Identification and qualification of 500 nuclear, single-copy, orthologous genes for the Eupulmonata (Gastropoda) using transcriptome sequencing and exon-capture

Luisa C. Teasdale ${ }^{1,2}$, Frank Köhler ${ }^{3}$, Kevin D. Murray ${ }^{4}$, Tim O’Hara ${ }^{1}$, and Adnan Moussalli ${ }^{1}$
${ }^{1}$ Sciences Department, Museum Victoria, 11 Nicholson St, Carlton, Vic, Australia 3053
${ }^{2}$ School of BioSciences, The University of Melbourne, Parkville, Vic, Australia 3010
${ }^{3}$ Australian Museum, 6 College Street, Sydney, NSW, Australia 2010
${ }^{4}$ Division of Plant Sciences, Research School of Biology, Australian National University, Australia 0200
Corresponding author: Luisa Teasdale, Mailing address: Sciences Department, Museum Victoria, 11 Nicholson St, Carlton, Vic, Australia 3053, Fax Number: + 6138341 7442, Email: Iteasnail@gmail.com

Key words: orthology, single-copy, phylogenomics, Pulmonata, transcriptome, targeted enrichment

Running header: Orthologous genes for Eupulmonata

ABSTRACT

The qualification of orthology is a significant challenge when developing large, multiloci phylogenetic datasets from assembled transcripts. Transcriptome assemblies have various attributes, such as fragmentation, frameshifts, and mis-indexing, which pose problems to automated methods of orthology assessment. Here, we identify a set of orthologous singlecopy genes from transcriptome assemblies for the land snails and slugs (Eupulmonata) using a thorough approach to orthology determination involving manual alignment curation, gene tree assessment and sequencing from genomic DNA. We qualified the orthology of 500 nuclear, protein coding genes from the transcriptome assemblies of 21 eupulmonate species to produce the most complete gene data matrix for a major molluscan lineage to date, both in terms of taxon and character completeness. Exon-capture targeting 490 of the 500 genes (those with at least one exon > 120 bp) from 22 species of Australian Camaenidae successfully captured sequences of 2,825 exons (representing all targeted genes), with only a 3.7% reduction in the data matrix due to the presence of putative paralogs or pseudogenes. The automated pipeline Agalma retrieved the majority of the manually qualified 500 singlecopy gene set and identified a further 375 putative single-copy genes, although it failed to account for fragmented transcripts resulting in lower data matrix completeness. This could potentially explain the minor inconsistencies we observed in the supported topologies for the 21 eupulmonate species between the manually curated and Agalma-equivalent dataset (sharing 458 genes). Overall, our study confirms the utility of the 500 gene set to resolve phylogenetic relationships at a broad range of evolutionary depths, and highlights the importance of addressing fragmentation at the homolog alignment stage for probe design.

INTRODUCTION

Robust and well resolved phylogenies document the evolutionary history of organisms and are essential for understanding spatio-temporal patterns of phylogenetic diversification and phenotypic evolution. Despite the central role of phylogenies in evolutionary biology, most phylogenetic studies in non-model systems have relied on a limited number of readily sequenced genes due to cost restrictions and availability of phylogenetic markers. However, both theoretical and empirical studies have shown that a greater number of independently evolving loci are needed to resolve difficult phylogenetic questions (Gontcharov et al. 2004; Wortley et al. 2005; Leaché \& Rannala 2011). This need has been addressed by rapid advances in phylogenomics, which capitalise on high-throughput sequencing to acquire large multi-loci datasets. In particular, both transcriptome sequencing and targeted-enrichment strategies are increasingly being employed to reconstruct phylogenetic relationships across a wide range of taxonomic levels (e.g. Bi et al. 2012;

Lemmon et al. 2012; Faircloth et al. 2012; Zapata et al. 2014; O'Hara et al. 2014; Misof et al. 2014). A common aim of these studies, especially targeted enrichment based studies, has been to identify universal sets of orthologous loci that can readily be captured and sequenced across a broad taxonomic spectrum (e.g. Lemmon et al. 2012; Faircloth et al. 2012; Hugall et al. 2015). Obtaining such universal sets of orthologous genes allows for consistency and comparison across studies, and ultimately contributes towards a more comprehensive Tree of Life (ToL) meta-analysis.

One of the greatest challenges associated with developing large, multi-loci phylogenomic datasets is the qualification of orthology. In the context of phylogenetic analysis, genes need to be orthologous and single-copy across all taxa under study (Fitch 2000; Philippe et al. 2011; Struck 2013). To this end, a number of automated pipelines have been developed to identify single-copy orthologous genes from assembled transcriptomes. These methods generally involve two main steps. The first step is to identify and cluster
homologous sequences, either by direct reference to annotated genomes (e.g., O'Hara et al. 2014) or by reference to ortholog databases, which themselves are derived from genome comparisons (e.g., Tatusov et al. 2003; Ranwez et al. 2007; Waterhouse et al. 2013;

Altenhoff et al. 2015). Alternatively, non-reference methods have been employed such as all-by-all and reciprocal BLAST comparisons (Li et al. 2003; Dunn et al. 2013) followed by clustering (Enright et al. 2002). In the second step, orthology is qualified using either similarity based approaches, including best-hit reciprocal blasts (Ebersberger et al. 2009; Waterhouse et al. 2013; Ward \& Moreno-Hagelsieb 2014), and/or tree based methods, where gene trees are used to identify sequences with purely orthologous relationships (e.g., Agalma, Dunn et al. 2013; PhyloTreePruner, Kocot et al. 2013; TreSpEx, Struck 2014).

Despite rapid advances in automated approaches to homolog clustering and qualifying orthology, there are many characteristics of transcriptome assemblies that challenge such automated methods. These include frameshifts, mis-indexing, transcript fragmentation and the presence of multiple isoforms. Not accounting for these issues can lead to erroneous inclusion of paralogous sequences and/or the inadvertent removal of appropriate orthologous sequences (Martin \& Burg 2002; Pirie et al. 2007; Philippe et al. 2011). To address these issues O'Hara et al. (2014) placed greater emphasis on careful manual curation and editing of homolog alignments prior to orthology qualification. A key aspect of this approach was the concatenation of transcript fragments into a single consensus sequence prior to tree-based ortholog qualification, leading to a more complete final data matrix. This, in turn, allowed a more robust probe design for subsequent exon-capture (Hugall et al. 2015). With the same objective of deriving a gene set appropriate for exon-capture in future studies, here we implement this approach to identify and qualify 500 single-copy orthologous genes for the Eupulmonata, a major lineage of air breathing snails and slugs within the class Gastropoda.

Eupulmonata comprises over 20,000 species, with an evolutionary depth spanning over 150 million years (Jörger et al. 2010; Lydeard et al. 2010). The evolutionary relationships of the Eupulmonata, however, remain incompletely understood despite many morphological and molecular phylogenetic studies over the last two decades (e.g., Ponder \& Lindberg 1997; Wade et al. 2001, 2006; Grande et al. 2004; Dinapoli \& Klussmann-Kolb 2010; Holznagel et al. 2010; Dayrat et al. 2011). The lack of congruence between studies is largely due to a combination of using insufficient genetic markers (Schrödl 2014), with many studies relying on 28 S rRNA or mitochondrial sequences, and widespread morphological convergence (Dayrat \& Tillier 2002). Therefore to resolve the 'tree of life' of the eupulmonates, it is essential to identify more independently evolving markers, with a greater range of substitution rates, to better estimate relationships across all evolutionary depths. To achieve this, we sequenced and assembled transcriptomes for representatives of 15 families across Eupulmonata. We used the owl limpet genome, Lottia gigantea, as a reference to identify and cluster homologous sequences and visually assessed and manually edited candidate homolog alignments accounting for transcript fragmentation, mis-indexing and frameshifts. We then further qualified orthology by assessing individual gene trees and by sequencing the orthologous gene set from genomic DNA using exon-capture as unexpressed paralogs or pseudogenes will not be detected in transcriptome datasets. Lastly, as a comparison and qualification of our approach we also analysed our transcriptome dataset using the fully automated orthology determination pipeline Agalma (Dunn et al. 2013).

METHODS

Transcriptome sequencing and assembly

We sequenced transcriptomes for 21 species of terrestrial snails and slugs representative of 15 families across Eupulmonata (Table 1). Total RNA was extracted from
foot or whole body tissue stored in RNAlater (Ambion Inc, USA) using the Qiagen RNeasy extraction kit (Qiagen, Hilden, Germany). Library preparations were conducted using the TruSeq RNA sample preparation kit v2 (Illumina Inc., San Diego, CA), and sequenced on the Illumina HiSeq 2000 platform (100 bp paired end reads). We used the program Trimmomatic v0.22 (Lohse et al. 2012) to remove and trim low quality reads and adaptor sequences, and the program Trinity v2012-06-08 (Grabherr et al. 2011; Haas et al. 2013) with default settings to assemble the transcriptomes.

Homolog clustering

Our approach to homolog clustering and orthology qualification is largely consistent with that detailed in O'Hara et al. (2014). A schematic representation of our pipeline is provided in Figure 1. First, to generate clusters of putatively homologous sequences we compared each assembly to the Lottia gigantea predicted gene dataset (hereon referred to as the L. gigantea genes). The L. gigantea reference represents 23,851 filtered gene models annotated in the most current draft genome (Grigoriev et al. 2012; Simakov et al. 2013). Each transcriptome assembly was compared against the L. gigantea genes using blastx with an evalue cut off of $1 \mathrm{e}-10$. This is a relatively relaxed threshold given the small size of the L. gigantea reference set. A relaxed e-value cutoff was used to ensure all closely related homologs were assessed without allowing through too many spurious matches with nonhomologous sequences. We retained only the top hit for each assembled contig (i.e. the match with the lowest e-value).

In addition to identifying homologous contigs from each transcriptome assembly, we also identified putative paralogs within the L. gigantea genome itself, in order to aid the identification of paralogous sequences within the eupulmonates. We ran an all-by-all BLAST of the L. gigantea genes against themselves (blastp, cut off e-value of 1e-10), retaining all
hits to identify L. gigantea genes which had hits to L. gigantea genes other than themselves. To qualify the all-by-all BLAST results, we also obtained orthology status for all L. gigantea genes classified in the Orthologous MAtrix (OMA) ortholog database (Altenhoff et al. 2015). A L. gigantea gene was considered to be single-copy if it was the only L. gigantea sequence in its respective OMA group. While this information provided guidance, we were not reliant on the L. gigantea orthology status when prioritising homolog clusters to assess (see below for criteria used). We considered L. gigantea to be sufficiently divergent from the eupulmonates (> 400 million years, Zapata et al. 2014) that single-copy status could differ.

The BLAST results for both the transcriptomes compared to L. gigantea and the L. gigantea all-by-all BLAST were used to produce clusters of homologous sequences linked by having a match to a specific L. gigantea gene. Hence, a homolog cluster represents 1) all contigs from all species transcriptomes that had a BLAST match to a given reference L. gigantea gene (there were often multiple contigs per taxon with hits to a given L. gigantea gene), and 2) all contigs having a hit to any of the closely related L. gigantea genes identified by the all-by-all BLAST.

Orthology assessment

After constructing the homologous clusters, we first visually assessed the alignments for evidence of paralogy. Sequences for each cluster were placed into the correct reading frame using coordinates output from the Blastx comparison for each transcriptome against L. gigantea, and were then translated and aligned in amino acids using ClustalW (Thompson et al. 1994) within the program BioEdit (Hall 1999). We only considered the coding region (i.e. untranslated regions (UTRs) were removed) which was identified manually by reference to the L. gigantea protein sequence for the relevant gene, which was included in the alignments. Many of the homolog clusters contained multiple fragmented transcripts for a given species
that were shorter than the coding region but which often overlapped. These fragmented transcripts were synthesised into consensus sequences by manual manipulation within BioEdit, if the overlapping regions did not differ by more than three nucleotides. Nonoverlapping fragments were also concatenated if there were no competing contigs covering the same region of the alignment and both sequences displayed a high degree of similarity to non-fragmented sequences in closely related taxa.

By visually assessing each homolog alignment in both amino acid and nucleotides (in Bioedit it is straight forward to toggle between the two), we were able to identify and manually correct frameshifts. These were clearly evident as a large proportion of a contig would not align with the rest of the sequences and the site of the frameshift was usually associated with runs of adenines. We also manually edited the alignments to remove clearly erroneous sequences which could not be aligned, clear out-paralogs (i.e. sequences which are paralogous but the duplication event took place before the common ancestor of eupulmonates) and redundant sequences (identical transcripts within a species). Mis-indexing was identified as cases where, within the one assembly, two contigs were present for the same region but one (typically the shorter contig having low coverage) matched the sequence for another taxon exactly. Taxa containing paralogs were clearly evident in the alignments as they frequently had > 5\% dissimilarity at the nucleotide level between overlapping contigs within the one sample. To further qualify that these sequences were paralogs we inspected genealogies constructed using the neighbour joining method in MEGA (see Figure S1). Any homolog cluster containing paralogs for any species was excluded from further consideration. In certain cases paralogous sequences were closely related (3-5\% dissimilarity), representing either in-paralogs (see Remm et al. 2001) or genes exhibiting elevated allelic diversity (see O'Hara et al. 2014). These genes were also excluded from further consideration as such genes are not optimal for exon-capture.

Approximately 1,500 homologous clusters were visually assessed in order to find 500 which were orthologous across all 21 taxa assessed. This dataset size was chosen to represent a balance between phylogenetic power at varying time scales (Leaché \& Rannala 2011; Philippe et al. 2011; Lemmon \& Lemmon 2013) and a suitable size for subsequent exoncapture probe design. To maintain consistency across studies, we first assessed homolog alignments corresponding to the 288 L. gigantea genes used in a phylogenomic study of the Mollusca (Kocot et al. 2011). Although there are two other published molluscan phylogenomic datasets (Smith et al. 2011; Zapata et al. 2014), we focussed on the final dataset of Kocot et al. (2011) as the L. gigantea gene IDs were documented in the supplementary they provided, which in turn allowed us to easily identify and assess these genes given our pipeline was based on the same reference. We then proceeded to assess and qualify additional homolog clusters until we obtained a final set of 500 single-copy orthologous genes. Accordingly, we prioritised homolog clusters with high taxonomic representation (≥ 18 taxa) , as completeness of the data matrix is critical for designing probes across multiple lineages (Lemmon et al. 2012; Hugall et al. 2015). Where possible we also prioritised homolog alignments for which the corresponding L. gigantea gene had a coding region $(C D S) \geq 300 \mathrm{bp}$ or had at least one exon $\geq 200 \mathrm{bp}$.

As a proxy measure of substitution rate variation across the final 500 gene set, we calculated uncorrected distances (p-distance) for species pairs within the families Rhytididae (Terrycarlessia turbinata and Victaphanta atramentaria) and Camaenidae (Sphaerospira fraseri and Austrochloritis kosciuszkoensis). We chose to limit this analysis to intrafamilial comparisons to avoid underestimation due to saturation. For comparison, we also calculated the p-distances for two commonly used phylogenetic markers, CO1 and 28S, for the same taxa.

Qualification of orthology using gene tree assessments

Although only a single copy of each gene per taxon was present in our final ortholog alignments, they may nevertheless be paralogous across taxa (see Struck 2014). To investigate 'hidden paralogy' we used the program TreSpEx (Struck 2014) to assess genealogies for conflict with a priori taxonomic hypotheses. Gene trees for each of the 500 genes were constructed using the GTRGAMMA model, codon specific partitioning, and 100 fast bootstraps in RAxML (Stamatakis 2006). TreSpEx then identified well supported conflicting phylogenetic signal relative to five distinct and taxonomically well-established eupulmonate clades (Limacoidea, Orthurethra, Helicoidea, the Australian Rhytididae (Table 1: see Hausdorf 1998; Wade et al. 2006, 2007; Herbert et al. 2015), and the Stylommatophora). All nodes with ≥ 75 bootstrap support were first assessed for conflict with the monophyly of each of the five clades. Strongly supported sister relationships between sequences from different clades can indicate the presence of 'hidden' paralogous sequences. TreSpEx flags very short terminal branches (parameter blt set to 0.00001) as indicative of potential cross-contamination and internal branches which are five times greater than the average (parameter lowbl set to 5), which, in addition to strong nodal support, may indicate paralogy.

Qualification of orthology using exon-capture

To further qualify orthology and identify unexpressed paralogs and pseudogenes, we designed an exon-capture probe set to enrich and sequence exons from our 500 gene dataset. As the divergence across the eupulmonates is too large for a single probe design we designed a probe set for the Australian Camaenidae as a test case. It would be feasible, however, to design a probe set from our alignments for any of the taxa we have assessed in this study. We designed the baits based on two species of Australian Camaenidae, Sphaerospira fraseri and Austrocholritis kosciuszkoensis, which represent two divergent lineages of the Australian camaenids (Hugall \& Stanisic 2011). Specifically, we included sequences from both taxa for
each gene in the probe design. The divergence between these taxa ranges up to $\sim 12 \%$ (Figure 3) which is about the level of divergence tolerated be the probes (Hugall et al. 2015). Including both taxa in the design increases the likelihood that we will capture sequences from more divergent lineages within the Camaenidae for which we don't yet have transcriptome sequences. Exon boundaries were first delineated using the program Exonerate v2.2.0 (Slater \& Birney 2005) in reference to the L. gigantea genomic sequences and then manually qualified using the boundaries detailed in the L. gigantea genome annotation (JGI, Grigoriev et al. 2012). All exons shorter than 120bp (the probe length) were excluded. This resulted in a target consisting of 1,646 exons from 490 of the 500 genes (ten genes contained only exons shorter than 120bp and were excluded from the bait design). Probes for the target sequences were designed and produced by MYcroarray (Ann Arbor, Michigan) using MYbaits custom biotinylated 120bp RNA baits at 2 X tiling.

We tested the probe set on 22 camaenid species spanning much of the phylogenetic breadth of the Australasian camaenid radiation, representing up to 30 million years (My) of evolution (Hugall \& Stanisic 2011) (Table 2). DNA was extracted using the DNeasy blood and tissue kit (Qiagen) and sheared using the Covaris S2 (targeting a fragment size of 275bp). Libraries where then constructed using the Kapa DNA Library Preparation Kit (Kapa Biosystems, USA), modified to accommodate dual-indexing using the i7 and i5 index sets (see Hugall et al. 2015). Up to eight libraries (normalised to 100 ng each) were pooled per capture, and hybridised to the baits (at one-quarter dilution) for 36 hours, following the MYbait protocol v1. A second hybridisation was then carried out on the fragments retained from the first hybridisation to further enrich the capture. Several captures were then multiplexed and sequenced on the Illumina MiSeq platform (v2), obtaining 150bp paired-end reads.

We used FastUniq v1.1 (Xu et al. 2012) to remove duplicates, and Trimmomatic v0.22 (Bolger et al. 2014) to trim and remove low quality reads and adaptor sequences (minimum average quality score threshold of 20 per 8 nt window). Reads shorter than 40 bases after trimming were discarded. The trimmed reads were then mapped onto the transcriptome sequences used for the probe design using BFAST v0.7.0a (Homer et al. 2009) with a single index of 22 nt without mismatch. After creating pileup files using Samtools v0.1.19 (Li et al. 2009), VarScan v2.3.7 (Koboldt et al. 2012) was used to call variants and produce a final consensus sequence for each taxon per exon. Viewing the initial BAM alignments showed that exon boundaries were often not conserved between L. gigantea and the Camaenidae. In these cases (Figure S5) the reference exons were split to reflect the actual exon boundaries in the Camaenidae. The reads where then mapped to the revised exon reference and consensus sequences made as outlined above. To flag potential pseudogenes and paralogs we identified consensus sequences with an elevated proportion of variable sites (> 3\% heterozygote sites) and reviewed the corresponding read alignments (BAM files) using the Integrative Genomics Viewer (IGV: Thorvaldsdóttir et al. 2013). All sequences with greater than 3% ambiguous sites where removed from the final dataset. Exons where more than 10% of the taxa contained greater than 3% ambiguous sites were discarded entirely.

We again used TreSpEx to assess conflicting phylogenetic signal. We screened for hidden paralogs based on five a priori phylogenetic hypotheses representing well supported clades ($\geq 75 \%$ bootstrap support) within the Australasian camaenid radiation as delineated by Hugall and Stanisic (2011), namely the Hadroid group (clade 1-4 inclusive), the farnorthern (sister clades 5 and 6) and north-eastern (clade 7) Chloritid groups, a group dominated by arid and monsoonal camaenids (clade 11) previously recognised as the subfamily Sinumeloninae (e.g. Solem 1992), and a phenotypically and ecologically diverse group dominated by eastern Australian wet forest taxa (sister clades 8 and 9). Gene trees for
each of the 490 genes (exons from the same gene were combined as one partition) were constructed using the GTRGAMMA model and 100 fast bootstraps in RAxML (Stamatakis 2006). TreSpEx was run using the same settings as the analysis for the transcriptome dataset (i.e. TreSpEx considered nodes for strong conflict, long branches, and short branches in that order with parameters upbl and lowbl set to 5 and blt 0.00001).

Comparison to the Agalma pipeline

As an independent qualification of the manually curated 500 gene set we ran the fully automated orthology determination pipeline Agalma (Dunn et al. 2013) (Figure 1). We commenced this pipeline from the 'postassemble' step which first identified open reading frames and putative coding regions (Dunn et al. 2013). Homolog clusters were then identified using an all-by-all tblastx, followed by clustering using the Markov Clustering algorithm (MCL) (Figure 1). Homolog clusters were then translated and aligned using MAFFT (Katoh \& Standley 2013) and gene trees estimated using RAxML. To identify orthologous sequences, the genealogies were then screened for 'optimally inclusive subtrees' which contain only a single representative of each species. Multiple orthologous subtrees can be delineated per homolog cluster, potentially allowing paralogs to be separated and retained. The surviving subtrees were filtered based on the number of taxa (set to greater than four taxa) and realigned for subsequent phylogenetic analysis. We then identified Agalma homologous clusters that corresponded to the manually curated 500 gene set using BLAST (blastp, e-value cut off of $1 \mathrm{e}-10$).

Phylogenetic analysis

After removal of paralogs or sequences with excessive polymorphism ($>3 \%$ dissimilarity), our phylogenomic datasets were refined by removing any regions of ambiguous alignment through the use of Gblocks (Castresana 2000) (which is built into the

Agalma pipeline) and manual masking. We reconstructed maximum likelihood trees using the program RAxML (Stamatakis 2006) for datasets resulting from both the manual curation and the Agalma pipeline. PartitionFinder (Lanfear et al. 2012, 2014) was used to identify suitable models and partitioning schemes, implemented with 1% heuristic r-cluster searches, optimized weighting, RAxML likelihood calculations, and model selection based on BIC scores. In all cases, nodal support was assessed by performing 100 full non-parametric bootstraps.

We analysed two datasets resulting from the Agalma pipeline. The first dataset comprised ortholog clusters that corresponded to the manually curated 500 gene set (here on referred to as the 'Agalma equivalent dataset'). The second dataset consisted of all ortholog clusters which had high taxon coverage (≥ 18), and were derived from homolog clusters containing only a single ortholog cluster (from here on referred to as the 'Agalma best dataset'); that is, Agalma homolog clusters containing multiple copies, albeit diagnosable, were not considered further. Finally, we reconstructed a phylogeny for the camaenid dataset obtained through exon-capture and included sequences from the five camaenid transcriptomes presented herein, as well as sequences of Cornu aspersum as an outgroup.

RESULTS

Transcriptome assembly and homolog clustering

The number of paired reads obtained for each of the 21 eupulmonate species sequenced ranged from 7.8 M to 31.6 M (Table 3). Trimming and de novo assembly statistics are presented in Table 3. The number of L. gigantea reference genes with BLAST matches ranged from 7,011 to 9,699 per assembly (Table 3), 5,490 of which had homologous sequences in at least 18 of the 21 transcriptome assemblies.

Of the 288 genes used in a previous molluscan phylogenomic study (Kocot et al.
2011), 130 were single-copy for all eupulmonates considered here, while 146 contained paralogs in at least one species (mean p-distance between paralogs within a sample was 0.28 , ranging from 0.16-0.46). We could not unambiguously qualify the remaining 12 genes from the Kocot et al. study as they were poorly represented in our transcriptomes. Prioritising genes with high taxon coverage and long exon length, we assessed additional alignments of candidate homolog clusters until we reached a total of 500 single-copy genes. In addition to the 146 Kocot genes shown to be paralogous within the eupulmonates, we identified and qualified 62 multi-copy genes during the course of this work. The resulting manually curated 500 single-copy gene set is 98.5% taxa complete (i.e. sequence present for each gene and taxon) and 93.1% character complete (Figure 4d), with an average gene length of $1,190 \mathrm{nt}$, ranging from 228 nt to $6,261 \mathrm{nt}$. In total, the final alignment of this gene set represents $512,958 \mathrm{nt}$. Approximately 12% of the sequences in the final gene-by-species matrix were derived by merging fragmented transcripts.

Based on the all-by-all BLAST comparison of the L. gigantea genes, 347 of our final 500 genes had a single hit at an e-value threshold of 1e-10 (i.e. single copy status was consistent between the L. gigantea reference and the eupulmonates), while the remainder had multiple hits, indicative of the presence of close paralogs in the reference. Conversely, of the 208 genes qualified as multiple-copy for the eupulmonates (146 from the Kocot gene set plus 62 from this study), 134 only had one hit within the L. gigantea gene set (i.e. just over half of the multiple-copy gene set are potentially single copy for patellogastropods). These results broadly correspond to the orthology designation in the OMA (Orthologous MAtrix) database.

Across the 500 single-copy genes, the p-distance between the two rhytidids, Terrycarlessia turbinata and Victaphanta atramentaria, ranged from 0.02 to 0.13 (average of 0.06; Figure 3). This family is thought to have originated 120 Mya (Bruggen 1980; Upchurch
2008). However, the Australian rhytidids probably represent a more recent radiation (Herbert et al. 2015, Moussalli and Herbert 2016). Similarly, p-distance between the two camaenids, Sphaerospira fraseri and Austrochloritis kosciuszkoensis, ranged from 0.01 to 0.13 (average of 0.04). This group is thought to have originated in the Oligo-Miocene approximately 30 Mya (Hugall \& Stanisic 2011). All genes had a higher relative substitution rate than the commonly used phylogenetic marker 28 S , and were on average approximately four times slower than COI (Figure 3).

Qualification of orthology using gene tree assessments

TreSpEx analyses of all 500 genes found no well supported conflict with the a priori phylogenetic hypotheses, suggesting that hidden paralogs (i.e., genes represented by a single sequence per taxon yet paralogous across multiple taxa) were absent from our dataset. Furthermore, this analysis also showed no evidence of cross sample contamination, nor any evidence of suspect long internal branches within the Stylommatophora.

Qualification of orthology using exon-capture

We enriched and sequenced all 1,646 targeted exons, from 490 genes, when considering all 22 samples collectively. We first mapped reads to the original reference used in the probe design with exon boundaries delineated based on the L. gigantea genome. Examination of the resulting read alignments (BAM files) identified 437 exons which contained multiple internal exon boundaries within the Camaenidae (Figure S4). Accordingly, the mapping reference was modified to account for exon-splitting (including the removal of 163 exons that were shorter than 40 bp after splitting), with the final revised reference comprising 2,648 exons representing 417,846nt (Supplementary Table 1). We targeted an average of five exons per gene.

We then remapped reads to the revised reference (coverage and specificity statistics presented in Table 4) and flagged resulting consensus sequences which exhibited elevated polymorphism (> 3\% heterozygote sites). There were 508 exons where at least one taxon exhibited elevated polymorphism. Of these, 105 exons had greater than 10% of the taxa (typically two or more taxa, taking into account missing taxa) exhibiting elevated polymorphism. Based on an examination of the corresponding read alignments, 95 exons were classified as having lineage specific pseudogenes or paralogs, four contained evidence of processed pseudogenes, and six where the alignment was complicated by the mapping of unrelated reads containing small, highly similar domains (see Figure S4-S8 for examples of each case). These 105 exons were removed prior to phylogenetic analyses. For the remaining 403 exons only the consensus sequences for the taxa with elevated polymorphism were removed from the final alignment. In total, 3.7% of the sequences were removed from final data matrix due to elevated polymorphism. The final exon capture data matrix was 98% taxa complete and 95% character complete.

Based on the TreSpEx analyses, four genes did not support the monophyly of the 'Far North Chloritid' group, but rather placed (Nannochloritis layardi and Patrubella buxtoni) as sister to the 'North-East Chloritid' group (Figure 5). We concluded that this was not the result of hidden paralogy, but rather due to insufficient lineage sorting of relatively conserved genes. An additional five genes were in conflict with the a priori taxonomic hypotheses, however, these represented cases where the genes were small and the proportion of phylogenetically informative sites was low. Five genes were flagged as having at least one internal branch which was greater than five times the average. Assessment of the alignments and corresponding genealogies indicated that they represented deep basal divergence between well supported major clades, and was not reflective of hidden paralogy.

Finally, we enriched another representative of Sphaerospira fraseri, one of the reference species used in the probe design. Comparing the mapped consensus genomic sequence to the transcriptome reference we found only minor mismatch, reflective of intraspecific variation as the two samples came from different populations (the exons had a median p-distance of 0.8%). Furthermore, for this species at least, all reference genes constructed from multiple transcript fragments were consistent with those captured from genomic DNA (i.e. chimeras of unrelated fragments were not created) and showed no evidence of paralogy or elevated heterozygosity.

Comparison to Agalma pipeline

Using the Agalma pipeline we identified 11,140 ortholog clusters. Of these ortholog clusters 635 corresponded to 457 of our 500 single-copy gene set. We refer to this dataset as the "Agalma equivalent" dataset, and is 61% taxa complete and 54% character complete. Many of the genes were represented by multiple ortholog clusters in the Agalma analysis, many of which contained fewer taxa relative to that obtained via manual curation (Figure 2). Rather than paralogs, in all cases fragmentation in the transcriptome assemblies resulted in the splitting of homolog clusters into multiple ortholog clusters, each representing the same locus but containing a different subset of taxa (see example in Figure S3). Of the 43 singlecopy genes not picked up by Agalma, five were not annotated in the 'postassemble' step, 12 were annotated but not recovered by the all-by-all BLAST, 18 were recovered by the all-byall BLAST but dropped during the clustering step, and eight made it to the initial clusters but failed the alignment and trimming step prior to the gene tree reconstruction. Failure to recover these genes during the BLAST comparison, clustering and alignment steps is most likely due to a combination of frameshift errors and transcript fragmentation, and in certain cases, resulting in the taxon sampling threshold and cluster size criteria not being met.

Of the 11,140 ortholog clusters there were 546 clusters that contained sequences of at least 18 taxa and that had one ortholog cluster per homolog cluster. Of these, 171 were also contained in our 500 single-copy gene set. Hence, the Agalma pipeline identified 375 genes in addition to the 500 manually curated genes, which had optimum taxon sampling. The majority of these genes also represented the full CDS with 89% representing at least 80% of the length of the respective L. gigantea gene. We refer to this dataset as the "Agalma best" dataset and is 92% taxa complete and 85% character complete.

Phylogenetic analysis

We reconstructed phylogenies from three ortholog datasets for comparison: (1) the manually curated 500 single-copy gene set (Figure 4a, d), (2) the Agalma equivalent dataset consisting of 635 orthologous clusters which corresponded to 457 of the 500 single-copy genes (Figure 4b, e), and (3) the Agalma best dataset consisting of 546 orthologous clusters which had 18 or more taxa and were the only orthologous cluster from the respective homolog cluster (Figure 4c, f). Of the manual curated dataset, 1.6% of the alignment was removed by Gblocks prior to phylogenetic analysis. The phylogenies for the 500 single-copy gene set and the Agalma best dataset had identical topologies, supporting all major clades with very high bootstrap support, namely Helicoidea, Limacoidea, Orthurethra, the Australian rhytidids and the Stylommatophora (Figure 4a, c). In terms of phylogenetic relationships, the Rhytididae forms a sister relationship with the Limacoidea, and the Helicoidea occupies a basal position within Stylommatophora. In contrast, while also supporting the monophyly of all major clades, the phylogeny based on the 'Agalma equivalent' dataset places Orthurethra in a basal position within Stylommatophora, (Figure 4b).

Of the Camaenidae exon capture dataset, 5% of the alignment was removed by Gblocks prior to phylogenetic analysis. The resulting phylogeny supported all major groups
previously recognised by Hugall and Stanisic (2011). In terms of phylogenetic relationships, the two Chloritid groups formed a clade with the Hadroid group, with the Far-northern chloritids sister to the hadroids. There was poor resolution regarding the phylogenetic positions of the two remaining groups, the Eastern rainforests and the arid and monsoonal NW Australian clades (Figure 5).

DISCUSSION

The identification and qualification of orthology is a critical prerequisite for sound phylogenetic inference. Our approach of orthology assessment involved an initial assessment and manual editing of homolog clusters, allowing us to correct for multiple isoforms and errors such as sequence fragmentation, frame-shifts and mis-indexing. Using this approach, we qualified the orthology and single-copy status of 500 genes across the eupulmonates, 130 of which were used in a previous phylogenomic study of the Mollusca (Kocot et al. 2011). The resulting 500 gene data matrix is the most complete produced for a major molluscan lineage to date, both in terms of taxon and character completeness. We further qualified orthology by capturing and sequencing 490 of the 500 genes from genomic DNA, revealing the presence of paralogs and/or pseudogenes otherwise not evident from the transcriptome data. Although the automated pipeline Agalma recovered the majority of the 500 genes as single copy and identified 375 additional putatively orthologous genes for the eupulmonates, it was hampered by transcript fragmentation within the assemblies. Furthermore, supported topologies for the 21 eupulmonate species were not entirely consistent between the manually curated and Agalma equivalent dataset, potentially a consequence of lower data matrix completeness in the latter. We discuss approaches to ortholog determination and implications for phylogenetic inference below.

Ortholog determination

To date, most transcriptome based phylogenomic studies have focused on resolving relatively deep evolutionary relationships (e.g. Kocot et al. 2011; Smith et al. 2011; Zapata et al. 2014; O'Hara et al. 2014; Misof et al. 2014), and a number have relied on annotated ortholog databases for the initial screening of suitable genes, such as OMA (Altenhoff et al. 2015), OrthoDB (Waterhouse et al. 2013), and the ortholog dataset associated with HaMStR (Ebersberger et al. 2009). Such databases are typically limited in the number of representatives per lineage (e.g., Tatusov et al. 2003; Ranwez et al. 2007; Waterhouse et al. 2013; Altenhoff et al. 2015). Nevertheless, it is a reasonable assumption that orthologous genes qualified as single-copy across many highly divergent taxa are more likely to maintain single-copy status with greater taxonomic sampling. We tested this idea at a preliminary stage of our work by first assessing genes used in a phylogenomic study of the Mollusca (Kocot et al. 2011). In that study, orthologous genes were identified using the program HaMStR, based on a 1,032 ortholog set resulting from the Inparanoid orthology database (Ostlund et al. 2010). We found that just under half of the genes used in Kocot et al. (2011) were paralogous within the eupulmonates. To some extent the high proportion of the Kocot et al. gene set being paralogous is due to the limited representation of eupulmonates in that study, and for these few taxa paralogs may have been absent. Alternatively, in such deep phylogenomic studies lineage-specific duplication may have manifested as in-paralogs and were dealt with by retaining one copy from the in-paralog set at random (Kocot et al. 2011; Dunn et al. 2013) or based on sequence similarity (Ebersberger et al. 2009). However, with an increase in taxonomic sampling, such paralogy may extend across multiple taxa and, unless conservation of function can be established (i.e. isorthology, Fitch 2000), these genes would no longer be suitable for phylogenetic analysis.

When the 500 gene set was compared to the OMA database (Altenhoff et al. 2015), which at the time of this analysis only incorporated a single molluscan genome, namely L. gigantea, we found a similarly high proportion of eupulmonate specific paralogy. A more interesting result arising from this comparison, however, was that many genes classified as having putative paralogs in L. gigantea were single-copy across the eupulmonates. We cannot ascertain at this stage whether this is a consequence of duplication being derived within Patellogastropoda, the lineage containing L. gigantea, or the consequence of duplicate loss in the ancestral eupulmonate. Nevertheless, this result highlights that potentially suitable genes may be overlooked when restricted to ortholog database designations, especially when such databases have poor representation of the relevant lineage. Accordingly, although we used the L. gigantea gene set as a reference with which to identify and cluster homologous sequences, we did not rely on orthology database designations of the L. gigantea gene set to guide which genes to consider when assessing orthology across the eupulmonates examined here.

Automated vs manually curated aided pipelines

Pipelines that fully automate homology searches and clustering, orthology qualification, and final alignments are highly desirable for efficiency, consistency, and repeatability. Moreover, reference free methods, like that implemented in Agalma, are also highly desirable in cases where the study taxa are poorly represented in ortholog databases. There are characteristics of assembled transcriptome sequences, however, that can challenge fully automated methods, including transcript fragmentation, mis-indexing, frameshifts and contamination, and these aspects necessitate careful manual appraisal and editing (Philippe et al. 2011; O'Hara et al. 2014). Although recent phylogenomic studies have, to varying degrees, incorporated manual appraisal, such checks are typically conducted at the final proofing stage (e.g. Kocot et al. 2011; Simmons \& Goloboff 2014). In this study, we purposefully addressed the abovementioned issues at an early stage following the initial
alignment of homologous sequences. The most important aspect of our manual curation was the creation of consensus sequences from fragmented transcripts (see also: O'Hara et al. 2014), which in turn ensured maximum retention of data (particularly for probe design) and placed subsequent orthology assessment on a sounder footing. Consequently, our final data matrix was highly complete (93% character complete whereas the 'Agalma best' dataset was 85% character complete).

The Agalma analysis confirmed the single-copy, orthology status for the majority of the 500 manually curated gene set, but it was hampered by transcript fragmentation within the transcriptome assemblies. In all cases where multiple ortholog clusters were derived using Agalma for any one of our 500 genes, this was due to transcript fragmentation, not missed paralogy. In essence, alignments of fragmented transcripts (whether or not they were partially overlapping) resulted in poorly reconstructed gene trees, which in turn misled subsequent tree pruning and ortholog clustering (e.g. Figure S3). Consequently, for the 'Agalma equivalent' dataset, both taxon and character completeness was poor relative to the manually curated data matrix. To our knowledge, no fully automated phylogenomics pipeline currently implements the consensus of fragmented sequences, and studies that have made the effort to retain multiple fragments, as in this study, have decided which sequences to retain and merge manually (e.g., Rothfels et al. 2013; O'Hara et al. 2014). The issue of working with fragmented assemblies can be addressed, however, by incorporating an automated consensus making algorithm such as TGICL (Pertea et al. 2003) into the pipeline to address fragmentation at the homolog alignment stage. Doing so is particularly desirable, given that manual curation of homologous sequences requires considerable time investment.

A major strength of automated pipelines is that they enable a more comprehensive screening of putative orthologous genes. Manual curation requires considerable effort, and while more candidate genes were identified than were assessed, we ceased the manual
assessment once our target of 500 genes had been attained. The Agalma analyses had no constraints, however, hence all possible orthologous clusters were considered. Consequently, we identified an additional 375 ortholog clusters which met a strict taxa completeness threshold (18 taxa or more) and represented the only ortholog cluster arising from original homolog clusters. These genes (i.e. the 'Agalma best' dataset) reconstructed a phylogeny that was very similar to the manually curated dataset. While beyond the scope of this study, there is potential for these genes to be included in future probe designs and further qualification of these additional genes using exon-capture (see below) would be highly desirable.

Phylogenetic inference

The 500 gene set represents a significant contribution towards advancing molecular phylogenetics of the eupulmonates, providing the capacity to resolve both evolutionary relationships at shallow to moderate depths, and deep basal relationships. The phylogenetic reconstructions presented here are well resolved and support the a priori taxonomic hypotheses used as part of the orthology assessment. In terms of deeper relationships, reconstructions based on the two most complete datasets are consistent, namely the monophyly of Stylommatophora, within which Helicoidea is basal, and the sister relationship between the Rhytidoidea and the Limacoidea. For the less complete Agalma equivalent dataset, however, Orthurethra is basal within Stylommatophora, albeit with marginal support. Without greater taxonomic sampling of all the major lineages within the eupulmonates, however, a comprehensive phylogenetic assessment is beyond the scope of this study. Nevertheless, these phylogenomic datasets do afford greater resolution of deeper relationships than obtained in previous molecular studies (Wade et al. 2001, 2006). Secondly, convergence in supported topology between the two most complete and largely independent datasets (only 171 genes were in common), and the inconsistency between the manually
curated and Agalma equivalent dataset (sharing 458 genes), suggests the possible importance of data matrix completeness in resolving short, basal internodes.

Exon-capture

One of the overarching objectives of this study was to identify and qualify 500 genes suitable for exon-capture work within the eupulmonates. Here we sequenced and analysed a small dataset for the family Camaenidae principally as a means to further qualify orthology. There are two principle outcomes from this exploration. First, for all reference sequences based on the concatenation of fragmented transcripts, there was no evidence that erroneous chimeric sequences were created. Second, as was the case with the increased sampling in the transcriptome work, the pervasiveness of lineage-specific duplication was also evident from the exon-capture experiment. Despite qualification of single-copy orthology of the transcriptome dataset, increased taxonomic sampling within the family Camaenidae revealed lineage-specific duplication for potentially as high as one fifth of the targeted exons. In the great majority of cases, however, a very small proportion of taxa exhibited putative paralogy or pseudogenes, and removal of the affected exon per taxon only reduced the completeness of the final dataset by 3.7%. Similar results were achieved for the brittle stars with 1.5% of their target discarded due to putative paralogs or pseudogenes (Hugall et al. 2015). It is possible that these putative paralogs were only detected in the genomic sequencing because they were not expressed in the transcriptomes.

Within the Australian Camaenidae, uncorrected distances for the majority of the genes did not exceed 13%. This level of sequence variability is within the range of mismatch that is tolerated by in-solution exon-capture protocols (Bi et al. 2012; Bragg et al. 2015; Hugall et al. 2015). This was qualified here given the high proportion of target recovery ($>95 \%$) across a broad representation of the camaenid diversity. As was the case for the Euplumonata
phylogeny presented above, our preliminary phylogenomic dataset for camaenids provides considerable resolution, particularly among the chloritis and hadroid groups which to date have been difficult to resolve (Hugall \& Stanisic 2011).

Expanding the bait design to enrich across the Australasian camaenid radiation, indeed the family Helicoidea, would require the incorporation of multiple divergent reference taxa into the bait design. Recent "anchored enrichment" approaches to bait design (e.g. Lemmon et al. 2012; Faircloth et al. 2012) target highly conserved regions to allow capture across highly divergent taxa. By contrast, the approach taken here is to target both conserved and highly variable regions, and where possible the full coding region (Bi et al. 2012; Bragg et al. 2015; Hugall et al. 2015). Accordingly, this would require substantially greater reference diversity to be incorporated into the bait design relative to the anchored approach to capture across highly divergent lineages (e.g. across families). Recently, Hugall et al. (2015) used a similar approach to the one in the present study, but designed baits based on ancestral sequences, rather than representative tip taxa, to reduce the overall size of the reference set. Using this approach, Hugall et al. successfully enriched and sequenced both conserved and highly variable exons across the entire echinoderm class Ophiuroidea, spanning approximately 260 million years. Here we have presented a simple bait design targeting a specific family, but our transcriptome dataset could be used to produce a more diverse bait design to facilitate a more comprehensive study of Eupulmonata phylogenetics and systematics.

ACKNOWLEDGEMENTS

We thank Andrew Hugall for bioinformatics advice and Felipe Zapata for assistance with running Agalma; Devi Stuart-Fox, Claire Mclean and Mark Phuong for critical feedback on
the manuscript; and Dai Herbert for providing images for Figure 4. We also thank the staff at Australian Genome Research Facility (AGRF) and the Georgia Genomics Facility (GGF), specifically Travis Glenn and Roger Neilsen, for guidance and assistance in transcriptome and exon-capture sequencing. LT was supported by Victorian Life Science Computing Initiative (VLSCI) scholarship. The work was supported by a Holsworth Wildlife Research Endowment to LT, an Australian Biological Resources Study (ABRS) grant to FK and AM (RF213-12). This research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

References

Altenhoff AM, Skunca N, Glover N et al. (2015) The OMA orthology database in 2015■: function predictions, better plant support, synteny view and other improvements. Nucleic Acids Research, 43, D240-D249.
Bi K, Vanderpool D, Singhal S et al. (2012) Transcriptome-based exon capture enables highly costeffective comparative genomic data collection at moderate evolutionary scales. BMC Genomics, 13, 403.
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 1-7.
Bragg JG, Potter S, Bi K, Moritz C (2015) Exon capture phylogenomics: efficacy across scales of divergence. Molecular Ecology Resources, DOI: 10.1111/1755-0998.12449.

Bruggen AC Van (1980) Gondwanaland Connections in the Terrestrial Molluscs of Africa and Australia. Journal of the Malacological Society of Australia, 4, 215-222.
Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular biology and evolution, 17, 540-552.
Dayrat B, Conrad M, Balayan S et al. (2011) Phylogenetic relationships and evolution of pulmonate gastropods (Mollusca): New insights from increased taxon sampling. Molecular Phylogenetics and Evolution, 59, 425-437.
Dayrat B, Tillier S (2002) Evolutionary relationships of euthyneuran gastropods (Mollusca): a cladistic re-evaluation of morphological characters. Zoological Journal of the Linnean Society, 135, 403-470.
Dinapoli A, Klussmann-Kolb A (2010) The long way to diversity - phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda). Molecular phylogenetics and evolution, 55, 60-76.
Dunn CW, Howison M, Zapata F (2013) Agalma: an automated phylogenomics workflow. BMC bioinformatics, 14, 330.
Ebersberger I, Strauss S, von Haeseler A (2009) HaMStR: profile hidden markov model based search for orthologs in ESTs. BMC evolutionary biology, 9, 157.

Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of
protein families. Nucleic acids research, 30, 1575-1584.
Faircloth BC, McCormack JE, Crawford NG et al. (2012) Ultraconserved Elements Anchor Thousands of Genetic Markers Spanning Multiple Evolutionary Timescales. Systematic biology, 61, 717-726.

Fitch WM (2000) Homology: a personal view on some of the problems. Trends in genetics, 16, 227231.

Gontcharov AA, Marin B, Melkonian M (2004) Are combined analyses better than single gene phylogenies? A case study using SSU rDNA and rbcL sequence comparisons in the Zygnematophyceae (Streptophyta). Molecular biology and evolution, 21, 612-24.
Grabherr MG, Haas BJ, Yassour M et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644-652.
Grande C, Templado J, Cervera JL, Zardoya R (2004) Molecular phylogeny of Euthyneura (Mollusca: Gastropoda). Molecular biology and evolution, 21, 303-313.
Grigoriev I V, Nordberg H, Shabalov I et al. (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic acids research, 40, D26-D32.

Haas BJ, Papanicolaou A, Yassour M et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols, $\mathbf{8}$, 1494-1512.
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series.

Hausdorf B (1998) Phylogeny of the Limacoidea Sensu Lato (Gastropoda: Stylommatophora). Journal of Molluscan Studies, 64, 35-66.
Herbert DG, Moussalli A, Griffiths OL (2015) Rhytididae (Eupulmonata) in Madagascar: reality or conjecture? Journal of Molluscan Studies, 81, 1-10.

Holznagel WE, Colgan DJ, Lydeard C (2010) Pulmonate phylogeny based on 28S rRNA gene sequences: a framework for discussing habitat transitions and character transformation. Molecular phylogenetics and evolution, 57, 1017-25.
Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PloS one, 4, e7767.
Hugall AF, O’Hara TD, Hunjan S, Nilsen R, Moussalli A (2015) An Exon-Capture System for the Entire Class Ophiuroidea. Molecular Biology and Evolution .
Hugall AF, Stanisic J (2011) Beyond the prolegomenon: a molecular phylogeny of the Australian camaenid land snail radiation. Zoological Journal of the Linnean Society, 161, 531-572.
Jörger KM, Stöger I, Kano Y et al. (2010) On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evolutionary Biology, 10, 323.
Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular biology and evolution, 30, 772-780.
Koboldt DC, Zhang Q, Larson DE et al. (2012) VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research, 22, 568-576.
Kocot KM, Cannon JT, Todt C et al. (2011) Phylogenomics reveals deep molluscan relationships. Nature, 477, 452-456.
Kocot KM, Citarella MR, Moroz LL, Halanych KM (2013) PhyloTreePruner: A Phylogenetic TreeBased Approach for Selection of Orthologous Sequences for Phylogenomics. Evolutionary bioinformatics online, 9, 429-35.

Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder \square : Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular biology
and evolution, 29, 1695-1701.
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC evolutionary biology, 14, 82.
Leaché AD, Rannala B (2011) The accuracy of species tree estimation under simulation: a comparison of methods. Systematic biology, 60, 126-37.

Lemmon AR, Emme S, Lemmon EM (2012) Anchored hybrid enrichment for massively highthroughput phylogenomics. Systematic biology, 61, 727-744.
Lemmon EM, Lemmon AR (2013) High-Throughput Genomic Data in Systematics and Phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 44, 99-121.
Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome research, 13, 2178-2189.
Lohse M, Bolger AM, Nagel A et al. (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40, W622-W627.

Lydeard C, Cowie RH, Ponder WF et al. (2010) The Global Decline of Nonmarine Mollusks. BioScience, 54, 321-330.
Martin AP, Burg TM (2002) Perils of paralogy: using HSP70 genes for inferring organismal phylogenies. Systematic biology, 51, 570-587.

Misof B, Liu S, Meusemann K et al. (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763-767.

O’Hara TD, Hugall AF, Thuy B, Moussalli A (2014) Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record. Current biology $\square: C B, 24,1874-1879$.
Ostlund G, Schmitt T, Forslund K et al. (2010) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic acids research, 38, D196-203.

Pertea G, Huang X, Liang F et al. (2003) TIGR gene indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics, 19, 651-652.
Philippe H, Brinkmann H, Lavrov D V et al. (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS biology, 9, e1000602.

Pirie MD, Vargas MPB, Botermans M, Bakker FT, Chatrou LW (2007) Ancient paralogy in the cpDNA trnL-F region in Annonaceae: implications for plant molecular systematics. American Journal of Botany, 94, 1003-1016.
Ponder WF, Lindberg DR (1997) Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society, 119, 83-265.

Ranwez V, Delsuc F, Ranwez S et al. (2007) OrthoMaM: a database of orthologous genomic markers for placental mammal phylogenetics. BMC evolutionary biology, 7, 241.
Remm M, Storm CE V, Sonnhammer ELL (2001) Automatic Clustering of Orthologs and In-paralogs from Pairwise Species Comparisons. Journal of molecular biology, 314, 1041-1052.
Rothfels CJ, Larsson A, Li F-W et al. (2013) Transcriptome-mining for single-copy nuclear markers in ferns. PloS one, 8, e76957.

Schrödl M (2014) Time to say "Bye-bye Pulmonata"? Spixiana, 37, 161-164.
Simakov O, Marletaz F, Cho S-J et al. (2013) Insights into bilaterian evolution from three spiralian genomes. Nature, 493, 526-531.

Simmons MP, Goloboff PA (2014) Dubious resolution and support from published sparse supermatrices: The importance of thorough tree searches. Molecular phylogenetics and evolution, 78, 334-348.
Slater GSC, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC bioinformatics, 6, 31 .

Smith SA, Wilson NG, Goetz FE et al. (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature, 480, 364-367.

Solem A (1992) Camaenid land snails from southern and eastern Australia, excluding Kangaroo Island. Records of the South Australian Museum, Monograph Series, 2, 1-425.
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688-2690.

Struck TH (2013) The impact of paralogy on phylogenomic studies - a case study on annelid relationships. PloS one, 8, e62892.
Struck TH (2014) TreSpEx—Detection of Misleading Signal in Phylogenetic Reconstructions Based on Tree Information. Evolutionary Bioinformatics, 51-67.
Tatusov RL, Fedorova ND, Jackson JD et al. (2003) The COG database: an updated version includes eukaryotes. BMC bioinformatics, 4, 41.
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22, 4673-4680.

Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): Highperformance genomics data visualization and exploration. Briefings in Bioinformatics, 14, 178192.

Upchurch P (2008) Gondwanan break-up: legacies of a lost world? Trends in ecology \& evolution, 23, 229-236.

Wade CM, Hudelot C, Davison A, Naggs F, Mordan PB (2007) Molecular phylogeny of the helicoid land snails (Pulmonata: Stylommatophora: Helicoidea), with special emphasis on the Camaenidae. Journal of Molluscan Studies, 73, 411-415.
Wade CM, Mordan PB, Clarke B (2001) A phylogeny of the land snails (Gastropoda: Pulmonata). Proceedings. Biological sciences / The Royal Society, 268, 413-422.

Wade CM, Mordan PB, Naggs F (2006) Evolutionary relationships among the Pulmonate land snails and slugs (Pulmonata, Stylommatophora). Biological Journal of the Linnean Society, 87, 593610.

Ward N, Moreno-Hagelsieb G (2014) Quickly Finding Orthologs as Reciprocal Best Hits with BLAT, LAST, and UBLAST: How Much Do We Miss? PloS one, 9, e101850.

Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva E V. (2013) OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic acids research, 41, D358-D365.
Wortley AH, Rudall PJ, Harris DJ, Scotland RW (2005) How much data are needed to resolve a difficult phylogeny?: case study in Lamiales. Systematic biology, 54, 697-709.

Xu H, Luo X, Qian J et al. (2012) FastUniq: A Fast De Novo Duplicates Removal Tool for Paired Short Reads. PLoS ONE, 7, e52249.
Zapata F, Wilson NG, Howison M (2014) Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 281, 20141739.

DATA ACCESSIBILITY

Raw high-throughput sequence reads: NCBI Bioproject PRJNA304185

Transcriptome assemblies, gene and exon alignments for the transcriptome analyses, the Camaenidae exon-capture probe set and the data sets used for phylogenetic inference: Dryad (doi:10.5061/dryad.fn627)

AUTHOR CONTRIBUTIONS

LCT and AM designed the study. LCT lead the analysis with contribution from $\mathrm{AM}, \mathrm{TOH}$, and KDM. LCT, AM and FK collected samples. LCT and AM wrote the manuscript. All authors reviewed and edited the manuscript prior to submission.

818

Fig. 1. Analysis Pipelines. Outline of the two pipelines used to detect single-copy, orthologous genes from 21 eupulmonate transcriptomes.

Fig. 2. A comparison between two orthology detection pipelines. (a) shows the relationship between the number of taxa per ortholog cluster for the ortholog clusters in common between the manual curation and Agalma pipelines. The manually curated alignments resulted in more taxa complete alignments than the corresponding Agalma alignments.(b) shows the same relationship, however, the number of taxa per gene for the Agalma pipeline were calculated across all ortholog clusters which matched the same L. gigantea gene. A comparison of the two plots demonstrates that Agalma tended to produce multiple independent alignments per L. gigantea gene, whereas a single alignment was produced through manual curation. Even when the number of taxa recovered across all Agalma alignments associated with a given gene are summed, taxa completeness of the Agalma dataset remained lower than that obtained through manual curation (see also Figure 4e). These graphs are plotted using geom_jitter in ggplot2 to help visualise the large number of data points.

Fig. 3. Distribution of the p-distance for 500 single-copy orthologous genes across two families. Uncorrected distances for both groups were calculated using alignments of Terrycarlessia turbinata and Victaphanta atramentaria (Rhytididae), and Austrochloritis kosciuszkoensis and Sphaerospira fraseri (Camaenidae). Triangles on the x-axis notate pdistances of two commonly used phylogenetic markers, CO1 and 28S, for the Camaenidae.

Fig. 4. Maximum Likelihood phylogenies for 21 eupulmonates based on three datasets. These datasets were (a) 500 nuclear single-copy, orthologous genes identified by manual curation, (b) 635 orthologous clusters identified by the automated pipeline Agalma, which correspond to the same 500 genes, and (c) 546 orthologous clusters identified by Agalma, where each orthologous cluster was the only one produced from the respective homolog cluster and had sequences for at least 18 taxa. Phylogenies are each based on analyses of amino acid sequences. Numbers on branches indicate bootstrap nodal support. Heat maps (d, e, f) indicate proportions of sequence obtained for each gene per sample for each dataset (sorted left to right by total proportion of data present per gene, top to bottom by total proportion of data present per sample).

Fig. 5. Maximum likelihood phylogeny of 26 Australian camaenid land snails. (a) Phylogenetic reconstruction based on nucleotides sequences from 2,648 exons obtained through exon-capture. Sequences for the taxa marked with asterisks were derived from transcriptome datasets. Numbers on branches indicate bootstrap nodal support. (b) Heat map showing the proportion of available sequences for each sample per gene (sorted left to right by proportion of data present per sample; top to bottom by proportion of data present per exon).

Table 1. Taxon sampling: Transcriptome sequencing

Superfamilies or higher unranked classification	Family	Species	Voucher specimen	Collection locality*
Helicoidea	Camaenidae	Austrochloritis kosciuszkoensis Shea \& Griffiths, 2010	NMV F193285	Sylvia Creek, VIC
Helicoidea	Camaenidae	Chloritobadistes victoriae (Cox, 1868)	NMV F193288	Crawford River, VIC
Helicoidea	Camaenidae	Ramogenia challengeri (Gude, 1906)	NMV F193287	Noosa, QLD
Helicoidea	Camaenidae	Sphaerospira fraseri (Griffith \& Pidgeon, 1833)	NMV F193284	Noosa, QLD
Helicoidea	Camaenidae	Thersites novaehollandiae (Gray, 1834)	NMV F193248	Comboyne, NSW
Helicoidea	Helicidae	Helix aspersa Müller, 1774	NMV F193280	Melbourne, VIC
Limacoidea	Dyakiidae	Asperitas stuartiae (Pfeiffer, 1845)	NMV F193286	North of Dili, Timor-Leste
Limacoidea	Helicarionidae	Fastosarion cf virens (Pfeiffer, 1849)	NMV F193282	Noosa, QLD
Limacoidea	Limacidae	Limax flavus Linnaeus, 1758	NMV F193283	Melbourne, VIC
Limacoidea	Microcystidae	Lamprocystis sp.	AM C. 476947	Ramelau Mountains, Timor-Leste
Limacoidea	Milacidae	Milax gagates (Draparnaud, 1801)	NMV F226625	Melbourne, VIC
Limacoidea	Oxychilidae	Oxychilus alliarius (Miller, 1822)	NMV F226626	Melbourne, VIC
Orthurethra	Cerastidae	Amimopina macleayi (Brazier, 1876)	NMV F193290	Darwin, NT
Orthurethra	Cochlicopidae	Cochlicopa lubrica (Müller, 1774)	MV614	Blue Mountains, NSW
Orthurethra	Enidae	Apoecus apertus (Martens, 1863)	AM C. 488753	Ramelau Mountains, Timor-Leste
Rhytidoidea	Rhytididae	Austrorhytida capillacea (Férussac, 1832)	NMV F193291	Blue Mountains, NSW
Rhytidoidea	Rhytididae	Terrycarlessia turbinata Stanisic, 2010	NMV F193292	Comboyne, NSW
Rhytidoidea	Rhytididae	Victaphanta atramentaria (Shuttleworth, 1852)	NMV F226627	Toolangi, VIC
Ellobioidea	Ellobiidae	Cassidula angulifera (Petit, 1841)	NMV F193289	Manatuto, Timor-Leste
Otinoidea	Smeagolidae	Smeagol phillipensis Tillier \& Ponder, 1992	MVR13_138	Phillip Is., VIC
Veronicelloidea	Veronicellidae	Semperula maculata (Templeton, 1858)	AM C. 476934	Manatuto, Timor-Leste

*All localities within Australia unless otherwise indicated

Table 2. Taxon sampling: Transcriptome sequencing

Species	Voucher specimen	Collection locality*
Boriogenia hedleyi (Fulton, 1907)	MV1082	Cairns, QLD
Falspleuroxia overlanderensis Solem, 1997	WAM S70235	Shark Bay, WA
Figuladra incei curtisiana (Pfeiffer, 1864)	NMV F219323	Mt Archer, QLD
Gnarosophia bellendenkerensis (Brazier, 1875)	NMV F226513	Alligator creek, QLD
Hadra bipartita (Férussac, 1823)	AM C. 476663	Green Island, QLD
Kimboraga micromphala (Gude, 1907)	AM C. 463554	Windjana Gorge, WA
Kymatobaudinia carrboydensis Criscione \& Köhler, 2013	WAM 49172	Carr Boyd Ranges, WA
Marilynessa yulei (Forbes, 1851)	MV1265	Brandy Creek, QLD
Mesodontrachia fitzroyana Solem, 1985	AM C. 476985	Victoria River District, NT
Nannochloritis layardi (Gude, 1906)	AM C. 477826	Somerset, QLD
Neveritis poorei (Gude, 1907)	MV1054	Mt Elliot, QLD
Noctepuna mayana (Hedley, 1899)	AM C. 478270	Diwan, QLD
Ordtrachia australis Solem, 1984	AM C. 462736	Victoria River District, NT
Patrubella buxtoni (Brazier, 1880)	AM C. 478884	Moa Is., Torres Strait
Plectorhagada plectilis (Benson, 1853)	WAM S70240	Shark Bay, WA
Rhynchotrochus macgillivrayi (Forbes, 1851)	AM C. 478271	Diwan, QLD
Semotrachia basedowi (Hedley, 1905)	AM C. 476884	Musgrave Ranges, WA
Sinumelon vagente Iredale, 1939	WA 61253	Mt Gibson, WA
Sphaerospira fraseri (Griffith \& Pidgeon, 1833)	MV1104	Benarkin State Forest, QLD
Tatemelon musgum (Iredale, 1937)	AM C. 476881	Musgrave Ranges, WA
Tolgachloritis jacksoni (Hedley, 1912)	NMV F226521	Mt Garnet, QLD
Torresitrachia torresiana (Hombron \& Jacquinot, 1841)	AM C. 477860	Weipa, Cape York Peninsula, QLD

*All localities within Australia unless otherwise indicated

Table 3. Summary statistics for sequencing and de novo assembly of 21 eupulmonate transcriptomes

Species	Pairs of raw reads	Proportion of reads after trimming	Trinity contigs	BLAST hits 1e-10 (L. gigantea)	L. gigantea genes with hits	No. of the 500 single copy genes
Ramogenia challengeri	11,726,377	0.84	103,471	14,665	7,011	488
Austrochloritis kosciuszkoensis	11,357,080	0.85	107,810	16,238	7,522	495
Sphaerospira fraseri	31,594,841	0.85	179,695	23,910	9,433	500
Thersites novaehollandiae	15,620,892	0.85	118,298	17,330	7,869	492
Chloritobadistes victoriae	26,433,009	0.85	148,817	20,453	8,792	498
Amimopina macleayi	7,874,195	0.97	93,250	17,258	8,091	494
Cochlicopa lubrica	8,074,560	0.97	111,396	21,675	9,086	497
Asperitas stuartiae	9,322,853	0.97	104,942	15,491	7,460	491
Cassidula angulifera	14,281,906	0.97	105,803	16,981	8,083	489
Apoecus cf apertus	9,362,182	0.97	119,711	21,275	9,095	497
Fastosarion cf virens	14,904,669	0.84	127,454	18,306	7,987	494
Cornu aspersum	21,273,910	0.86	160,490	23,114	9,254	498
Limax flavus	14,907,395	0.84	116,088	19,071	8,349	497
Lamprocystis sp.	22,539,699	0.97	128,611	23,797	9,679	499
Milax gagates	11,263,950	0.97	92,337	16,541	7,041	490
Oxychilus alliarius	12,925,111	0.97	136,044	21,183	8,940	499
Terrycarlessia turbinata	16,985,068	0.84	141,421	17,073	7,778	489
Victaphanta atramentaria	11,312,274	0.86	101,127	16,584	7,466	490
Austrorhytida capillacea	10,154,817	0.96	88,525	15,352	7,118	477
Smeagol phillipensis	6,393,571	0.96	95,429	23,067	9,699	497
Semperula maculata	12,461,924	0.97	76,847	21,851	9,276	492

Table 4. Sequencing and mapping summary statistics for the exon capture experiment.

Species	No. raw paired end reads	Proportion of pairs of reads retained after duplicate removal	Proportion retained after Trimmomatic	Proportion of reads mapped to the final reference	Average coverage per exon	Proportion of exons captured (total 2648 exons)
Boriogenia hedleyi	836,437	0.60	0.97	0.64	145	0.96
Falspleuroxia overlanderensis	170,769	0.69	0.98	0.74	41	0.88
Figuladra incei curtisiana	1,117,954	0.57	0.96	0.6	167	0.97
Gnarosophia bellendenkerensis	1,490,686	0.57	0.98	0.63	235	0.98
Hadra bipartita	659,509	0.6	0.98	0.7	131	0.96
Kimboraga micromphala	186,942	0.86	0.99	0.73	55	0.90
Kymatobaudinia carrboydensis	666,965	0.78	0.98	0.63	145	0.94
Marilynessa yulei	865,712	0.56	0.97	0.62	139	0.97
Mesodontrachia fitzroyana	429,572	0.85	0.98	0.61	102	0.91
Nannochloritis layardi	179,432	0.86	0.97	0.72	50	0.90
Neveritis poorei	1,313,049	0.57	0.96	0.62	205	0.95
Noctepuna mayana	297,503	0.77	0.98	0.73	81	0.93
Ordtrachia australis	670,743	0.65	0.94	0.86	222	0.92
Patrubella buxtoni	492,474	0.82	0.97	0.7	125	0.92
Plectorhagada plectilis	220,636	0.81	0.98	0.76	65	0.90
Rhynchotrochus macgillivrayi	340,338	0.85	0.98	0.7	96	0.92
Semotrachia basedowi	290,966	0.92	0.88	0.83	119	0.92
Sinumelon vagente	282,838	0.86	0.97	0.75	86	0.92
Sphaerospira fraseri	796,591	0.56	0.98	0.66	130	0.98
Tatemelon musgum	242,614	0.87	0.99	0.7	66	0.91
Tolgachloritis jacksoni	1,207,039	0.38	0.97	0.65	139	0.95
Torresitrachia torresiana	192,031	0.87	0.98	0.74	61	0.90

