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Ever since the accidental discovery of Wingless [Sharma R.P., Drosophila information service,
1973, 50, p 134], research in the field of Wnt signaling pathway has taken significant strides in
wet lab experiments and various cancer clinical trials, augmented by recent developments in ad-
vanced computational modeling of the pathway. Information rich gene expression profiles reveal
various aspects of the signaling pathway and help in studying different issues simultaneously.
Hitherto, not many computational studies exist which incorporate the simultaneous study of these
issues. This manuscript • explores the strength of contributing factors in the signaling pathway,
• analyzes the existing causal relations among the inter/extracellular factors effecting the path-
way based on prior biological knowledge and • investigates the deviations in fold changes in the
recently found prevalence of psychophysical laws working in the pathway. To achieve this goal,
local and global sensitivity analysis is conducted on the (non)linear responses between the factors
obtained from static and time series expression profiles using the density (Hilbert-Schmidt Infor-
mation Criterion) and variance (Sobol) based sensitivity indices. The results show the advantage
of using density based indices over variance based indices mainly due to the former’s employ-
ment of distance measures & the kernel trick via Reproducing kernel Hilbert space (RKHS) that
capture nonlinear relations among various intra/extracellular factors of the pathway in a higher
dimensional space. In time series data, using these indices it is now possible to observe where
in time, which factors get influenced & contribute to the pathway, as changes in concentration
of the other factors are made. This synergy of prior biological knowledge, sensitivity analysis &
representations in higher dimensional spaces can facilitate in time based administration of target
therapeutic drugs & reveal hidden biological information within colorectal cancer samples. Code
has been made available at Google drive on https://drive.google.com/folderview?id=
0B7Kkv8wlhPU-Q2NBZGt1ZERrSVE&usp=sharing

1 Introduction
1.1 A short review
Sharma1’s accidental discovery of the Wingless played a pioneer-
ing role in the emergence of a widely expanding research field
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of the Wnt signaling pathway. A majority of the work has fo-
cused on issues related to • the discovery of genetic and epige-
netic factors affecting the pathway (Thorstensen et al.2 & Baron
and Kneissel3), • implications of mutations in the pathway and
its dominant role on cancer and other diseases (Clevers4), • in-
vestigation into the pathway’s contribution towards embryo de-
velopment (Sokol5), homeostasis (Pinto et al.6, Zhong et al.7)
and apoptosis (Pećina-Šlaus8) and • safety and feasibility of drug
design for the Wnt pathway (Kahn9, Garber10, Voronkov and
Krauss11, Blagodatski et al.12 & Curtin and Lorenzi13). Approxi-
mately forty years after the discovery, important strides have been
made in the research work involving several wet lab experiments
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Fig. 1 A cartoon of Wnt signaling pathway contributed by Verhaegh
et al. 18. Part (A) represents the destruction of β-ctenn leading to the
inactivation of the Wnt target gene. Part (B) represents activation of Wnt
target gene.

and cancer clinical trials (Kahn9, Curtin and Lorenzi13) which
have been augmented by the recent developments in the vari-
ous advanced computational modeling techniques of the pathway.
More recent informative reviews have touched on various issues
related to the different types of the Wnt signaling pathway and
have stressed not only the activation of the Wnt signaling path-
way via the Wnt proteins (Rao and Kühl14) but also the on the
secretion mechanism that plays a major role in the initiation of
the Wnt activity as a prelude (Yu and Virshup15).

The work in this paper investigates some of the current as-
pects of research regarding the pathway via sensitivity analysis
while using static (Jiang et al.16) and time series (Gujral and
MacBeath17) gene expression data retrieved from colorectal can-
cer samples.

1.2 Canonical Wnt signaling pathway

Before delving into the problem statement, a brief introduction to
the Wnt pathway is given here. From the recent work of Sinha19,
the canonical Wnt signaling pathway is a transduction mechanism
that contributes to embryo development and controls homeostatic
self renewal in several tissues (Clevers4). Somatic mutations in
the pathway are known to be associated with cancer in different
parts of the human body. Prominent among them is the colorectal
cancer case (Gregorieff and Clevers20). In a succinct overview,
the Wnt signaling pathway works when the Wnt ligand gets at-
tached to the Frizzled(FZD)/LRP coreceptor complex. FZD may
interact with the Dishevelled (DVL) causing phosphorylation. It

is also thought that Wnts cause phosphorylation of the LRP via
casein kinase 1 (CK1) and kinase GSK3. These developments
further lead to attraction of Axin which causes inhibition of the
formation of the degradation complex. The degradation com-
plex constitutes of AXN, the β-ctenn transportation complex
APC, CK1 and GSK3. When the pathway is active the disso-
lution of the degradation complex leads to stabilization in the
concentration of β-ctenn in the cytoplasm. As β-ctenn en-
ters into the nucleus it displaces the GROUCHO and binds with
transcription cell factor TCF thus instigating transcription of Wnt
target genes. GROUCHO acts as lock on TCF and prevents the
transcription of target genes which may induce cancer. In cases
when the Wnt ligands are not captured by the coreceptor at the
cell membrane, AXN helps in formation of the degradation com-
plex. The degradation complex phosphorylates β-ctenn which
is then recognized by FBOX/WD repeat protein β-TRCP. β-
TRCP is a component of ubiquitin ligase complex that helps in
ubiquitination of β-ctenn thus marking it for degradation via
the proteasome. Cartoons depicting the phenomena of Wnt being
inactive and active are shown in figures 1(A) and 1(B), respec-
tively.

2 Problem statement & sensitivity analysis
Succinctly, the endeavour is to address the following issues -
• explore the strength of contributing factors in the signaling
pathway, • analyse the existing causal relations among the in-
ter/extracellular factors effecting the pathway based on prior bio-
logical knowledge and • investigate the significance of deviations
in fold changes in the recently found prevalence of psychophys-
ical laws working in the pathway in a multi-parameter setting.
The issues related to • inference of hidden biological relations
among the factors, that are yet to be discovered and • discovery
of new causal relations using hypothesis testing, will be addressed
in a subsequent manuscript. The current manuscript analyses the
sensitivity indices for fold changes and deviations in fold changes
in 17 different genes from a set of 74 genes as presented by Gu-
jral and MacBeath17. An immediate followup of the manuscript
is the analysis of the remaining 57 genes which happens to the
part B of this manuscript.

In order to address the above issues, sensitivity analysis (SA)
is performed on either the datasets or results obtained from bio-
logically inspired causal models. The reason for using these tools
of sensitivity analysis is that they help in observing the behaviour
of the output and the importance of the contributing input fac-
tors via a robust and an easy mathematical framework. In this
manuscript both local and global SA methods are used. Where
appropriate, a description of the biologically inspired causal mod-
els ensues before the analysis of results from these models. The
approach taken here is that first a problem will be addressed and
then the analysis of results and discussion ensues before working
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Fig. 2 Computation of variance based sobol sensitivity indices. For detailed notations, see appendix.

with the next issue.

2.1 Sensitivity analysis

Seminal work by Russian mathematician Sobol’21 lead to devel-
opment as well as employment of SA methods to study various
complex systems where it was tough to measure the contribution
of various input parameters in the behaviour of the output. A re-
cent unpublished review on the global SA methods by Iooss and
Lemaître22 categorically delineates these methods with the fol-
lowing functionality • screening for sorting influential measures
(Morris23 method, Group screening in Moon et al.24 & Dean
and Lewis25, Iterated factorial design in Andres and Hajas26, Se-
quential bifurcation in Bettonvil and Kleijnen27 and Cotter28 de-
sign), • quantitative indicies for measuring the importance of con-
tributing input factors in linear models (Christensen29, Saltelli
et al.30, Helton and Davis31 and McKay et al.32) and nonlin-
ear models (Homma and Saltelli33, Sobol34, Saltelli35, Saltelli
et al.36, Saltelli et al.37, Cukier et al.38, Saltelli et al.39, & Taran-
tola et al.40 Saltelli et al.41, Janon et al.42, Owen43, Tissot and
Prieur44, Da Veiga and Gamboa45, Archer et al.46, Tarantola
et al.47, Saltelli et al.41 and Jansen48) and • exploring the model
behaviour over a range on input values (Storlie and Helton49 and
Da Veiga et al.50, Li et al.51 and Hajikolaei and Wang52). Iooss
and Lemaître22 also provide various criteria in a flowchart for
adapting a method or a combination of the methods for sensitiv-
ity analysis. Figure 2 shows the general flow of the mathematical
formulation for computing the indices in the variance based Sobol

method. The general idea is as follows - A model could be repre-
sented as a mathematical function with a multidimensional input
vector where each element of a vector is an input factor. This
function needs to be defined in a unit dimensional cube. Based
on ANOVA decomposition, the function can then be broken down
into ƒ0 and summands of different dimensions, if ƒ0 is a constant
and integral of summands with respect to their own variables is
0. This implies that orthogonality follows in between two func-
tions of different dimensions, if at least one of the variables is
not repeated. By applying these properties, it is possible to show
that the function can be written into a unique expansion. Next,
assuming that the function is square integrable variances can be
computed. The ratio of variance of a group of input factors to the
variance of the total set of input factors constitute the sensitivity
index of a particular group. Detailed derivation is present in the
Appendix.

Besides the above Sobol’21’s variance based indicies, more
recent developments regarding new indicies based on density,
derivative and goal-oriented can be found in Borgonovo53, Sobol
and Kucherenko54 and Fort et al.55, respectively. In a latest de-
velopment, Da Veiga56 propose new class of indicies based on
density ratio estimation (Borgonovo53) that are special cases of
dependence measures. This in turn helps in exploiting measures
like distance correlation (Székely et al.57) and Hilbert-Schmidt
independence criterion (Gretton et al.58) as new sensitivity indi-
cies. The framework of these indicies is based on use of Csiszár
et al.59 f-divergence, concept of dissimilarity measure and kernel
trick Aizerman et al.60. Finally, Da Veiga56 propose feature se-
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Fig. 3 Computation of density based hsic sensitivity indices. For detailed notations, see appendix.

lection as an alternative to screening methods in sensitivity anal-
ysis. The main issue with variance based indicies (Sobol’21) is
that even though they capture importance information regarding
the contribution of the input factors, they • do not handle mul-
tivariate random variables easily and • are only invariant under
linear transformations. In comparison to these variance methods,
the newly proposed indicies based on density estimations (Bor-
gonovo53) and dependence measures are more robust. Figure 3
shows the general flow of the mathematical formulation for com-
puting the indices in the density based HSIC method. The gen-
eral idea is as follows - The sensitivity index is actually a distance
correlation which incorporates the kernel based Hilbert-Schmidt
Information Criterion between two input vectors in higher dimen-
sion. The criterion is nothing but the Hilbert-Schmidt norm of
cross-covariance operator which generalizes the covariance ma-
trix by representing higher order correlations between the input
vectors through nonlinear kernels. For every operator and pro-
vided the sum converges, the Hilbert-Schmidt norm is the dot
product of the orthonormal bases. For a finite dimensional input
vectors, the Hilbert-Schmidt Information Criterion estimator is a
trace of product of two kernel matrices (or the Gram matrices)
with a centering matrix such that HSIC evalutes to a summation
of different kernel values. Detailed derivation is present in the
Appendix.

It is this strength of the kernel methods that HSIC is able to
capture the deep nonlinearities in the biological data and provide
reasonable information regarding the degree of influence of the
involved factors within the pathway. Improvements in variance

based methods also provide ways to cope with these nonlineari-
ties but do not exploit the available strength of kernel methods.
Results in the later sections provide experimental evidence for the
same.

2.2 Relevance in systems biology

Recent efforts in systems biology to understand the importance of
various factors apropos output behaviour has gained prominence.
Sumner et al.61 compares the use of Sobol’21 variance based in-
dices versus Morris23 screening method which uses a One-at-a-
time (OAT) approach to analyse the sensitivity of GSK3 dynam-
ics to uncertainty in an insulin signaling model. Similar efforts,
but on different pathways can be found in Zheng and Rundell62

and Marino et al.63.

SA provides a way of analyzing various factors taking part in a
biological phenomena and deals with the effects of these factors
on the output of the biological system under consideration. Usu-
ally, the model equations are differential in nature with a set of
inputs and the associated set of parameters that guide the output.
SA helps in observing how the variance in these parameters and
inputs leads to changes in the output behaviour. The goal of this
manuscript is not to analyse differential equations and the param-
eters associated with it. Rather, the aim is to observe which input
genotypic factors have greater contribution to observed pheno-
typic behaviour like a sample being normal or cancerous in both
static and time series data. In this process, the effect of fold
changes and deviations in fold changes in time is also consid-
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ered for analysis in the light of the recently observed psychophys-
ical laws acting downstream of the Wnt pathway (Goentoro and
Kirschner64).

There are two approaches to sensitivity analysis. The first is the
local sensitivity analysis in which if there is a required solution,
then the sensitivity of a function apropos a set of variables is esti-
mated via a partial derivative for a fixed point in the input space.
In global sensitivity, the input solution is not specified. This im-
plies that the model function lies inside a cube and the sensitivity
indices are regarded as tools for studying the model instead of the
solution. The general form of g-function (as the model or output
variable) is used to test the sensitivity of each of the input factor
(i.e expression profile of each of the genes). This is mainly due to
its non-linearity, non-monotonicity as well as the capacity to pro-
duce analytical sensitivity indices. The g-function takes the form
-

ƒ () =d
=1

|4∗−2|+
1+

(1)

were, d is the total number of dimensions and  ≥ 0 are the in-
dicators of importance of the input variable . Note that lower
values of  indicate higher importance of . In our formulation,
we randomly assign values of  ∈ [0,1]. For the static (time se-
ries) data d = 18(71) (factors affecting the pathway). Thus the
expression profiles of the various genetic factors in the pathway
are considered as input factors and the global analysis conducted.
Note that in the predefined dataset, the working of the signaling
pathway is governed by a preselected set of genes that affect the
pathway. For comparison purpose, the local sensitivity analysis
method is also used to study how the individual factor is behav-
ing with respect to the remaining factors while working of the
pathway is observed in terms of expression profiles of the various
factors.

Finally, in context of Goentoro and Kirschner64’s work regard-
ing the recent development of observation of Weber’s law work-
ing downstream of the pathway, it has been found that the law is
governed by the ratio of the deviation in the input and the abso-
lute input value. More importantly, it is these deviations in input
that are of significance in studing such a phemomena. The cur-
rent manuscript explores the sensitivity of deviation in the fold
changes between measurements of fold changes at consecutive
time points to explore in what duration of time, a particular fac-
tor is affecting the pathway in a major way. This has deeper im-
plications in the fact that one is now able to observe when in
time an intervention can be made or a gene be perturbed to study
the behaviour of the pathway in tumorous cases. Thus sensitiv-
ity analysis of deviations in the mathematical formulation of the
psychophysical law can lead to insights into the time period based
influence of the involved factors in the pathway. Thus, both global
and local anaylsis methods are employed to observe the entire be-
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Fig. 4 Heat map for gene expression values for each of the 24 normal
mucosa and 24 human colorectal tumor cases from Jiang et al. 16

haviour of the pathway as well as the local behaviour of the input
factors with respect to the other factors, respectively, via analysis
of fold changes and deviations in fold changes, in time.

Given the range of estimators available for testing the sensitiv-
ity, it might be useful to list a few which are going to be employed
in this research study. Also, a brief introduction into the funda-
mentals of the derivation of the three main indicies and the choice
of sensitivity packages which are already available in literature,
has been described in the Appendix.

3 Description of the dataset & design of ex-
periments

STATIC DATA - A simple static dataset containing expression values
measured for a few genes known to have important role in human
colorectal cancer cases has been taken from Jiang et al.16. Most
of the expression values recorded are for genes that play a role
in Wnt signaling pathway at an extracellular level and are known
to have inhibitory affect on the Wnt pathway due to epigenetic
factors. For each of the 24 normal mucosa and 24 human col-
orectal tumor cases, gene expression values were recorded for 14
genes belonging to the family of SFRP, DKK, WF1 and DACT.
Also, expression values of established Wnt pathway target genes
like LEF1, MYC, CD44 and CCND1 were recorded per sample.

TIME SERIES DATA - Contrary to the static data described above,
Gujral and MacBeath17 presents a bigger set of 71 Wnt-related
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Fig. 5 Heat map for gene expression values for 5 time points from
Gujral and MacBeath 17

gene expression values for 6 different times points over a range
of 24-hour period using qPCR. The changes represent the fold-
change in the expression levels of genes in 200 ng/mL WNT3A-
stimulated HEK 293 cells in time relative to their levels in un-
stimulated, serum-starved cells at 0-hour. The data are the means
of three biological replicates. Only genes whose mean transcript
levels changed by more than two-fold at one or more time points
were considered significant. Positive (negative) numbers repre-
sent up (down) -regulation.

Note that green (red) represents activation (repression) in the
heat maps of data in Jiang et al.16 and Gujral and MacBeath17.
Figures 4 and 5 represent the heat maps for the static and time
series data respectively.

GENERAL ISSUES - • Here the input factors are the gene expres-
sion values for both normal and tumor cases in static data. For
the case of time series data, the input factors are the fold change
(deviations in fold change) expression values of genes at different
time points (periods). Also, for the time series data, in the first
experiment the analysis of a pair of the fold changes recorded
at to different consecutive time points i.e t & t+1 is done. In
the second experiment, the analysis of a pair of deviations in fold
changes recorded at t & t+1 and t+1 & t+2. In this work, in
both the static and the time series datasets, the analysis is done
to study the entire model/pathway rather than find a particular
solution to the model/pathway. Thus global sensitivity analysis is

employed. But the local sensitivity methods are used to observe
and compare the affect of individual factors via 1st order analysis
w.r.t total order analysis (i.e global analysis). In such an exper-
iment, the output is the sensitivity indices of the individual fac-
tors participating in the model. This is different from the general
trend of observing the sensitivity of parameter values that affect
the pathway based on differential equations that model a reac-
tion. Thus the model/pathway is studied as a whole by observing
the sensitivities of the individual factors.
• Static data - Note that the 24 normal and tumor cases are all

different from each other. The 18 genes that are used to study in
16 are the input factors and it is unlikely that there will be correla-
tions between different patients. The phenotypic behaviour might
be similar at a grander scale. Also, since the sampling number
is very small for a network of this scale, large standard devia-
tions can be observed in many results, especially when the Sobol
method is used. But this is not the issue with the sampling num-
ber. By that analysis, large deviations are not observed in kernel
based density methods. The deviations are more because of the
fact that the nonlinearities are not captured in an efficient way in
the variance based Sobol methods. Due to this, the resulting indi-
cies have high variance in numerical value. For the same number
of samplings, the kernel based methods don’t show high variance.
• Time series data - All the measurement data at each time

point are generated by a normal distribution with fixed standard
deviation of 0.005 plus a noise term. One might enquire as to how
does this data generation match with the real experimental data?
The kernel based density methods requires a distribution of data.
The original experimental data of fold change was taken from
each of the genes per time point. Gujral and MacBeath17 states
that to determine the fold-change in gene expression induced by
stimulation with Wnt3a, the normalized expression of each gene
in the Wnt3a-stimulated sample was divided by the normalized
expression of the same gene in the unstimulated sample. The
qPCR data presented are mean of three biological replicates. By
using a stringent margin of 0.005 and a noise term, the distri-
bution of the data near the mean value is kept constricted. How
much it deviates from the reality beyond the errors of measure-
ment is not known to the author! Finally, 74 gene expression
values are taken as input per time point for evaluting the sensi-
tivity of each of the genetic factor that affect the model/pathway.
Again, one is not looking for a solution to the model in terms of
good value for parameters but studying the degree of influence of
each of the input factors that constitute the model/pathway.

DESIGN OF EXPERIMENTS - The reported results will be based on
scaled as well as unscaled datasets. For the static data, only the
scaled results are reported. This is mainly due to the fact that the
measurements vary in a wide range and due to this there is often
an error in the computed estimated of these indices. The data
for time series does not vary in a wide range and thus the results
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are reported for both the scaled and the non scaled versions. Total
sensitivity indices and 1st order indices will be used for sensitivity
analysis. For addressing a biological question with known prior
knowledge, the order of indices might be increased. While study-
ing the interaction among the various genetic factors using static
data, tumor samples are considered separated from normal sam-
ples. Bootstrapping without replicates on a smaller sample num-
ber is employed to generate estimates of indices which are then
averaged. This takes into account the variance in the data and
generates confidence bands for the indices. For the case of time
series data, interactions among the contributing factors are stud-
ied by comparing (1) pairs of fold-changes at single time points
and (2) pairs of deviations in fold changes between pairs of time
points. Generation of distribution around measurements at single
time points with added noise is done to estimate the indices.

4 Static data
To measure the strength of the contributing factors in the static
dataset by Jiang et al.16, 1st order and total sensitivity indices
were generated. For each of the expression values of the genes
recorded in the normal and tumor cases, the computation of the
indices was done using bootstrapped samples in three different
experiments each with a sample size of 8, 16 and 24, respec-
tively. With only 24 samples in total, 20 bootstraps were gen-
erated for each set and the results were generated. From these
replicates, the mean of the indices is reported along with the
95% confidence bands. Figure 6 represents the cartoon of the
experimental setup followed to acheive the desired results. Note
that plots of sensitivity indices have been relegated to Appendix.

Using the sensiFdiv, all indices are computed as positive and
those nearing to zero indicate the contribution of a factor as in-
dependent from the behaviour under consideration. Here, while
comparing the indices of the gene expression values for normal
and tumor cases, it was found that most of the involved in-
tra/extracellular factors had some degree of contribution in the
normal case and almost negligible contribution in the tumor case
(see figures 13, 15 and 16). Apart from the negative reading for
the KL divergence 14 the interpretations remain the same. This
implies that the basic Csiszár et al.59 f-divergence based indices
might not capture the intrinsic genotypic effects for the normal
and the tumorous cases. From the biological perspective, these
graphs do not help in interpreting the strength of the contribu-
tions in normal and tumor cases. One might rank the indices for
relative contributions, but this might not shed enough light on the
how the factors are behaving in normal and tumor cases.

A more powerful way to analyse the contributions is the newly
proposed HSIC based measures by Da Veiga56. These distances
use the kernel trick which can capture intrinsic properties inher-
ent in the recorded measurements by transforming the data into a
higher dimensional space. Using these distances in sensiHSIC, it

was found that the contributions of the various factors in the nor-
mal and the tumor cases vary drastically. This is shown in figures
17, 18 and 19. The laplace and the rbf kernels give more reli-
able sensitivity estimates for the involved factors than the linear
kernel. Studying the results in figures 6 and 7 of Sinha19 based
on prior biological knowledge encoded in the Bayesian network
models along with the indices of aforementioned figures, it can be
found that indices of the family of DACT−1/2/3 show higher
(lower) sensitivity in the normal (tumor) case where the activa-
tion (repression) happens. Again, of the DACT family, DACT−1
has greater influence than DACT − 3 (than DACT − 2) based
on the values of the sensitivity indices. These indices indicate
the dependence of a factor on the output of the model character-
ized by the signaling being active (passive) in the normal (tumor)
cases. 0(1) mean no (full) dependence of the output on the in-
put factor. The laplace and the rbf kernels were found to give
more consistent results than the linear kernel and the following
description discusses the results from these kernels. For the SFRP
family SFRP−1/2/5 show higher (lower) sensitivity in normal
(tumor) case where the activation (repression) happens (see fig-
ures 18 and 19). For SFRP−3/4 the influence is higher (lower)
in the tumor (normal) case. In all the three types of kernels,
WF1, MYC and CCND1 show stronger (weaker) influence of
repression (activation) in the normal (tumor) case (see figures
18 and 19). CD44 showed variable influence while observing
the normal and tumor cases. Sinha19 could not derive proper
inferences for LEF1 but the sensitivity indices indicate that the
influence of LEF1 in tumor samples to be higher than in normal
samples. This points to the LEF1’s major role in tumor cases.
Finally, for the family of DKK, DKK1 and DKK3−2 show simi-
lar behaviour of expression (repression) in normal (tumor cases)
(see Sinha19). For the former, the prominence of the influence is
shown in the higher (lower) sensitivity for tumor (normal) case.
For the latter higher (lower) sensitivity was recorded for normal
(tumor) case. This implies that the latter has more influential
role in normal while the former has more influential role in tumor
case. DKK3−1 was found to be expressed (repressed) in nor-
mal (tumor) and its dominant role is prominent from the higher
bar sensitivity bar for normal than the tumor. Similar behavior of
DKK2 was inferred by Sinha19 but the sensitivity indices point
to varied results and thus a conclusion cannot be drawn. Note
that greater the value of the sensitivity index, greater is an input
factor’s contribution to the model.

The first order indices generated by sobol functions imple-
mented in sobol2002 (figure 20), sobol2007 (figure 21), sobol-
jansen (figure 22), sobolmartinez (figure 23) and sobol (figure
24) do not point to significant dependencies of the input factors.
This can be attributed to the fact that there are less number of
samples that help in the estimation of the sensitivity indicies. Fi-
nally, the total order indices need to be investigated in the context
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sampling with no repetitions for different iterations. (3) Assembling bootstrapped data and application of SA methods. (4) Generation of SI’s for normal
and tumor case per gene per iteration. (5) Generation of averaged SI and confidence bands per case per gene

of the first order indices. It can be observed , sobol2002 (figure
25) and sobol2007 (figure 25) give much better estimates than
soboljansen (figure 27) and sobolmartinez (figure 28). Most im-
portantly, it is the former two that closely match with the sensi-
tivity indices estimated using the HSIC distance measures. Inter-
pretations from sobol2002 (figure 25) and sobol2007 (figure 26)
are the same as those described above using the laplace and the
rbf kernels from density based HSIC measure.

In summary, the sensitivity indices confirm the inferred results
in Sinha19 but do not help in inferring the causal relations using
the static data. In combination with the results obtained from the
Bayesian network models in Sinha19 it is possible to study the
effect of the input factors for the pathway in both normal and tu-
mor cases. The results of sensitivity indices indicate how much
these factors influence the pathway in normal and tumor cases.
Again, not all indices reveal important information. So users must
be cautious of results and see which measures reveal information

that are close to already established or computationally estimated
biological facts. Here the density based sensitivity indices cap-
tured information more precisely than the variance based indices
(except for the total order indices from sobol2002/7 which gave
similar results as sensiHSIC). This is attributed to the analytical
strength provided by the distance measures using the kernel trick
via RKHS that capture nonlinear relations in higher dimensional
space, more precisely. Finally, in a recent unpublished work by
De Lozzo and Marrel73, it has been validated that the HSIC in-
dices prove to be more sensitive to the global behaviour than the
Sobol indices.

5 Time series data

Next, the analysis of the time series data is addressed using the
sensitivity indices. There are two experiments that have been
performed. First is related to the analysis of a pair of the fold
changes recorded at to different consecutive time points i.e t &
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t+1. The second is related to the analysis of a pair of deviations
in fold changes recorded at t & t+1 and t+1 & t+2. The former
compares the measurements in time while the latter takes into ac-
count the deviations that happens in time. For each measurement
at a time point a normal distribution was generated with original
recorded value as the mean, a standard deviation of 0.005 and
an added noise in the form of jitter (see function jitter in R lan-
gauge). For the time measurements of each of the genes recorded
in Gujral and MacBeath17 an analysis of the sensitivity indices
for both the scaled and the non-scaled data was done. Here the
analysis for non-scaled data is presented. The reason for not pre-
senting the scaled data is that the sample measurements did not
vary drastically as found in the case of static data which caused
troubles in the estimation of indices earlier. Another reason for
not reporting the results on the scaled data is that the non-scaled
ones present raw sensitive information which might be lost in
scaling via normalization. Note that the authors use self orga-
nizing maps (SOM) to cluster data and use correlational analysis
to derive their conclusions. In this work, the idea of clustering
is abandoned and sensitivity indices are estimated for recorded
factors participating in the pathway. Also the simple correlational
analysis is dropped in favour of highly analytical kernel based dis-
tance measures. Figure 7 represents the experimental setup in a
pictorial format.

Also, in a recent development, Goentoro and Kirschner64 point
to two findings namely, • the robust fold changes of β-ctenn
and • the transcriptional machinery of the Wnt pathway depends
on the fold changes in β-ctenn instead of absolute levels of
the same and some gene transcription networks must respond to
fold changes in signals according to the Weber’s law in sensory
physiology. The second study also carries a weight in the fact
that due to the study of the deviations in the fold changes it is
possible to check if the recently observed and reported natural
psychophysical laws in the signaling pathway hold true or not.
Finally, using the sensitivity indicies an effort is made to confirm
the existing biological causal relations.

5.1 Analysis of fold changes at different time points

Lets begin with the gene WNT3A as changes in its concentra-
tion lead to recording of the measurements of the different genes
by Gujral and MacBeath17. Of the list of genes recorded, the in-
dices of the those which are influenced by the concentration of
WNT3A are analysed. Next based on these confirmations and
patterns of indices over time, conclusions for other enlisted genes
are drawn. For the former list, the following genes FZD1, FZD2,
LEF1, TCF7, TCF7L1, LRP6, DVL1, SFRP1, SFRP4, CTBP1,
CTBP2, PORCN, GSK3β, MYC, APC and CTNNB1 are consid-
ered.

Figures 8 and 9 represent the indices computed over time.

Columns represent the different kinds of indices computed while
the rows show the respective genes. Each graph contains the sen-
sitivity index computed at a particular time point (represented by
a coloured bar). It should be observed from the aforementioned
figures that the variants of the Sobol first order (FO) and the total
order (TO) indices computed under different formulations were
not very informative. This can be seen in graphs were some in-
dices are negative and at some places the behaviour across time
and genes remain the same. In contrast to this, the indices gen-
erated via the original Sobol function (under the column Sobol-
SBL) as well as the sensiHSIC were found to be more reliable.
Again, the rbf and laplace kernels under the HSIC formulations
showed similar behaviour in comparison to the use of the linear
kernel.

Gujral and MacBeath17 simulate the serum starved HEK293
cells with 200 ng/mL of WNT3A at different lengths of time. Af-
ter the first hour (t1), (under HSIC-rbf/laplace) it was observed
that the sensitivity of WNT3A was low (red bar). The maxi-
mum contribution of WNT3A can be recoreded after the 12th

stimulation. But due to increased stimulation by WNT3A later
on, there is an increased sensitivity of FZD-1/2 as well as LRP6.
The FZD or the frizzled family of 7-transmember protein (Ueno
et al.74) works in tandem with LRP-5/6 as binding parameters
for the Wnt ligands to initiate the Wnt signaling. Consistent with
the findings of Holcombe et al.75 and Planutis et al.76, FZD1 was
found to be expressed. But there is a fair decrease in the contribu-
tion of the same in the next two time frames i.e after 3rd and the
6th hour. The maximum contribution of FZD1 is found after the
WNT3A simulation at 12th hour. This probably points to repeti-
tive involvement of FZD1 after a certain period of time to initiate
the working of the signaling pathway. FZD2 showed increas-
ing significance in contribution after the first two time frames.
The contribution drops significantly after the 3rd simulation and
gradually increases in the next two time frames. The repetitive
behaviour is similar to FZD1, yet it’s role is not well studied as
it appears to bind to both WNT3A which promotes Wnt/bet-
ctenn signaling and WNT5A which inhibits it as shown by
Sato et al.77, respectively.

Klapholz-Brown et al.78 and Yokoyama et al.79 show that there
is increased β-ctenn due to WNT3A stimulation which is de-
picted by the increased sensitivity of CTNNB1 expression in one
of the above mentioned figures. MYC (i.e c−MYC) is known to
be over expressed in colorectal cancer cases mainly due to the ac-
tivation of TCF−4 transcription factor via intra nuclear binding
of β-ctenn (He et al.80), either by APC mutations (Korinek
et al.81) or β-ctenn mutations (Morin et al.82). The sensi-
tivity of MYC increased monotonically but after the 6th hour it
dropped significantly. Probably MYC does not play important role
at later stages. As found in Hino et al.83 and You et al.84, DVL
family interacts with the frizzled FDZ members leading to disas-
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sembly of the β-ctenn destruction complex and subsequent
translocation of β-ctenn to the nucleus. Development on
DVL family have been extensively recorded in González-Sancho
et al.85 and86, and significance of DVL1 in Taiwanese colorec-
tal cancer in Huang et al.87. DVL1 shows a marked increase in
sensitivity as the concentration of the WNT3A increases in time.
This is supported by the fact that ligand binding at the membrane
leads to formation of complex including DVL1, FZD and AXN.

Negative regulators like SFRP4 were found to have lower sen-
sitivity as WNT3A concentration increases, but remained con-
stant for most period. Meanwhile the significance of Wnt antago-
nist SFRP1 (Galli et al.88, Suzuki et al.89 and Caldwell et al.90)
decreases over the period as the concentration of WNT3A in-
creases. Chinnadurai91 reviews the co-repressor ability of the
CTBP family, while Hamada and Bienz92 shows CTBP as a bind-
ing factor that interacts with APC thus lowering the availability

of free nuclear β-ctenn. This interaction is further confirmed
in the recent research work by Schneikert et al.93. As shown by
Yokoyama et al.79 CTBP1 showed increased sensitivity with in-
creased stimulation of WNT3A in the first hour. The latter stages
show a decreased contribution of CTBP1 as the concentration
of WNT3A was increased. This is in line with what Gujral and
MacBeath17 show in their manuscript and indicate the lowering
of the co-repressor effect of CTBP at later stages. On the other
hand, CTBP2 showed reverse behaviour of sensitivity in com-
parison to CTBP1 across different time points. Increased signif-
icance of CTBP2 was observed in the first two time frames, i.e
after 1st and 3rd hour of stimulation, followed by lower con-
tribution to the pathway at the latter stages. In both cases, the
diminishing co-repressive nature of CTBP in time is observed.
Contrary to these finding, recent results in Patel et al.94 suggest
that both CTBP1 and CTBP2 are up-regulated in colon cancer

10 | 1–40

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/035519doi: bioRxiv preprint 

https://doi.org/10.1101/035519
http://creativecommons.org/licenses/by-nc-nd/4.0/


HS
IC

-r
bf

HS
IC

-l
in

ea
r

HS
IC

-l
ap

la
ce

So
bo

l-
 S

bl
Sb

l-
TO

-m
ar

ti
ne

z S
bl

-F
O-

ma
rt

in
ez

Sb
l-

TO
-j

an
se

n
Sb

l-
FO

-j
an

se
n

Sb
l-

TO
-2

00
7

Sb
l-

FO
-2

00
7

Sb
l-

TO
-2

00
2

Sb
l-

FO
-2

00
2

CTNNB1 0.
02

0.
03

0.
04

0.
05

0.
06

t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

0.
03
0

t1 t2 t3 t4 t5

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

t1 t2 t3 t4 t5

−0
.2

−0
.10.
0

0.
1

0.
2

0.
3

t1 t2 t3 t4 t5

−0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

0.
01
5

t1 t2 t3 t4 t5

810121416
t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

t1 t2 t3 t4 t5

−0
.2
0

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

−0
.3

−0
.2

−0
.10.
0

0.
1

0.
2

t1 t2 t3 t4 t5

−1
3.
0

−1
2.
5

−1
2.
0

−1
1.
5

−1
1.
0

−1
0.
5

−1
0.
0

t1 t2 t3 t4 t5

10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

t1 t2 t3 t4 t5

0.
02

0.
04

0.
06

0.
08

0.
10

t1 t2 t3 t4 t5

APC

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

t1 t2 t3 t4 t5

8101214

t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

0.
01
5

t1 t2 t3 t4 t5

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

0.
01
5

t1 t2 t3 t4 t5

−0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

t1 t2 t3 t4 t5

−0
.4

−0
.20.
0

0.
2

t1 t2 t3 t4 t5

−0
.2

−0
.10.
0

0.
1

0.
2

0.
3

0.
4

0.
5

t1 t2 t3 t4 t5

−1
3

−1
2

−1
1

−1
0

t1 t2 t3 t4 t5

1011121314
t1 t2 t3 t4 t5

MYC 0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

t1 t2 t3 t4 t5

0.
01

0.
02

0.
03

0.
04

t1 t2 t3 t4 t5

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

t1 t2 t3 t4 t5

810121416
t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

t1 t2 t3 t4 t5

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

t1 t2 t3 t4 t5

0.
0

0.
1

0.
2

0.
3

t1 t2 t3 t4 t5

−1
.0

−0
.50.
0

0.
5

t1 t2 t3 t4 t5

−0
.50.
0

0.
5

1.
0

t1 t2 t3 t4 t5

−1
2.
5

−1
2.
0

−1
1.
5

−1
1.
0

−1
0.
5

−1
0.
0

t1 t2 t3 t4 t5

10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

t1 t2 t3 t4 t5

0.
01

0.
02

0.
03

0.
04

0.
05

t1 t2 t3 t4 t5

GSK3B

0.
00

0.
02

0.
04

0.
06

t1 t2 t3 t4 t5

0.
05

0.
06

0.
07

0.
08

t1 t2 t3 t4 t5

6810121416
t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

t1 t2 t3 t4 t5

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

0.
04

t1 t2 t3 t4 t5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

t1 t2 t3 t4 t5

−0
.50.
0

0.
5

1.
0

t1 t2 t3 t4 t5

−1
.0

−0
.50.
0

0.
5

t1 t2 t3 t4 t5

−1
3.
0

−1
2.
5

−1
2.
0

−1
1.
5

−1
1.
0

−1
0.
5

t1 t2 t3 t4 t5

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

t1 t2 t3 t4 t5

PORCN 0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

t1 t2 t3 t4 t5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

t1 t2 t3 t4 t5

0.
04

0.
06

0.
08

0.
10

t1 t2 t3 t4 t5

810121416

t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

0.
04

t1 t2 t3 t4 t5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

0.
04

t1 t2 t3 t4 t5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

t1 t2 t3 t4 t5

−0
.50.
0

0.
5

1.
0

t1 t2 t3 t4 t5

−1
.0

−0
.50.
0

0.
5

t1 t2 t3 t4 t5

−1
3.
0

−1
2.
5

−1
2.
0

−1
1.
5

−1
1.
0

−1
0.
5

t1 t2 t3 t4 t5

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

t1 t2 t3 t4 t5

CTBP2 0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

t1 t2 t3 t4 t5

0.
05

0.
06

0.
07

0.
08

0.
09

t1 t2 t3 t4 t5

810121416
t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

t1 t2 t3 t4 t5

−0
.2
0

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

t1 t2 t3 t4 t5

−0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

t1 t2 t3 t4 t5

−0
.20.
0

0.
2

0.
4

0.
6

t1 t2 t3 t4 t5

−0
.4

−0
.20.
0

0.
2

t1 t2 t3 t4 t5

−1
3.
0

−1
2.
5

−1
2.
0

−1
1.
5

−1
1.
0

−1
0.
5

t1 t2 t3 t4 t5

10
.0

10
.5

11
.0

11
.5

12
.0

12
.5

13
.0

13
.5

t1 t2 t3 t4 t5

CTBP1 0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

t1 t2 t3 t4 t5

0.
05

0.
06

0.
07

0.
08

0.
09

t1 t2 t3 t4 t5

810121416
t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

t1 t2 t3 t4 t5

−0
.2
0

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

t1 t2 t3 t4 t5

−0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

t1 t2 t3 t4 t5

−0
.2

−0
.10.
0

0.
1

0.
2

0.
3

0.
4

t1 t2 t3 t4 t5

−0
.4

−0
.3

−0
.2

−0
.10.
0

0.
1

0.
2

0.
3

t1 t2 t3 t4 t5

−1
3

−1
2

−1
1

−1
0

t1 t2 t3 t4 t5

10111213

t1 t2 t3 t4 t5

SFRP4 0.
02

0.
03

0.
04

t1 t2 t3 t4 t5

0.
00

0.
01

0.
02

0.
03

0.
04

t1 t2 t3 t4 t5

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

t1 t2 t3 t4 t5

810121416
t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

t1 t2 t3 t4 t5

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

t1 t2 t3 t4 t5

−0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

t1 t2 t3 t4 t5

−0
.2

−0
.10.
0

0.
1

0.
2

0.
3

0.
4

t1 t2 t3 t4 t5

−0
.4

−0
.3

−0
.2

−0
.10.
0

0.
1

0.
2

t1 t2 t3 t4 t5

−1
3.
5

−1
3.
0

−1
2.
5

−1
2.
0

−1
1.
5

−1
1.
0

−1
0.
5

−1
0.
0

t1 t2 t3 t4 t5

10111213

t1 t2 t3 t4 t5

WNT3A 0.
02

0.
04

0.
06

0.
08

0.
10

t1 t2 t3 t4 t5

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

t1 t2 t3 t4 t5

0.
04

0.
06

0.
08

0.
10

0.
12

t1 t2 t3 t4 t5

810121416
t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

t1 t2 t3 t4 t5

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

0.
10

0.
15

t1 t2 t3 t4 t5

−0
.0
05

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

t1 t2 t3 t4 t5

−0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

t1 t2 t3 t4 t5

−0
.20.
0

0.
2

0.
4

0.
6

t1 t2 t3 t4 t5

−0
.6

−0
.4

−0
.20.
0

0.
2

t1 t2 t3 t4 t5

−1
3

−1
2

−1
1

−1
0

t1 t2 t3 t4 t5

10111213

t1 t2 t3 t4 t5

Fi
g.

8
C

ol
um

n
w

is
e

-m
et

ho
ds

to
es

tim
at

e
se

ns
iti

vi
ty

in
di

ce
s.

R
ow

w
is

e
-s

en
si

tiv
ity

in
di

ci
es

fo
re

ac
h

ge
ne

.
Fo

re
ac

h
gr

ap
h,

th
e

ba
rs

re
pr

es
en

ts
en

si
tiv

ity
in

di
ce

s
co

m
pu

te
d

at
t1

(r
ed

),
t2

(b
lu

e)
,t

3
(g

re
en

),
t4

(g
ra

y)
an

d
t5

(y
el

lo
w

).
In

di
ce

s
w

er
e

co
m

pu
te

d
us

in
g

no
n

sc
al

ed
tim

e
se

rie
s

da
ta

.
TO

-t
ot

al
or

de
r;

FO
-fi

rs
to

rd
er

;S
B

L
-S

ob
ol

1–40 | 11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/035519doi: bioRxiv preprint 

https://doi.org/10.1101/035519
http://creativecommons.org/licenses/by-nc-nd/4.0/


WNT3A

HSIC-rbf
HSIC-linear

HSIC-laplace
Sobol- Sbl

Sbl-TO-martinezSbl-FO-martinez
Sbl-TO-jansen

Sbl-FO-jansen
Sbl-TO-2007

Sbl-FO-2007
Sbl-TO-2002

Sbl-FO-2002

0.01

0.02

0.03

0.04

0.05

0.06

0.07
t1t2t3t4t5

0.00

0.02

0.04

0.06

0.08

0.10

t1t2t3t4t5

0.05

0.06

0.07

0.08

0.09

0.10
t1t2t3t4t5

8 10 12 14 16
t1t2t3t4t5

0.00

0.01

0.02

0.03

0.04
t1t2t3t4t5

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

t1t2t3t4t5

0.00

0.01

0.02

0.03

0.04

t1t2t3t4t5

0.00

0.05

0.10

0.15

0.20

0.25
t1t2t3t4t5

−0.4

−0.2

0.0

0.2

t1t2t3t4t5

−0.2

0.0

0.2

0.4

t1t2t3t4t5

−13.0

−12.5

−12.0

−11.5

−11.0

−10.5

−10.0
t1t2t3t4t5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

t1t2t3t4t5

SFRP1

0.01

0.02

0.03

0.04

0.05

0.06
t1t2t3t4t5

0.00

0.01

0.02

0.03

0.04

0.05

t1t2t3t4t5

0.04

0.05

0.06

0.07

0.08

0.09

t1t2t3t4t5

8 10 12 14 16
t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020

0.025
t1t2t3t4t5

−0.1

0.0

0.1

t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020

0.025
t1t2t3t4t5

0.00

0.05

0.10

0.15

0.20

0.25

t1t2t3t4t5

−1.0

−0.5

0.0

0.5
t1t2t3t4t5

−0.5

0.0

0.5

1.0

t1t2t3t4t5

−14

−13

−12

−11

−10
t1t2t3t4t5

10 11 12 13 14
t1t2t3t4t5

DVL1

0.02

0.03

0.04

0.05

0.06

0.07
t1t2t3t4t5

0.00

0.02

0.04

0.06

t1t2t3t4t5

0.06

0.07

0.08

0.09

0.10
t1t2t3t4t5

8 10 12 14 16
t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030
t1t2t3t4t5

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20
t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020

0.025
t1t2t3t4t5

0.05

0.10

0.15

0.20

0.25

t1t2t3t4t5

−0.1

0.0

0.1

0.2

t1t2t3t4t5

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

t1t2t3t4t5

−13

−12

−11

−10

t1t2t3t4t5

10 11 12 13

t1t2t3t4t5

LRP6

0.01

0.02

0.03

0.04

t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020
t1t2t3t4t5

0.04

0.05

0.06

0.07
t1t2t3t4t5

8 10 12 14 16
t1t2t3t4t5

0.00

0.01

0.02

0.03

t1t2t3t4t5

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
t1t2t3t4t5

0.00

0.01

0.02

0.03

t1t2t3t4t5

−0.05

0.00

0.05

0.10

0.15

0.20

0.25
t1t2t3t4t5

0.05

0.10

0.15

0.20

0.25

t1t2t3t4t5

−0.25

−0.20

−0.15

−0.10

−0.05
t1t2t3t4t5

−13.0

−12.5

−12.0

−11.5

−11.0

−10.5

−10.0
t1t2t3t4t5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

t1t2t3t4t5

TCF7L1

0.01

0.02

0.03

0.04

0.05
t1t2t3t4t5

0.00

0.01

0.02

0.03

0.04

0.05
t1t2t3t4t5

0.03

0.04

0.05

0.06

0.07

0.08
t1t2t3t4t5

8 10 12 14

t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020

0.025
t1t2t3t4t5

−0.2

−0.1

0.0

0.1

t1t2t3t4t5

0.00

0.01

0.02

0.03

t1t2t3t4t5

0.00

0.05

0.10

0.15

0.20

0.25

0.30
t1t2t3t4t5

−0.5

0.0

0.5

1.0

t1t2t3t4t5

−1.0

−0.5

0.0

0.5

t1t2t3t4t5

−14

−13

−12

−11

−10
t1t2t3t4t5

10 11 12 13 14

t1t2t3t4t5

TCF7

0.01

0.02

0.03

0.04

0.05

0.06
t1t2t3t4t5

0.00

0.01

0.02

0.03

0.04

0.05
t1t2t3t4t5

0.05

0.06

0.07

0.08

0.09
t1t2t3t4t5

8 10 12 14 16
t1t2t3t4t5

0.00

0.01

0.02

0.03

t1t2t3t4t5

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
t1t2t3t4t5

0.00

0.01

0.02

0.03

0.04

0.05
t1t2t3t4t5

0.00

0.05

0.10

0.15

0.20

0.25
t1t2t3t4t5

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

t1t2t3t4t5

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4
t1t2t3t4t5

−13.0

−12.5

−12.0

−11.5

−11.0

−10.5

−10.0
t1t2t3t4t5

10.0

10.5

11.0

11.5

12.0

12.5

13.0

t1t2t3t4t5

LEF1

0.00

0.01

0.02

0.03

0.04

0.05

t1t2t3t4t5

0.00

0.01

0.02

0.03

0.04

0.05
t1t2t3t4t5

0.04

0.05

0.06

0.07

0.08

0.09
t1t2t3t4t5

8 10 12 14 16
t1t2t3t4t5

0.00

0.01

0.02

0.03

t1t2t3t4t5

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
t1t2t3t4t5

0.00

0.01

0.02

0.03

t1t2t3t4t5

0.00

0.05

0.10

0.15

0.20

t1t2t3t4t5

0.0

0.2

0.4

0.6

t1t2t3t4t5

−0.6

−0.4

−0.2

0.0

t1t2t3t4t5

−13

−12

−11

−10

t1t2t3t4t5

10 11 12 13

t1t2t3t4t5

FZD2

0.00

0.01

0.02

0.03

0.04

0.05

0.06
t1t2t3t4t5

0.00

0.01

0.02

0.03
t1t2t3t4t5

0.04

0.05

0.06

0.07

0.08
t1t2t3t4t5

8 10 12 14 16
t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020
t1t2t3t4t5

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020

0.025
t1t2t3t4t5

0.00

0.05

0.10

0.15

0.20

t1t2t3t4t5

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
t1t2t3t4t5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

t1t2t3t4t5

−13

−12

−11

−10

t1t2t3t4t5

10 11 12 13

t1t2t3t4t5

FZD1
0.02

0.04

0.06

0.08

0.10
t1t2t3t4t5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

t1t2t3t4t5

0.04

0.06

0.08

0.10

0.12
t1t2t3t4t5

8 10 12 14 16
t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020

0.025
t1t2t3t4t5

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
t1t2t3t4t5

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

t1t2t3t4t5

−0.05

0.00

0.05

0.10

0.15

0.20

0.25
t1t2t3t4t5

−0.2

0.0

0.2

0.4

0.6

t1t2t3t4t5

−0.6

−0.4

−0.2

0.0

0.2
t1t2t3t4t5

−13

−12

−11

−10

t1t2t3t4t5

10 11 12 13

t1t2t3t4t5

Fig.
9

C
olum

n
w

ise
-m

ethods
to

estim
ate

sensitivity
indices.

R
ow

w
ise

-sensitivity
indicies

foreach
gene.

Foreach
graph,the

bars
representsensitivity

indices
com

puted
at

t1
(red),t2

(blue),t3
(green),t4

(gray)and
t5

(yellow
).

Indices
w

ere
com

puted
using

non
scaled

tim
e

series
data.

TO
-totalorder;FO

-firstorder;S
B

L
-S

obol

12 | 1–40

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/035519doi: bioRxiv preprint 

https://doi.org/10.1101/035519
http://creativecommons.org/licenses/by-nc-nd/4.0/


stem cells.

PORCN showed less sensitivity in the initial stages than in fi-
nal stages indicating its importance in the contribution to Wnt
secretion which is necessary for signaling (Willert and Nusse95).
The sensitivity of GSK3β and APC decreased in time indicating
the lowering of its significance in later stages due to no forma-
tion of the degradation complex. Activity of TCF gains greater
prominence in the first and the second time frames after the ini-
tial WNT3A stimulation. This is in conjugation with the pattern
showed by CTBP2. Regarding TCF7L2, the activity is observed
to be maximum during the first time frame with decrease in the
contribution in the later time frames.

Indicies for remaining 57 genes as well as analysis of the same
will be presented in the following B part of this manuscript.
Graphs for these 57 genes have been presented in figures 29 and
30 in Appendix.

5.2 The logarithmic psychophysical law

In a recent development, Goentoro and Kirschner64 point to two
findings namely, • the robust fold changes of β-catenin and •
the transcriptional machinery of the Wnt pathway depends on
the fold changes in β-catenin instead of absolute levels of the
same and some gene transcription networks must respond to fold
changes in signals according to the Weber’s law in sensory phys-
iology. In an unpublished work by Sinha96, preliminary analy-
sis of results in Sinha19 shows that the variation in predictive
behaviour of β-catenin based transcription complex conditional
on gene evidences follows power and logarithmic psychophysi-
cal law crudely, implying deviations in output are proportional
to increasing function of deviations in input and showing con-
stancy for higher values of input. This relates to the work of Adler
et al.97 on power and logarithmic law albeit at a coarse level. A
description of these laws ensues before the analysis of the results.

Masin et al.98 states the Weber’s law as follows - Consider a
sensation magnitude γ determined by a stimulus magnitude β.
Fechner99 (vol 2, p. 9) used the symbol Δγ to denote a just no-
ticeable sensation increment, from γ to γ + Δγ, and the symbol
Δβ to denote the corresponding stimulus increment, from β to β
+ Δβ. Fechner99 (vol 1, p. 65) attributed to the German physi-
ologist Ernst Heinrich Weber the empirical finding Weber100 that
Δγ remains constant when the relative stimulus increment Δββ re-

mains constant, and named this finding Weber’s law. Fechner99

(vol 2, p. 10) underlined that Weber’s law was empirical. �
It has been found that Bernoulli’s principle (Bernoulli101) is

different from Weber’s law (Weber100) in that it refers to Δγ as
any possible increment in γ, while the Weber’s law refers only to
just noticeable increment in γ. Masin et al.98 shows that Weber’s
law is a special case of Bernoulli’s principle and can be derived
as follows - Equation 2 depicts the Bernoulli’s principle and incre-

ment in sensation represented by Δγ is proportional to change in
stimulus represented by Δβ.

γ= b× log
β

α
(2)

were b is a constant and α is a threshold. To evaluate the in-
crement, the following equation 3 and the ensuing simplification
gives -

Δγ = b× log
β+Δβ

α
−b× log

β

α

= b× log(
β+Δβ

β
) = b× log(1+

Δβ

β
) (3)

Since b is a constant, equation 3 reduces to Δγ◦ Δββ were ◦means

"is constant when there is constancy of" from Masin et al.98. The
final reduction is a formulation of Weber’s laws in wordings and
thus Bernoulli’s principles imply Weber’s law as a special case.
Using Fechner99 derivation, it is possible to show the relation
between Bernoulli’s principles and Weber’s law. Starting from the
last line of equation 3, the following steps yield the relation -

eΔγ = e
b×log(1+ Δβ

β ) =⇒ kp = e
log(1+ Δβ

β )
b

; were kp = eΔγ

kp = (1+
Δβ

β
)b; since elog() = 

b
p

kp = 1+
Δβ

β
=⇒ kq−1=

Δβ

β
; were b
p

kp = kq

kr =
Δβ

β
; the weber’s law s.t. kr =

b
p

eΔγ−1

(4)

The reduction Δγ ◦ Δββ holds true given the last line of equation
4. By observation, it is important to note that the deviation Δ in
the stimulus β plays a crucial role in the above depicted formu-
lations. In the current study, instead of computing the sensitivity
of the laws for each involved factor, the sensitivity of the devia-
tions in the fold changes of each factor is taken into account. This
is done in order to study the affect of deviations in fold changes
in time as concentrations of WNT3A changes at a constant rate.
Without loss of generality, it was observed over time that most in-
volved factors had sensitivity indices or strength of contributions,
parts or whole of whose graphs follow a convex or a concave cur-
vature. These are usually represented by either an exponentially
increasing or decreasing curve or nonlinear curves. This points to-
wards the fact that with increasing changes in stimulated concen-
tration of WNT3A the deviations in fold changes of an involved
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factor behave either in an increasing or decreasing fashion. Thus
deviations in fold changes of various involved factors does affect
the working of the signaling pathway over time. Finally, these
deviations approximately capture the difference in fold changes
recorded between two time frames and are thus a measure of
how much the involvement of a factor affects the pathway due
to these differences. This measure of involvement is depicted via
the estimated sensitivity indices. The study of deviations in fold
changes might help in deciding when a therapeutic drug could
be administered in time. Details on the contributions of each in-
volved factor are discussed below.

5.3 Analysis of deviations in fold changes

In comparison to the contributions estimated via the sensitivity in-
dices using fold changes at different times separately, this section
analyzes the contributions due to deviations in the fold changes
recorded between two time points i.e t & t+1. These analysis are
also a way to test the efficacy of deviations in fold changes versus
the absolute levels that have been stressed upon in Goentoro and
Kirschner64. As with the analysis of the fold changes at different
time points, the estimates obtained using the rbf, linear and lapla-
cian kernels in the HSIC based sensitivity analysis have been used
here. Of these, the rbf and laplacian kernels give almost similar
results. Plots of the time series expression profiles from Gujral
and MacBeath17 have been relegated to the Appendix.

� WNT3A - Figure 33 shows the profile of mRNA expression
levels of WNT3A after external stimulation. There is a series of
(+−++) deviations in the fold change recordings at different
time points. A repetitive behaviour is observed in the contribu-
tion of the deviations in fold changes for WNT3A estimated via
the sensitivity indices. For intervals in t1, t3 and t6 there is an in-
crease in the significance of the contribution of WNT3A in figure
10 (see the first two bars for <t1,t3> & <t3,t6>), even though
in the first three time frames levels of WNT3A are shown to be
down-regulated (see figure 33). This behaviour is again repeated
in figure 10 for intervals t6, t12 and t24 (see the next two bars for
<t6,t12> & <t12,t24>). In both cases one finds an increase in
the contribution of the deviation in the fold change. Comparing
the contribution of levels of fold changes in figure 8 were it was
found that there is a dip in contribution of WNT3A after t3 and
then a further increase in the contribution at a latter time frame,
one finds that the deviations in fold changes involving <t1,t3>
& <t3,t6> have higher significance than the deviations in fold
changes involving <t6,t12> & <t12,t24>. It can be noted that
even in the deregulated state from <t1, t3 and t6> the devia-
tions are minimal and the contributions are significantly high. In
case of the regulated states from <t6, t12 and t24> the devia-
tion is extremely high between the first two time frames and low
in the next two. This results in greater significant contribution in

the latter deviation than the former deviation. Thus when devia-
tions are low and the fold changes over time do not vary much,
the contributions of the involved factor to the signaling pathway
is expected to be high and vice versa. This points to the fact
that low variations in fold changes over time have a stablizing
influence of WNT3A rather than abrupt high variations in fold
changes that might not have the same influence. Thus measur-
ments of deviations in fold changes provide greater support for
studying the affect of WNT3A over time.
� CTNNB1 - Figure 34 shows the profile of mRNA expression

levels of CTNNB1 after external stimulation. There is a series
of (++−+) deviations in the fold change recordings at differ-
ent time points. An initial increase in the influence of CTNNB1
is observed from <t1,t3> to <t3,t6> (first two bars in figure
10) followed by a gradual decrease of influence from <t3,t6>
to <t6,t12> to <t12,t24> (last three bars in figure 10). This
is observed even though there is an up-regulation in levels of
CTNNB1 with a slight dip at t12 (see figure 34). In compari-
son to the contribution of levels of fold changes in figure 8 were
it was found that there is a gradual decrease in the influence of
CTNNB1 till t6 and then a further increase in the contribution at
latter time frames, one finds that the deviations in fold changes
involving <t3,t6> have the highest significance with an almost
exponential decrease in the deviations in fold changes involving
<t6,t12> & <t12,t24>. Even though in a regulated state the
influence of deviations in the fold changes indicate a different
scenario altogether in comparison to influences of fold changes
at distinct time frames. This might point to the fact that the af-
fect of CTNNB1 is maximum during <t3,t6> in comparison to
other stages even after constantly increasing external stimulation
with WNT3A at different time points. Exponential decrease in
the influence in the deviations in latter time frames points to the
ineffectiveness of CTNNB1 in the pathway at later stages. Fi-
nally, in contrast to the behaviour of influence of WNT3A in the
foregoing paragraph, CTNNB1 showed higher (lower) influence
for greater (lesser) deviations in fold changes.
� APC - Figure 35 shows the profile of mRNA expression levels

of APC after external stimulation. The profile of the deviations of
APC in a deregulated state show the following (−++−) pattern.
While the CTNNB1 expression profile shows non-monotonic in-
crease in levels of fold changes in upregulated state, APC expres-
sion profile shows a nonlinear behaviour in levels of fold changes
in down regulated state. The significance of deviation in fold
changes for APC is maximum during <t3,t6> when the down-
regulation is weakened. Further weaking of the downregulation
during <t6,t12> does not have much significance. This attenu-
ation in significance of deviations in fold change might support
the fact that APC’s weaking in downregulation amplifies shutting
down of the Wnt pathway after the intial strong downregulation
(where Wnt activity is high). This is corroborated by the find-
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ing of Gujral and MacBeath17 which observes the initial (later)
positive (negative) feedback that strenghtens (weakens) the Wnt
pathway activity. An initial increase in the influence of APC is ob-
served from <t1,t3> to <t3,t6> (first two bars in figure 10)
followed by a gradual decrease of influence from <t3,t6> to
<t6,t12> to <t12,t24> (last three bars in figure 10). This is
observed even though there is an down-regulation in levels of
APC with slight weaking at t6, t12 and t24 in comparison to
recordings at other time frames (see figure 35). In comparison to
the contribution of levels of fold changes in figure 8 where it was
found that there is a gradual decrease in the influence of APC till
t6 and then a further increase in the contribution at latter time
frames, one finds that the deviations in fold changes involving
<t3,t6> have the highest significance with an almost exponen-
tial decrease in the deviations in fold changes involving <t6,t12>
& <t12,t24>.
� MYC - Figure 36 shows the profile of mRNA expression levels

of MYC after external stimulation. The profile of the deviations in
fold changes of MYC in an up-regulated state show the following
(−+++) pattern. After an initial dip in the up-regulation at t6
there is an exponential increase in the fold changes of MYC as
time progresses. While figure 8 shows an increasing sensitivity of
MYC for the first three time frames, later up-regulated state of
MYC due to increasing WNT3A stimulations do not hold much
significance. In contrast, it is not possible to observe a pattern
in the sensitivity of deviations in fold changes for MYC except
for the fact that the maximum contribution of deviation in fold
change is observed for the period of < t6, t12 >. This is a period
when MYC’s significance in the pathway is maximum.
� GSK3B - Figure 37 shows the profile of mRNA expression lev-

els of GSK3β after external stimulation. The profile of the devia-
tions in fold changes of GSK3β in an varied regulated state show
the following (−+++) pattern. After an initial up-regulation at
t3 there is down regulation at t6 before which up-regulation fol-
lows for latter stages. It is widely known that WNT stimulation
leads to inhibition of GSK3β. In contrast to this regard GSK3β
shows a up-regulated levels at t3, t12 and t24. The author is
currently unaware of why this contasting behaviour is exhibited.
Later upregulation might point to the fact that the effectiveness
of Wnt stimulation has decreased and GSK3β plays the role of
stabilizing and controlling the behaviour of the pathway by work-
ing against the Wnt stimulation and preventing further degrada-
tion. While work by Gujral and MacBeath17 does not shed light
on this aspect, contrasting models of inhibitions for GSK3 has
been recently proposed in Metcalfe and Bienz102 which might
support this behaviour. Figure 8 shows an decreasing sensitivity
of GSK3β for the first two time frames, after which there is an
increasing sensitivity for the next three time frames. Comparing
this with plots in figure 10 it is found that there is greater signifi-
cance of deviations in fold changes of GSK3β during later stages

of <t6,t12> and <t12,t24>.
� PORCN - Figure 38 shows the profile of mRNA expression

levels of PORCN after external stimulation. The profile of the
deviations in fold changes of PORCN in an up regulated state
show the following (+−−−) pattern. After an initial hike in
up-regulation at t3 there is continuous decrease in the up reg-
ulation. PORCN is known to help in the secretion of the Wnt
ligands that later on help in the instigation of the signaling ac-
tivity. Sustanined stimulation by WNT3A over a period of time
might lead to decrease in the up regulation of PORCN which
helps in Wnt secretion. Graph for PORCN in figure 8 shows in-
creasing significance of the influence of PORCN as time passes,
even though there is lower regulation of the same at later stages
(fig 38). The highly significant influence of lower regulation at
later stages indicates the lessened effectiveness of PORCN due
to sustained WNT3A stimulation that might have suppressed the
functionality of secretion carried out via PORCN. Contrary to
this, the influences of the deviations in the fold changes over time
show the reverse behaviour. The maximum influence is during
the first two time frames of <t1,t3> and this influence of devi-
ations decreases at later stages. This points to the fact that the
deviations in the fold changes at intial stage has greater signifi-
cance in the pathway than the deviations at later stages. It follows
that in initial stages of Wnt stimulation the expression of PORCN
has significant influence.
� CTBP2 - Figure 39 shows the profile of mRNA expression lev-

els of CTBP2 after external stimulation. The profile of the devi-
ations in fold changes of CTBP2 in an up regulated state show
the following (−++−) pattern. It is known that CTBP2 shows
co-repressive nature and the pattern of sensitivity indicates this
heigthened effect at <t3, t6> and <t12, t24>. In contrast to
this in figure 8 one finds that the significance of upregulation
at t12 and t24 is minimal and yet the sensitivity for the devia-
tions in fold changes for this period is second to <t3, t6>. The
probable explanation for this might be that for higher upregula-
tion (in terms of numeric representations), even small deviations
might play a sigificant role while the sensitivity at individual time
frames remains low.
� CTBP1 - Figure 40 shows the profile of mRNA expression lev-

els of CTBP1 after external stimulation. The profile of the devi-
ations in fold changes of CTBP1 in an up regulated state show
the following (+++−) pattern. As with the heightened sensi-
tivity at time frame t1 the sensitivity of deviations in the fold
changes exhibits heightened effect in the pathway at <t1, t3>.
Further analysis might not be possible as one finds lowered sensi-
tivity even at heightened up regulation for individual recordings
as well as deviations.
� SFRP4 - Figure 41 shows the profile of mRNA expression lev-

els of SFRP4 after external stimulation. The profile of the devi-
ations in fold changes of SFRP4 in an down regulated (except
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in the last time frame) state show the following (−+++) pat-
tern. Known to be a negative regulator of the Wnt pathway, it was
found that its sensitivity in extremely high as it is down regulated
during the stimulation. This is depicted in the figures plotted in
8. This heightened sensitivity during most of the down regulation
points towards the significant role of hypermethylation that leads
to silencing of this gene. Contrary to this, there is a monotonically
increasing sensitivity for deviations in the fold changes during
down regulation from t1 to t12. A dip in the sensitivity of the de-
viation for the final time frame <t12, t24> happens when the up
regulation is recorded in the last time frame. Based on the max-
imum sensitivity for deviation in fold change during <t6, t12>,
up regulation of SFRP4 in this period is expected to have great-
est reverse effect on the activation of the Wnt pathway. It appears
that the hypermethylation that causes the silencing of the SFRP4
is maximal during this stage and thus a potential period for the
pathway to be inhibited via reversal of silencing (Suzuki et al.89).
� SFRP1 - Figure 42 shows the profile of mRNA expression lev-

els of SFRP1 after external stimulation. The profile of the de-
viations in fold changes of SFRP4 in an up regulated (except in
during the second time frame) state show the following (−+−−)
pattern. It is widely known that SFRP1 is a Wnt antagonist and
is known for inactivation in the canconical Wnt pathway due to
hypermethylation thus leading to upregulation of the pathway
(Caldwell et al.90). Suzuki et al.89 further indicates that SFRP1
is thought to silence ligand-dependent Wnt signaling by binding
of the cysteine rich-domain (CRD) to Wnt proteins, thus prevent-
ing interaction with FRZ receptors. Recent in silico results by
Kim and Kim103 confirm hypermethylation of SFRP1 in colorec-
tal cancers. Given the above profile, it is possible to see that there
is a down regulation at t3 but the significance of its influence on
the pathway is not much as revealed in figure 9. Figure 9 shows
a decreasing significance in the influence of the SFRP1 with the
maximum influence in the last stage of the WNT3A stimulation,
where there is an up regulation. In similar way, in figure 11 there
is significance of the sensitivity in the deviations in fold changes
during the up regulation of SFRP1 during the <t6, t12> and
<t12, t24>. The activation at later stages show that SFRP1 has a
greater antagonistic effect on the Wnt pathway. In comparison to
up regulation, one finds the down regulation at t3 does not play
a significant role. These are in line with Gujral and MacBeath17’s
claim regarding reversal of behaviour at different time stages.
� DVL1 - Figure 43 shows the profile of mRNA expression lev-

els of DVL1 after external stimulation. The profile of the devi-
ations in fold changes of DVL1 in an up regulated state show
the following (−++−) pattern. DVL1 is an adaptor protein
that helps in signal transmission that leads to stabilization of cy-
tosolic β-ctenn for further processing. Huang et al.87 report
high expression of DVL1 in Taiwanese colorectal cancer patients
with liver metastasis and it has also been observed as a poten-

tial biomarker in CRC (Wu et al.104). In figure 9 the time frame
t12 at which DVL1 shows maximum up regulation is the most
insignificant one due to the lowest sensitivity while moderate up-
regulation during t3 and t6 show high sensitivity. The same is
true for upregulation at t24. Comparing this with the deviations
in the fold changes in 11, one finds that there is maximum sensi-
tivity during the period of <t3, t6> preceeded by a lower sensi-
tivity index for the perioud of <t1, t3>. At other intervals there
was a decreased sensitivity even though the deviations in the fold
changes were very high. This indicates that the high deviations
might not influence the signaling activity significantly. Also the
best period of intervention is at <t3, t6>.
� LRP6 - Figure 44 shows the profile of mRNA expression levels

of Lrp6 after external stimulation. The profile of the deviations
in fold changes of Lrp6 in an up regulated state (except at t3)
show the following (−++−) pattern. In an extensive work on
the molecular differences of LRPs MacDonald et al.105 investi-
gate and show that LRP5/6 along with the frizzled family mem-
bers form a Wnt inducible co-receptor complex that helps in sig-
nal transmission after LRP phosphorylation. Earlier wet lab work
by Liu et al.106 and in silico findings by Watanabe et al.107 have
shown highly expressed participation of LRP5/6 in Wnt signal-
ing pathway. Latest work by Lemieux et al.108 shows that KRAS
signaling promotes canonical Wnt activity via LRP6. In figure
9, LRP6 shows significant influences during the t1, t6 and t12.
The only period in which it is down regulated during t3 has little
significance in comparison to the significance of the up regulated
states. It is not known why LRP6 shows down regulation at this
stage. Finally, for unkown reasons, the influence of LRP6 during
t12 was found to be the lowest. It was not possible to read into
the sensitivity of LRP6 for deviations in fold changes the HSIC
based indices. The laplace kernel shows a pattern of increasing
sensitivity with the heightest during <t6, t12>. But this is not so
in the other two formulations. Thus wet lab experiments might
aid in confirming these results and shedding more light on the
duration during which a drug could be administered.
� TCF7L16 - Figure 45 shows the profile of mRNA expres-

sion levels of TCF7L1 (also known as TCF3) after external
stimulation. The profile of the deviations in fold changes of
TCF7L1 in a down regulated state (except at t3) show the fol-
lowing (+−+−) pattern. It is known that Wnt stimulation
promotes the phosphorylation of repressor-acting TCF7L1 by
homeodomain-interacting protein kinase (HIPK2), which results
in its dissociation from the WRE (Hikasa and Sokol109). Gu-
jral and MacBeath17’s results also indicate the same repression
of TCF7L1 during WNT3A simulation as shown in figure 45.
But in contradiction to this recent findings of Leushacke et al.110,
TCF7L1 is found to be expressed in the colon crypt and in colon
cancer. Their results indicate that TCF7L1 may have an as yet
unidentified role in transmission of tumor-related β-ctenn sig-
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nals. Evidence of this up regulation is found at t3 time period as
shown in figure 45. From figure 9 it can be seen that the sensivi-
tiy of TCF7L1 is maximum during the first time period. Later on
the sensitivity subsides as time passes untill the sensitivity shots
up in the last time frame t24. In comparison to this with respect
to the deviations in fold changes over time in figure 11, <t1, t3>
showed the maximum period of influence. Later on there is a drop
in the sensitivity which is followed by an approximately mono-
tonic increase. It is the first transition from down regulation to
up regulation <t1, t3> that might be the time for intervention.
Also the last stage might be of some value but during down regu-
lation only.
� TCF7 - Figure 46 shows the profile of mRNA expression levels

of TCF7 after external stimulation. The profile of the deviations
in fold changes of TCF7 in an up regulated state show the fol-
lowing (−−++) pattern. TCF7 is found to be regulated upon
Wnt stimulation as it binds with LEFs to activate the transcription
procedure after interacting with β-ctenn Cadigan and Water-
man111. In figure 9, the sensitivity of the activation of TCF7
decreases monotonically as time progresses. But this behaviour is
not the same for deviations in the fold changes. The maximum
influence is found for the duration of <t6, t12>. The next best
consistent influence is in the duration <t12, t24>. These are the
two time periods when the influence of the deviations in the fold
changes is maximum and thus susceptible to therapeutic interfer-
ence.
� LEF1 - Figure 47 shows the profile of mRNA expression levels

of LEF1 after external stimulation. The profile of the deviations
in fold changes of LEF1 in an up regulated state (except at t3)
show the following (−−++) pattern. Generally, LEF1 is found
to be up regulated upon Wnt stimulation when it works in tandem
with TCF7 Cadigan and Waterman111. Yet, in figure 9, the sen-
sitivity of the activation of LEF1 is not similar to that of TCF7.
In contradiction to what is observed, one finds a down regulation
during the time period t3. More importantly this is the period
in which the most significant influence of down regulated LEF1
is observed. The Initial down regulation at this subinterval in-
dicates that LEF1 is not facilitating the Wnt pathway positiviely.
Conclusive results cannot be stated regarding the deviations in
fold changes from figure 11.
� FZD2 - Figure 48 shows the profile of mRNA expression levels

of FZD2 after external stimulation. The profile of the deviations
in fold changes of FZD2 in an up regulated state (except at t3
and t6) show the following (−−++) pattern. The FZD or the
frizzled family of 7-transmember protein (Ueno et al.74) works in
tandem with LRP-5/6 as binding parameters for the Wnt ligands
to initiate the Wnt signaling. In comparison to the repetitive be-
havior shown in figure 9 it is not possible to draw conclusions on
the deviations in fold changes.
� FZD1 - Figure 49 shows the profile of mRNA expression levels

of FZD1 after external stimulation. The profile of the deviations
in fold changes of FZD1 in an down regulated state (except at
t3) show the following (+−−+) pattern. Consistent with the
findings of Holcombe et al.75 and Planutis et al.76, FZD1 was
found to be expressed at t3. In the rest of the time periods, it
was down regulated. But the significance of the influence shows
a different pattern in figure 9 with the down regulation at t12
being the most influencial. In contrast to this, while observing
the deviations in the fold changes, it was found that the first two
durations <t1, t3> and <t3, t6> showed consistent decreasing
behaviour in terms of influence. It is during the first period that
the deviations in fold changes are significant and thus it is possi-
ble to intervene therapeutically during the activation stage.

Indicies for remaining 57 genes as well as analysis of the same
will be presented in the following B part of this manuscript.
Graphs for these 57 genes have been presented in figures 31 and
32 in the Appendix.

6 Conclusion
COMPUTATIONAL SIGNIFICANCE

Local and global sensitivity analysis on static and time series mea-
surements in Wnt signaling pathway for colorectal cancer is done.
Density based Hilbert-Schmidt Information Criterion indices out-
performed the variance based Sobol indices. This is attributed to
the employment of distance measures & the kernel trick via Re-
producing kernel Hilbert space (RKHS) that captures nonlinear
relations among various intra/extracellular factors of the path-
way in a higher dimensional space. The gained advantage is con-
firmed on the inferred results obtained via a Bayesian network
model based on prior biological knowledge and static gene ex-
pression data. In time series data, using these indices it is now
possible to observe when and in which period of time and to what
degree a factor gets influenced & contributes to the pathway, as
changes in concentration of the another factor is made. This fa-
cilitates in time based administration of target therapeutic drugs
& reveal hidden biological information within colorectal cancer
samples.

DEVIATIONS IN FORMULATION OF PSYCHOPHYSICAL LAW

In context of Goentoro and Kirschner64’s work regarding the re-
cent development of observation of Weber’s law working down-
stream of the pathway, it has been found that the law is governed
by the ratio of the deviation in the input and the absolute input
value. More importantly, it is these deviations in input that are of
significance in studing any phemomena. The current manuscript
explores the sensitivity of deviation in the fold changes between
measurements of fold changes at consecutive time points to ex-
plore in what duration of time i.e < t, t+1 >, a particular factor
is affecting the pathway in a major way. This has deeper implica-
tions in the fact that one is now able to observe when in time an
intervention can be made or a gene be perturbed to study the be-
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haviour of the pathway in tumorous cases. Thus sensitivity analy-
sis of deviations in mathematical formulations of the psychophys-
ical law can lead to insights into the time period based influence
of the involved factors in the pathway. This will also shed light
on the duration in which the psychophysical laws might be most
prevalent.

SPECIFIC EXAMPLES OF BIOLOGICAL INTERPRETATIONS

GSK3β - It is widely known that WNT stimulation leads to in-
hibition of GSK3β. In contrast to this regard GSK3β shows a
up-regulated levels at t3, t12 and t24. The author is currently
unaware of why this contasting behaviour is exhibited. Later up-
regulation might point to the fact that the effectiveness of Wnt
stimulation has decreased and GSK3β plays the role of stabi-
lizing and controlling the behaviour of the pathway by working
against the Wnt stimulation and preventing further degradation.
While work by Gujral and MacBeath17 does not shed light on this
aspect, contrasting models of inhibitions for GSK3 has been re-
cently proposed in Metcalfe and Bienz102 which might support
this behaviour. Considering analysis of fold changes at different
time points, decreasing sensitivity of GSK3β was observed for
the first two time frames, after which there is an increasing sen-
sitivity for the next three time frames. Comparing this with plots
of analysis of deviations in fold changes, it is observed that there
is greater significance of deviations in fold changes of GSK3β
during later stages of < t6, t12 > and < t12, t24 >. It is in these
periods that one might be able to pertube and study significant
affects on the pathway.

PORCN - PORCN is known to help in the secretion of the Wnt
ligands that later on help in the instigation of the signaling ac-
tivity. Sustanined stimulation by WNT3A over a period of time
might lead to decrease in the up regulation of PORCN which
helps in Wnt secretion. Graph for PORCN in analysis of fold
changes shows increasing significance of the influence of PORCN
as time passes, even though there is lower regulation of the same
at later stages. The highly significant influence of lower regula-
tion at later stages indicates the lessened effectiveness of PORCN
due to sustained WNT3A stimulation that might have suppressed
the functionality of secretion carried out via PORCN. Contrary
to this, the influences of the deviations in the fold changes over
time show the reverse behaviour. The maximum influence is dur-
ing the first two time frames of < t1,t3 > and this influence of
deviations decreases at later stages. This points to the fact that
the deviations in the fold changes at intial stage has greater sig-
nificance in the pathway than the deviations at later stages. It
follows that in initial stages of Wnt stimulation the expression of
PORCN has significant influence.
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Appendix
Sensitivity indices

Variance based indices

The variance based indices as proposed by Sobol’21 prove a the-
orem that an integrable function can be decomposed into sum-
mands of different dimensions. Also, a Monte Carlo algorithm
is used to estimate the sensitivity of a function apropos arbitrary
group of variables. It is assumed that a model denoted by function
= ƒ (), = (1,2, ...,n), is defined in a unit n-dimensional
cube Kn with  as the scalar output. The requirement of the
problem is to find the sensitivity of function ƒ () with respect
to different variables. If ∗ = ƒ (∗) is the required solution,
then the sensitivity of ∗ apropos k is estimated via the partial
derivative (∂/∂k)=∗ . This approach is the local sensitivity.
In global sensitivity, the input  = ∗ is not specified. This im-
plies that the model ƒ () lies inside the cube and the sensitivity
indices are regarded as tools for studying the model instead of the
solution. Detailed technical aspects with examples can be found
in Homma and Saltelli33 and Sobol65.

Let a group of indices 1, 2, ..., s exist, where 1 ≤ 1 < ... <
s ≤ n and 1≤ s≤ n. Then the notation for sum over all different
groups of indices is -

bT1,2,...,s = 
n
=1T+

n
s=11≤<j≤nT,j+ ...+T1,2,...,n (5)

Then the representation of ƒ () using equation 5 in the form -

ƒ () = ƒ0+ bƒ1,2,...,s (6)

= ƒ0+ƒ()+<jƒ,j(,j)+ ...

+ ƒ1,2,...,n(1,2, ...,n) (7)

is called ANOVA-decomposition from Archer et al.46 or expansion
into summands of different dimensions, if ƒ0 is a constant and
integrals of the summands ƒ1,2,...,s with respect to their own
variables are zero, i.e,

ƒ0 =
∫

Kn

ƒ ()d (8)

∫ 1

0
ƒ1,2,...,s (1 ,2 , ...,s )dk = 0,1≤ k ≤ s (9)

It follows from equation 7 that all summands on the right hand
side are orthogonal, i.e if at least one of the indices in 1, 2, ..., s
and j1, j2, ..., j is not repeated i.e

∫ 1

0
ƒ1,2,...,s (1 ,2 , ...,s )ƒj1,j2,...,j (j1 ,j2 , ...,js )d= 0

(10)
Sobol’21 proves a theorem stating that there is an existence of a

unique expansion of equation 7 for any ƒ () integrable in Kn. In
brief, this implies that for each of the indices as well as a group of
indices, integrating equation 7 yields the following -

∫ 1

0
...

∫ 1

0
ƒ ()d/d = ƒ0+ ƒ() (11)

∫ 1

0
...

∫ 1

0
ƒ ()d/ddj = ƒ0+ ƒ()+ ƒj(j)+ ƒ,j(,j)(12)

were, d/d is
∏

∀k∈{1,..,n}; /∈k dk and d/ddj is
∏

∀k∈{1,..,n};,j /∈k dk . For higher orders of grouped indices,
similar computations follow. The computation of any sum-
mand ƒ1,2,...,s (1 ,2 , ...,s ) is reduced to an integral in the
cube Kn. The last summand ƒ1,2,...,n(1,2, ...,n) is ƒ ()−
ƒ0 from equation 7. Homma and Saltelli33 stresses that use
of Sobol sensitivity indices does not require evaluation of any
ƒ1,2,...,s (1 ,2 , ...,s ) nor the knowledge of the form of ƒ ()
which might well be represented by a computational model i.e a
function whose value is only obtained as the output of a computer
program.

Finally, assuming that ƒ () is square integrable, i.e ƒ () ∈ L2,
then all of ƒ1,2,...,s (1 ,2 , ...,s ) ∈ L2. Then the following
constants

∫

Kn

ƒ2()d− ƒ2
0
= D (13)

∫ 1

0
...

∫ 1

0
ƒ2
1,2,...,s

(1 ,2 , ...,s )d1d2 ...ds = D1,2,...,s(14)

are termed as variances. Squaring equation 7, integrating over
Kn and using the orthogonality property in equation 10, D eval-
uates to -

D= bD1,2,...,s (15)

Then the global sensitivity estimates is defined as -

S1,2,...,s =
D1,2,...,s

D
(16)

It follows from equations 15 and 16 that

bS1,2,...,s = 1 (17)

Clearly, all sensitivity indices are non-negative, i.e an index
S1,2,...,s = 0 if and only if ƒ1,2,...,s ≡ 0. The true poten-
tial of Sobol indices is observed when variables 1,2, ...,n
are divided into m different groups with y1,y2, ...,ym such that
m<n. Then ƒ ()≡ ƒ (y1,y2, ...,ym). All properties remain the
same for the computation of sensitivity indices with the fact that
integration with respect to yk means integration with respect to
all the  ’s in yk . Details of these computations with examples can

1–40 | 23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/035519doi: bioRxiv preprint 

https://doi.org/10.1101/035519
http://creativecommons.org/licenses/by-nc-nd/4.0/


be found in Sobol65. Variations and improvements over Sobol in-
dices have already been stated in section 2.1.

Density based indices

As discussed before, the issue with variance based methods is
the high computational cost incurred due to the number of in-
teractions among the variables. This further requires the use of
screening methods to filter out redundant or unwanted factors
that might not have significant impact on the output. Recent
work by Da Veiga56 proposes a new class of sensitivity indicies
which are a special case of density based indicies Borgonovo53.
These indicies can handle multivariate variables easily and relies
on density ratio estimation. Key points from Da Veiga56 are men-
tioned below.

Considering the similar notation in previous section, ƒ :Rn→
R (= ƒ ()) is assumed to be continuous. It is also assumed that
Xk has a known distribution and are independent. Baucells and
Borgonovo66 state that a function which measures the similarity
between the distribution of U and that of U|Xk can define the
impact of Xk on U. Thus the impact is defined as -

SXk = E(d(U,U|Xk)) (18)

were d(·, ·) is a dissimilarity measure between two random vari-
ables. Here d can take various forms as long as it satisfies the
criteria of a dissimilarity measure. Csiszár et al.59’s f-divergence
between U and U|Xk when all input random variables are consid-
ered to be absolutely continuous with respect to Lebesgue mea-
sure on R is formulated as -

dF(U||U|Xk) =
∫

R
F(

pU()

pU|Xk ()
)pU|Xk ()d (19)

were F is a convex function such that F(1) = 0 and pU and
pU|Xk are the probability distribution functions of U and U|Xk .
Standard choices of F include Kullback-Leibler divergence F(t) =
− loge(t), Hellinger distance (

p
t−1)2, Total variation distance

F(t) = |t−1|, Pearson χ2 divergence F(t) = t2−1 and Neyman
χ2 divergence F(t) = (1− t2)/ t. Substituting equation 19 in

equation 18, gives the following sensitivity index -

SF
Xk

=
∫

R
dF(U||U|Xk)pXk ()d

=
∫

R

∫

R
F(

pU()

pU|Xk ()
)pU|Xk ()pXk ()dd

=
∫

R2

F(
pU()pXk ()

pU|Xk ()pXk ()
)pU|Xk ()pXk ()dd

=
∫

R2

F(
pU()pXk ()

pXk ,U(,)
)pXk ,U(,)dd (20)

were pXk and pXk ,Y are the probability distribution functions of
Xk and (Xk ,U), respectively. Csiszár et al.59 f-divergences im-
ply that these indices are positive and equate to 0 when U and
Xk are independent. Also, given the formulation of SF

Xk
, it is in-

variant under any smooth and uniquely invertible transformation
of the variables Xk and U (Kraskov et al.67). This has an ad-
vantage over Sobol sensitivity indices which are invariant under
linear transformations.

By substituting the different formulations of F in equation 20,
Da Veiga56’s work claims to be the first in establishing the link
that previously proposed sensitivity indices are actually special
cases of more general indices defined through Csiszár et al.59’s
f-divergence. Then equation 20 changes to estimation of ratio
between the joint density of (Xk ,U) and the marginals, i.e -

SF
Xk
=
∫

R2

F(
1

r(,)
)pXk ,U(,)dd= E(Xk ,U)F(

1

r(Xk ,U)
)

(21)
were, r(,y) = (pXk ,U(,))/(pU()pXk ()). Multivariate ex-
tensions of the same are also possible under the same formula-
tion.

Finally, given two random vectors X ∈Rp and Y ∈Rq, the de-
pendence measure quantifies the dependence between X and Y
with the property that the measure equates to 0 if and only if
X and Y are independent. These measures carry deep links (Se-
jdinovic et al.68) with distances between embeddings of distribu-
tions to reproducing kernel Hilbert spaces (RHKS) and here the
related Hilbert-Schmidt independence criterion (HSIC by Gretton
et al.58) is explained.

In a very brief manner from an extremely simple introduction
by Daumé III69 - ”We first defined a field, which is a space that
supports the usual operations of addition, subtraction, multipli-
cation and division. We imposed an ordering on the field and
described what it means for a field to be complete. We then de-
fined vector spaces over fields, which are spaces that interact in
a friendly way with their associated fields. We defined complete
vector spaces and extended them to Banach spaces by adding a
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norm. Banach spaces were then extended to Hilbert spaces with
the addition of a dot product.” Mathematically, a Hilbert space
H with elements r,s ∈H has dot product 〈r,s〉H and r ·s. When
H is a vector space over a field F , then the dot product is an el-
ement in F . The product 〈r,s〉H follows the below mentioned
properties when r,s, t ∈H and for all  ∈F -

• Associative : (r) ·s = (r ·s)

• Commutative : r ·s = s · r

• Distributive : r · (s+ t) = r ·s+ r · t

Given a complete vector space V with a dot product 〈·, ·〉, the
norm on V defined by ||r||V =

p

(〈r, r〉) makes this space into a
Banach space and therefore into a full Hilbert space.

A reproducing kernel Hilbert space (RKHS) builds on a Hilbert
space H and requires all Dirac evaluation functionals in H are
bounded and continuous (on implies the other). Assuming H
is the L2 space of functions from X to R for some measurable
X. For an element  ∈ X, a Dirac evaluation functional at x is a
functional δ ∈H such that δ(g) = g(). For the case of real
numbers,  is a vector and g a function which maps from this
vector space to R. Then δ is simply a function which maps g to
the value g has at . Thus, δ is a function from (Rn 7→R) into
R.

The requirement of Dirac evaluation functions basically means
(via the Riesz70 representation theorem) if ϕ is a bounded linear
functional (conditions satisfied by the Dirac evaluation function-
als) on a Hilbert space H, then there is a unique vector ℓ in H such
that ϕg= 〈g,ℓ〉H for all ℓ∈H. Translating this theorem back into
Dirac evaluation functionals, for each δ there is a unique vector
k in H such that δg = g() = 〈g,k〉H. The reproducing ker-
nel K for H is then defined as : K(,′)= 〈k,k′ 〉, were k and
k′ are unique representatives of δ and δ′ . The main property
of interest is 〈g,K(,′)〉H = g(′). Furthermore, k is defined
to be a function y 7→ K(,y) and thus the reproducibility is given
by 〈K(, ·),K(y, ·)〉H = K(,y).

Basically, the distance measures between two vectors represent
the degree of closeness among them. This degree of closeness is
computed on the basis of the discriminative patterns inherent in
the vectors. Since these patterns are used implicitly in the dis-
tance metric, a question that arises is, how to use these distance
metric for decoding purposes?

The kernel formulation as proposed by Aizerman et al.60, is
a solution to our problem mentioned above. For simplicity, we
consider the labels of examples as binary in nature. Let x ∈Rn,
be the set of n feature values with corresponding category of the
example label (y) in data set D. Then the data points can be
mapped to a higher dimensional space H by the transformation
ϕ:

ϕ : x ∈Rn 7→ ϕ(x) ∈H (22)

This H is the Hilbert Space which is a strict inner product space,
along with the property of completeness as well as separability.
The inner product formulation of a space helps in discriminat-
ing the location of a data point w.r.t a separating hyperplane in
H. This is achieved by the evaluation of the inner product be-
tween the normal vector representing the hyperplane along with
the vectorial representation of a data point in H (Figure 12 rep-
resents the geometrical interpretation). Thus, the idea behind
equation( 22) is that even if the data points are nonlinearly clus-
tered in space Rn, the transformation spreads the data points into
H, such that they can be linearly separated in its range in H.

Often, the evaluation of dot product in higher dimensional
spaces is computationally expensive. To avoid incurring this cost,
the concept of kernels in employed. The trick is to formulate ker-
nel functions that depend on a pair of data points in the space
Rn, under the assumption that its evaluation is equivalent to a
dot product in the higher dimensional space. This is given as:

κ(x,xj) =<ϕ(x),ϕ(xj)> (23)

Two advantages become immediately apparent. First, the eval-
uation of such kernel functions in lower dimensional space is
computationally less expensive than evaluating the dot product
in higher dimensional space. Secondly, it relieves the burden of
searching an appropriate transformation that may map the data
points in Rn to H. Instead, all computations regarding discrimi-
nation of location of data points in higher dimensional space in-
volves evaluation of the kernel functions in lower dimension. The
matrix containing these kernel evaluations is referred to as the
kernel matrix. With a cell in the kernel matrix containing a ker-
nel evaluation between a pair of data points, the kernel matrix is
square in nature.

As an example in practical applications, once the kernel has
been computed, a pattern analysis algorithm uses the kernel func-
tion to evaluate and predict the nature of the new example using
the general formula:

ƒ (z) = <w,ϕ(z)>+b

= <
N
∑

=1

α×y×ϕ(x),ϕ(z)>+b

=
N
∑

=1

α×y×<ϕ(x),ϕ(z)>+b

=
N
∑

=1

α×y×κ(x,z)+b

(24)

1–40 | 25

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2016. ; https://doi.org/10.1101/035519doi: bioRxiv preprint 

https://doi.org/10.1101/035519
http://creativecommons.org/licenses/by-nc-nd/4.0/


where w defines the hyperplane as some linear combination of
training basis vectors, z is the test data point, y the class label
for training point x, α and b are the constants. Various trans-
formations to the kernel function can be employed, based on the
properties a kernel must satisfy. Interested readers are referred
to Taylor and Cristianini71 for description of these properties in
detail.

The Hilbert-Schmidt independence criterion (HSIC) proposed
by Gretton et al.58 is based on kernel approach for finding depen-
dences and on cross-covariance operators in RKHS. Let X ∈ X
have a distribution PX and consider a RKHS A of functions
X → R with kernel kX and dot product 〈·, ·〉A. Similarly, Let
U ∈ Y have a distribution PY and consider a RKHS B of func-
tions U →R with kernel kB and dot product 〈·, ·〉B. Then the
cross-covariance operator CX,U associated with the joint distribu-
tion PXU of (X,U) is the linear operator B→A defined for every
 ∈A and b ∈ B as -

〈,CXUb〉A = EXU[(X),b(U)]−EX(X)EUb(U) (25)

The cross-covariance operator generalizes the covariance ma-
trix by representing higher order correlations between X and U
through nonlinear kernels. For every linear operator C : B→A
and provided the sum converges, the Hilbert-Schmidt norm of C
is given by -

||C||2
HS
= k,〈k ,Cb〉A (26)

were k and b are orthonormal bases of A and B, respectively.
The HSIC criterion is then defined as the Hilbert-Schmidt norm
of cross-covariance operator -

HSC(X,U)A,B =











||CXU||2HS =
EX,X′,U,U′kX (X,X′)kU (U,U′)+
EX,X′kX (X,X′)EU,U′kU (U,U′)−
2EX,Y[EX′kX (X,X′)EU′kU (U,U′)]

(27)

were the equality in terms of kernels is proved in Gretton et al.58.
Finally, assuming (X,U) (= 1,2, ...,n) is a sample of the ran-
dom vector (X,U) and KX and KU denote the Gram matrices with
entries KX (, j) = kX (X,Xj) and KU (, j) = kU (U,Uj). Gretton
et al.58 proposes the following estimator for HSCn(X,U)A,B -

HSCn(X,U)A,B =
1

n2
Tr(KXHKUH) (28)

were H is the centering matrix such that H(, j) = δ,j− 1
n . Then

HSCn(X,U)A,B can be expressed as -

HSC(X,U)A,B =







1
n2
n,j=1kX (X,Xj)kU (U,Uj)

+ 1
n2
n,j=1kX (X,Xj)

1
n2
n,j=1kU (U,Uj)

− 2n
n
=1[

1
n

n
j=1kX (X,Xj)

1
n

n
j=1kU (U,Uj)]

(29)

 

Fig. 12 A geometrical interpretation of mapping nonlinearly separable
data into higher dimensional space where it is assumed to be linearly
separable, subject to the holding of dot product.

Finally, Da Veiga56 proposes the sensitivity index based on dis-
tance correlation as -

S
HSCA,B
Xk

= R(Xk ,U)A,B (30)

were the kernel based distance correlation is given by -

R2(X,U)A,B =
HSC(X,U)A,B

p

(HSC(X,X)A,AHSC(U,U)B,B)
(31)

were kernels inducing A and B are to be chosen within a universal
class of kernels. Similar multivariate formulation for equation 28
are possible.
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Choice of sensitivity indices
The SENSITIVITY PACKAGE (Faivre et al.72 and Iooss and
Lemaître22) in R langauge provides a range of functions to com-
pute the indices and the following indices will be taken into ac-
count for addressing the posed questions in this manuscript.

1. sensiFdiv - conducts a density-based sensitivity analysis
where the impact of an input variable is defined in terms
of dissimilarity between the original output density function
and the output density function when the input variable is
fixed. The dissimilarity between density functions is mea-
sured with Csiszar f-divergences. Estimation is performed
through kernel density estimation and the function kde of
the package ks. (Borgonovo53, Da Veiga56)

2. sensiHSIC - conducts a sensitivity analysis where the im-
pact of an input variable is defined in terms of the distance
between the input/output joint probability distribution and
the product of their marginals when they are embedded in
a Reproducing Kernel Hilbert Space (RKHS). This distance
corresponds to HSIC proposed by Gretton et al.58 and serves
as a dependence measure between random variables.

3. soboljansen - implements the Monte Carlo estimation of the
Sobol indices for both first-order and total indices at the
same time (all together 2p indices), at a total cost of (p+2)
× n model evaluations. These are called the Jansen estima-
tors. (Jansen48 and Saltelli et al.41)

4. sobol2002 - implements the Monte Carlo estimation of the
Sobol indices for both first-order and total indices at the
same time (all together 2p indices), at a total cost of (p+2)
×n model evaluations. These are called the Saltelli esti-
mators. This estimator suffers from a conditioning problem
when estimating the variances behind the indices computa-
tions. This can seriously affect the Sobol indices estimates
in case of largely non-centered output. To avoid this ef-
fect, you have to center the model output before applying
"sobol2002". Functions ”soboljansen" and "sobolmartinez"
do not suffer from this problem. (Saltelli35)

5. sobol2007 - implements the Monte Carlo estimation of the
Sobol indices for both first-order and total indices at the
same time (all together 2p indices), at a total cost of (p+2)
× n model evaluations. These are called the Mauntz estima-
tors. (Saltelli et al.41)

6. sobolmartinez - implements the Monte Carlo estimation of
the Sobol indices for both first-order and total indices using
correlation coefficients-based formulas, at a total cost of (p
+ 2) × n model evaluations. These are called the Martinez
estimators.

7. sobol - implements the Monte Carlo estimation of the Sobol
sensitivity indices. Allows the estimation of the indices of
the variance decomposition up to a given order, at a total
cost of (N + 1) × n where N is the number of indices to
estimate. (Sobol’21)
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Fig. 13 sensiFdiv indices using Total Variation distance. Red - indices
for normal. Blue - indices for tumor.
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Fig. 14 sensiFdiv indices for Kullback-Leibler divergence. Red - indices
for normal. Blue - indices for tumor.
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Fig. 15 sensiFdiv indices for Hellinger distance. Red - indices for
normal. Blue - indices for tumor.
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Fig. 16 sensiFdiv indices for Pearson χ2 distance. Red - indices for
normal. Blue - indices for tumor.
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Fig. 17 sensiHSIC indices for linear kernel. Red - indices for normal.
Blue - indices for tumor.
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Fig. 18 sensiHSIC indices for laplace kernel. Red - indices for normal.
Blue - indices for tumor.
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Fig. 19 sensiHSIC indices for rbf kernel. Red - indices for normal. Blue
- indices for tumor.
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Fig. 20 Sobol 2002 first order indices. Red - indices for normal. Blue -
indices for tumor.
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Fig. 21 Sobol 2007 first order indices. Red - indices for normal. Blue -
indices for tumor.
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Fig. 22 Sobol jansen first order indices. Red - indices for normal. Blue -
indices for tumor.
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Fig. 23 Sobol martinez first order indices. Red - indices for normal.
Blue - indices for tumor.
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Fig. 24 Sobol first order indices. Red - indices for normal. Blue - indices
for tumor.
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Fig. 25 Sobol 2002 total order indices. Red - indices for normal. Blue -
indices for tumor.
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Fig. 26 Sobol 2007 total order indices. Red - indices for normal. Blue -
indices for tumor.
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Fig. 27 Sobol jansen total order indices. Red - indices for normal. Blue
- indices for tumor.
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Fig. 28 Sobol martinez total order indices. Red - indices for normal.
Blue - indices for tumor.
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Fig. 33 mRNA expression levels of WNT3A at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 34 mRNA expression levels of CTNNB1 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 35 mRNA expression levels of APC at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 36 mRNA expression levels of MYC at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 37 mRNA expression levels of GSK3β at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 38 mRNA expression levels of PORCN at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 39 mRNA expression levels of CTBP2 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 40 mRNA expression levels of CTBP1 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 41 mRNA expression levels of SFRP4 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 42 mRNA expression levels of SFRP1 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 43 mRNA expression levels of DVL1 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 44 mRNA expression levels of LRP6 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 45 mRNA expression levels of TCF7L1 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 46 mRNA expression levels of TCF7 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.

5 10 15 20

-1

0

1

2

fold changes in expression level

time of stimulation; stimulation with 200ng/ml WNT3A

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

l o
f L

E
F1

Fig. 47 mRNA expression levels of LEF1 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 48 mRNA expression levels of FZD2 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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Fig. 49 mRNA expression levels of FZD1 at 1st , 3rd, 6th, 12th and
24th hour from Gujral and MacBeath 17.
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