worse).231

Perfect reads are reads that map to the reference without mismatch. Better and232

worse reads are those that map with fewer or more mismatches. Low coverage233

datasets are best corrected with bfc, which higher coverage datasets are optimally234

corrected with RCorrector. The best performing corrections improve the quality235

of more than 15% of reads.236
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Figure 3237
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Figure 3. Error correction (with the best performing correction software, described239

in Figure 2), results in a consistent increase in the Transrate score, which indicates240

a higher quality assembly across all coverage depths.241
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0.3 Coverage normalization242

Summary Statement: Normalize your data, only if you have to.243

Depending on the volume of input data, the availability of a high-memory worksta-244

tion, and the rapidity with which the assembly is needed, coverage normalization may245

be employed. This process, which, using a streaming algorithm and measurement of the246

median kmer abundance of each read, aims to erode areas of high coverage while leaving247

untouched, reads spanning lower coverage areas. Normalization may be accomplished in248

the software package khmer (Pell et al., 2012), or within Trinity using a computational249

algorithm based on khmer. In our tests, normalization did dramatically reduce RAM re-250

quirements and runtime, though it also decreased the number of complete BUSCO’s found251

by 4%, and the transrate score from 0.266 to 0.251. Given this, our recommendation is252

to employ digital normalization when the assembly is otherwise impossible, or when re-253

sults are urgently needed, but that it should not be used by default for the production of254

transcriptome assemblies.255

256

0.4 Assembly257

Summary Statement: Assemble your data using Trinity, then remove poorly258

supported contigs.259

For non-model organisms lacking reference genomic resources, the error correction,260

adapter and quality trimming reads should be assembled de novo into transcripts. Cur-261

rently, the assembly package Trinity (Haas et al., 2013) is thought to currently be the262

most accurate (Li et al., 2014), and therefore is recommended over other assemblers.263

While attempting a merged assembly with multiple assemblers may ultimately result in264

the highest quality assembly, options for merging assemblies are currently limited, and265

therefore is not recommended.266

267

Trinity’s underlying algorithm have been pre-optimized to recover large numbers of268

alternative isoforms, including many that are minimally supported by read data. As a269

result, in many cases, the raw assembly will require filtration to remove these assembly270
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artifacts. Reference dependent and independent evaluative tools (e.g., Transrate, BUSCO)271

allow for evidence-based post-assembly filtration. Typically, an initial quality-evaluation272

and filtration step is implemented using Transrate. This process assigns a score to the273

assembly, and creates an alternative assembly by removing contigs based on read-mapping274

metrics. This filtration step may result in the removal of a large proportion (as much as275

67%) of the transcripts. Reference-based metrics are generated before and after this filtra-276

tion step to ensure that filtration has not been too aggressive - that a significant number277

of known transcripts have not been removed. After Transrate filtration, or alternative278

to it, it is often helpful to employ a filtration step based on TPM. Because underlying279

assumptions of gene expression estimation software vary, which may results in variation in280

the actual estimates, gene expression is typically estimated using two different packages,281

Salmon and Kallisto. Transcripts whose expression is less than either 1 or 0.5 are re-282

moved. Again, reference-based metrics are generated to ensure that a significant number283

of known transcripts are not removed.284

285

The results of filtration on several datasets of varying size are presented in Table 2.286

The reads used in the 1M,5M,10M,20M subset assemblies were corrected with bfc, while287

the reads for the larger assemblies were corrected with RCorrector. Each dataset was288

trimmed to a quality of Phred <2, and assembled with Trinity. The raw assembly was289

filtered by Transrate and by gene expression. BUSCO evaluation was performed before290

and after these filtration steps. In general, for low coverage datasets (less than 20 million291

reads), filtering based on expression, using TPM=1 as a threshold performs well, with292

Transrate filtering being too aggressive. With higher coverage data (more than 60 mil-293

lion reads) Transrate filtering may be optimal, as may gene expression filtering using a294

threshold of TPM=0.5.295

296
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Name Subset BUSCO Num. Contigs Assembly Size Transrate Score

Raw 1M C:17%[D:1.4%],F:10%,M:72% 29719 9.8Mb 0.21274

Transrate Filt 1M C:16%[D:1.2%],F:8.2%,M:75% 9860 9.1Mb 0.31918

TPM Filt 1M C:17%[D:1.4%],F:10%,M:72% 29503 9.8Mb 0.21683

Raw 5M C:56%[D:13%],F:9.8%,M:33% 52611 35.3Mb 0.27401

Transrate Filt 5M C:52%[D:11%],F:9.2%,M:38% 21383 31.1Mb 0.39856

TPM Filt 5M C:56%[D:12%],F:10%,M:33% 51476 33.9Mb 0.28302

Raw 10M C:69%[D:23%],F:7.0%,M:23% 72688 52.8Mb 0.27558

Transrate Filt 10M C:64%[D:20%],F:6.3%,M:29% 28249 44.7Mb 0.4092

TPM Filt 10M C:69%[D:21%],F:7.0%,M:23% 69561 49.2Mb 0.2881

Raw 20M C:78%[D:32%],F:4.5%,M:17% 108072 76.2Mb 0.27888

Transrate Filt 20M C:70%[D:27%],F:4.7%,M:24% 45169 62.1Mb 0.39389

TPM Filt 20M C:77%[D:29%],F:4.8%,M:17% 97519 66.8Mb 0.29878

Raw 40M C:82%[D:38%],F:3.7%, M:14% 163561 107Mb 0.2859

Transrate Filt 40M C:74%[D:32%],F:4%, M:21% 91367 85.5Mb 0.3796

TPM Filt 40M C:82%[D:32%],F:3.6%, M:14% 117819 83.3Mb 0.3037

Raw 60M C:84%[D:40%],F:3.2%,M:12% 204040 127Mb 0.29616

Transrate Filt 60M C:78%[D:35%],F:3.2%,M:18% 166503 107Mb 0.37018

TPM Filt 60M C:82%[D:31%],F:3.3%,M:13% 109485 86.9Mb 0.30128

Raw 80M C:85%[D:40%],F:3.2%,M:11% 237401 146Mb 0.30139

Transrate Filt 80M C:85%[D:39%],F:3.2%,M:11% 222900 132Mb 0.37997

TPM Filt 80M C:82%[D:32%],F:2.9%,M:14% 96968 88.5Mb 0.29261

Raw 100M C:85%[D:41%],F:3.0%,M:11% 264751 159Mb 0.30567

Transrate Filt 100M C:85%[D:40%],F:3.1%,M:11% 247413 143.8Mb 0.39242

TPM Filt 100M C:83%[D:32%],F:2.7%,M:14% 86993 88.4Mb 0.2828

297
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Table 2. Post-assembly filtration. Using assemblies from the 1M,5M,10M,20M,40M,60M,80M,100M read subsets,298

I evaluated the effects of Transrate and TPM filtration using a threshold of TPM=1. Both Transrate and TPM299

filtering reduced the number of contigs and assembly size, though the magnitudes were dependent on the depth300

of sequencing. BUSCO scores were either decreased in some cases, or stable in others, representing the differential301

effects of filtering on different sized assemblies. In general, for low coverage datasets (less than 20 million reads),302

filtering based on expression, using TPM=1 as a threshold performs well, with Transrate filtering being too303

aggressive. With higher coverage data (more than 60 million reads) Transrate filtering may perform better, as304

mat expression filtering with a lower threshold.305
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0.5 Annotation, post-assembly quality verification, & reporting306

Summary Statement: Verify the quality of your assembly using content based307

metrics. Annotate using dammit Report Transrate score, BUSCO statistics, num-308

ber of unique transcripts, etc. Do not report meaningless statistics such as309

N50.310

Annotation is a critically important step in transcriptome assembly. Much like other311

steps, numerous options exist. Though the research requirements may drive the anno-312

tation process, I propose that a core set of annotations be provided with all de novo313

transcriptome assembly projects. The process through which these core annotations are314

accomplished is coordinated by the software package dammit. This software takes as in-315

put a fasta file and outputs a standard gff3 containing annotations. After annotation, but316

before downstream use, it is important to assess the quality of a transcriptome. Many317

authors have attempted to use typical genome assembly quality metrics for this pur-318

pose. In particular, N50 and other length-based summary statistic are often reported319

(e.g. (Hiz et al., 2014; Shinzato et al., 2014; Liang et al., 2013)). However, in addition320

to being a poor proxy for quality in genome assembly (Bradnam et al., 2013), N50 in321

the context of a transcriptome assembly carries very little information because the opti-322

mal contig length is not known (Li et al., 2014) - real transcripts vary greatly in length,323

ranging from tens of nucleotides to tens of thousands of nucleotides. Reportable metrics324

should be chosen based on their relevance for assembly optimization given the biological325

question at hand. In most cases, this means maximizing the number of transcripts that326

can be confidently attributed to the organism, while minimizing the number of technical327

artifacts related to the process of sequencing, quality control, and assembly. For many re-328

searchers, this means evaluation with both BUSCO and Transrate. The statistics found in329

Table 1 should be presented for all assemblies, with additional information supplementing330

these core vital statistics as needed.331

332

Testing the Oyster River Protocol333

To evaluate the Oyster River Protocol for Transcriptome Assembly, I selected three334

publicly available Illumina RNAseq datasets and their corresponding assembled tran-335
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scriptomes. These three assemblies included the Nile Tilapia, Oreochromis niloticus336

(Zhang et al. (2013), SRR797490), an unpublished study of the Mediterranean black337

widow, Latrodectus tredecimguttatus (SRR954929), and lastly a work on Delia antiqua338

(Guo et al. (2015), SRR916227). I analyzed the original transcriptomes using both BUSCO339

and Transrate, then followed the protocol as described here. Code for data analysis of340

the Oreochromis is available here. The other samples were processed in an identical fash-341

ion. The application of the Oyster River Protocol on these datasets resulted universally342

in a substantial (as much as 22%) improvement in the completeness of assemblies. Given343

a major goal of these types of studies includes reconstruction all expressed genes, this344

improvement may have substantial improvement on downstream work. The Transrate345

score was dramatically improved as well, particularly in the Oreochromis and Delia as-346

semblies. This improvement speaks to the improvement of the structure of the assembly.347

348

The filtering process through which these more optimal assemblies were is key. Evalu-349

ating both the BUSCO and Transrate scores before and after, allows for an objective way350

to decide if filtering has been too restrictive or not. Indeed, for the Latrodectus assembly,351

both Transrate and TPM filtering reduced the BUSCO score, while substantially increas-352

ing the Transrate score. Depending on the goals of the experiment, it may be determined353

that the structural integrity of the assembly outweighs improved content. In contrast to354

how post-assembly filtering is typically done, this method allow for the researcher to make355

an informed decision about these processes.356
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Table 3357

358

Name
Number

Reads
Number Contigs Assembly Size (Mb) Transrate Score BUSCO Score

Oreochromis 25.2M 79198/140035/100376/116038/88456 32.0/75.1/69.5/58.6/57.7 0.1103/0.2173/0.4778/0.2595/0.4479 C:39%,M:46%/C:58%M:28%/C:57%,M:30%/C:57%,M:30%/C:56%,M:31%

Latrodectus 27.6M 10259/36394/30932/27973/NA 10.6/13.5/13.1/10.9/NA 0.43673/0.2795/0.4968/0.338/NA C:48%,M:38%/C:58%,M:28%/C:46%,M:39%/C:46%,M:41%/NA

Delia 25.8M 29451/49099/38614/46145/32689 12.4/19.3/18.8/17.9/15.8 0.393/0.2036/0.4572/0.2305/0.4341 C:40%,M:48%/C:62%,M:21%/C:61%,M:23%/C:61%,M:23%/C:61%,M:25%

359

Table 3. The results of the application of the Oyster River Protocol to three available transcriptomes. Within360

each column, the 5 metrics, separated by forward slashes are: 1. The original assembly 2. The raw Trinity361

assembly 3. The Transrate filtered assembly 4. The TPM=1 filtered assembly, and 5. The Transrate filtered362

assembly that has been further filtered by expression. In all cases the assembly content, as evaluated by the BUSCO363

score is dramatically improved over the original assembly. These content-improved assemblies have acceptable364

Transrate scores, which in 2 of 3 cases are vastly superior to the scores of the original assembly.365
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Conclusions366

With the rapid adoption of high-throughput sequencing, studies of functional, evolution-367

ary and population genomics are now being done by hundreds or even thousands of labs368

around the world. These studies typically begin with a de novo transcriptome assem-369

bly. Assembly may be accomplished in one of several different ways, using different soft-370

ware packages, with each method producing different results. This complexity begs the371

question – Which method(s) are optimal? Using reference and non-reference based eval-372

uative methods, I have proposed a set of guidelines The Oyster River Protocol for373

Transcriptome Assembly that aim to standardize and facilitate the process of transcrip-374

tome assembly. These recommendations include limiting assembly to between 20 million375

and 40 million sequencing reads from single individual where possible, error correction376

of reads, gently quality trimming, assembly filtering using Transrate or gene expression,377

annotation using dammit, and appropriate reporting. The processes result in a high qual-378

ity transcriptome assembly appropriate for downstream usage. Assemblies generated in379

the process of developing this protocol are available here.380
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