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Abstract

Background Currently quantitative RNA-Seq methods are pushed to work with

increasingly small starting amounts of RNA that require PCR amplification to

generate libraries. However, it is unclear how much noise or bias amplification

introduces and how this e↵ects precision and accuracy of RNA quantification. To

assess the e↵ects of amplification, reads that originated from the same RNA

molecule (PCR-duplicates) need to be identified. Computationally, read

duplicates are defined via their mapping position, which does not distinguish

PCR- from natural duplicates that are bound to occur for highly transcribed

RNAs. Hence, it is unclear how to treat duplicate reads and how important it is

to reduce PCR amplification experimentally.

Results Here, we generate and analyse RNA-Seq datasets that were prepared

with three di↵erent protocols (Smart-Seq, TruSeq and UMI-seq). We find that a

large fraction of computationally identified read duplicates can be explained by

sampling and fragmentation bias. Consequently, the computational removal of

duplicates does not improve accuracy, power or false discovery rates, but can

actually worsen them. Even when duplicates are experimentally identified by

unique molecular identifiers (UMIs), power and false discovery rate are only

mildly improved. However, we do find that power does improve with fewer PCR

amplification cycles across datasets and that early barcoding of samples and

hence PCR amplification in one reaction can restore this loss of power.

Conclusions Computational removal of read duplicates is not recommended for

di↵erential expression analysis. However, the pooling of samples as made possible

by the early barcoding of the UMI-protocol leads to an appreciable increase in the

power to detect di↵erentially expressed genes.

Keywords: RNA-Seq; read duplicates; Di↵erential Expression; Amplification

bias; Unique Molecular Identifiers
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Background

Genome-wide quantification of mRNA transcripts is highly informative about cellu-

lar states and has helped to elucidate regulatory networks (e.g. [1, 2]). High through-

put RNA sequencing methods (RNA-Seq) are currently under active development

and might soon replace microarrays as the method of choice for gene expression

quantification [3, 4, 5, 6, 7]. For many applications, RNA-Seq technologies are re-

quired to become more and more sensitive; ideally, we would like to detect rare

transcripts in single cells. Thereby, the sensitivity, accuracy and precision of tran-

script quantification strongly depends on how mRNA is converted into the cDNA

that is eventually sequenced. In order to generate enough cDNA for sequencing,

especially when starting from low amounts of RNA, amplification is often necessary

[8, 9]. Although it is known that PCR does not amplify all sequences equally well

[10, 11, 12], PCR amplification is used in two popular RNA-Seq library preparation

protocols (TruSeq & Smart-Seq [13]). However, it is still unclear how PCR bias in

RNA-seq library preparation e↵ects quantitative RNA-Seq analyses and to what

extend PCR amplification adds noise and hence reduces the precision of transcript

quantification. For detecting di↵erentially expressed genes this is even more impor-

tant than accuracy since it influences the power and potentially the false discovery

rate.

RNA-Seq library preparation methods are designed with di↵erent goals in mind.

TruSeq is the method of choice, if there is su�cient starting material, while the

Smart-Seq protocol is better suited for low starting amounts[14, 15]. Methods using

UMIs and cellular barcodes have been optimized for low starting amounts and low

costs to generate RNA-seq profiles from single cells [8, 16]. To achieve these goals

the methods di↵er in a number of steps, that will also impact the probability of

read duplicates and their detection (Figure 1). TruSeq uses heat-fragmentation of

mRNA and the only amplification is the amplification of the sequencing library.

Thus all PCR duplicates can be identified by their mapping positions.

In the Smart-Seq protocol, full length mRNAs are reverse transcribed, pre-

amplified and the amplified cDNA is then fragmented with a Tn5 transposase.

Hence, PCR duplicates that arise during the pre-amplification step can not be

identified by their mapping positions. UMI-Seq also generates cDNA by pre-

amplification and Tn5 fragmentation [13], but unique molecular identifiers (UMIs)
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as well as library barcodes are already introduced during reverse transcription, i.e.

before pre-amplification. This early barcoding allows all samples to be pooled after

reverse transcription. The primer sequences required for the library amplification

are introduced at the 3’end during reverse transcription. Thus, PCR-duplicates in

UMI-seq data can always be identified via the UMI. Furthermore, computationally

identified duplicates can also arise by sampling independent molecules. For a tran-

script of a given length, the chance for such ”natural duplicates” increases with

expression levels and fragmentation bias. In brief, for TruSeq-data duplicates can

be identified computationally, while in Smart-Seq pre-amplification duplicates will

escape detection and UMI-Seq is the only methods for which we know which reads

are PCR duplicates.

That said, it is unclear whether removing duplicate reads computationally actu-

ally improves accuracy and precision by reducing PCR bias and noise or whether it

decreases accuracy and precision by removing genuine information. Here, we inves-

tigate the impact of PCR amplification in RNA-seq by analyzing RNA-Seq datasets

prepared with three di↵erent protocols (Smart-Seq, TruSeq and UMI-seq) and dif-

ferent amounts of amplification. We investigate the source of read duplicates by

analysing PCR bias and fragmentation bias, assess accuracy by using ERCCs -

spiked-in mRNAs of known concentrations [17] and assess precision by power sim-

ulations using PROPER [18].

Results

Selection of data sets

We analyse five di↵erent datasets, that represent three popular RNA-seq library

preparation methods, starting with two benchmarking datasets from the literature

[4]. Both those datasets sequenced five replicates of bulk mRNA using the TruSeq

protocol on commercially available reference mRNAs: the Universal Human Ref-

erence RNA (UHRR; Agilent Technologies) and the Human Brain Reference RNA

(HBRR,ThermoFisher Scientific). We also used the UHRR samples to produce com-

parable Smart-Seq RNA-Seq and UMI-Seq data. All four bulk-RNA datasets high

RNA-quality was used that also has comparable expression complexity and a low

variance between the replicates (Table 1), thus ensuring good overall comparability

of the datasets.
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Finally, we also wanted to include a single cell data and therefore chose the first

published single cell dataset from Wu et al. (2014)[19]. The library preparation

method used for the single cell data is also Smart-Seq and thus comparable to our

UHRR-Smart-Seq data. However, the variance amongst replicates is expected to be

higher, because those are biological and not technical replicates of a cancer cell line

(HCT116).

Furthermore, all datasets contained ERCC-spike-ins, which allows us to compare

the accuracy of the quantification of RNA-levels. Furthermore, all datasets except

the UHRR-UMI-Seq have paired-end sequencing, which should provide more infor-

mation for the computational identification of PCR duplicates.

Natural duplicates are expected to be common

The number of computationally identified paired-end read duplicates (PE-duplicates)

varies between 14% and 37% for the bulk data and 2% and 60% for the single cell

data. Since single-end data is commonly used for gene expression quantification we

also consider the mapping of the first read of every pair. The resulting fractions

of computationally identified duplicates from single-end reads (SE-duplicates) are

much higher: For the bulk data, it ranges from 40-76% and for the single cell data

from 9-92% (Table 2, Figure 2a). For the UMI-Seq data, we make use of the design

that each unique UMI sequence represents one RNA molecule of the original sample

and find that UMI libraries show on average the highest duplicate fractions with 66%

(Range:64-68%), whereas all those duplicates are bona-fide PCR-duplicates. In the

UHRR Smart-Seq libraries, we only computationally identified 29% PE-duplicates

(Figure 2a). Although these numbers are not strictly comparable due to di↵erences

in the library preparation (e.g. 5 more PCR-cycles for the UMI-data Table 1 and a

stronger 3’ bias Supplementary Figure S4), it nevertheless strongly indicates that

many PCR-duplicates in Smart-Seq libraries occur during pre-amplification and

thus cannot be detected by computational means.

Generally, the fraction of duplicate reads is expected to depend on library com-

plexity, fragmentation method and sequencing depth. Sequencing depth is the factor

that gives us the most straight-forward predictions and in the case of SE-duplicates

they are by and large independent of other parameters such as the fragment size

distribution. As expected, we observe a positive correlation between the number of
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reads that were sequenced and the fraction of SE-duplicates (Figure 3). In order

to test to what extend simple sampling can explain the number of SE-duplicates,

we calculate the expected fraction of SE-duplicates, given the observed number of

reads per gene and the gene lengths (see Methods, Figure 3). Note that, in the case

of Smart-Seq this approach will only evaluates the e↵ect of the library PCR, but be

oblivious to PCR duplicates that arose during pre-amplification. We find that for

TruSeq and Smart-seq the majority of SE-duplicates are expected under this sim-

ple model of random sampling (Figure 3). For the TruSeq data we underestimate

the fraction of duplicates on average by 10% (8-13%), for the single cell Smart-Seq

data by 11% (0.4-53%) and for the bulk Smart-Seq data by 18% (14-24%). Thus,

irrespective of the library preparation protocol, a large fraction of computationally

identified SE-duplicates could easily be natural duplicates (Figure 3).

In contrast to this simple sampling expectation for SE-duplicates, fragments pro-

duced during PCR-amplification after adapter ligation, will necessarily produce

fragments with the same 5’ and 3’ end and consequently will have identical map-

ping for both ends. If the sampling was shallow enough so that we would not expect

to draw the same 5’ end twice by chance, the 3’end position should also be iden-

tical and no reads with only one matching 5’end are expected. If same 5’ ends

are more frequent due to biased fragmentation, we expect a higher ratio of SE-

to PE-duplicates. Thus, the relationship between PE- and SE-duplicates contains

information about the relative amounts of duplicates produced by fragmentation

as compared to amplification. More specifically, we expect that the fragmentation

component of the PE- vs. SE-duplicates should be captured by a quadratic fit with

an intercept of zero.

The quadratic term is not significant for the UHRR-Smart-Seq and the UHRR-

TruSeq data, which could be due to shallow sequencing and low sample size, but

could also be seen as an indication of a higher proportion of PCR-duplicates. On

the the hand, the quadratic term is significant and positive for the HBRR TruSeq

and the scHCT116 datasets, supporting the notion that at least for those datasets

library PCR amplification is not the dominant source of duplicates. This is also

consistent with our finding that most observed SE- duplicates are simply due to

sampling (Supplementary Table S1 and Figure 2).
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Fragmentation is biased

If fragmentation does not occur randomly but some sites are more likely to break

than others, those might increase the fraction of SE-duplicates. To evaluate the

impact and nature of fragmentation bias, we analysed ERCC spike-ins because

they are exactly the same in all datasets. First, we test whether the variance in

the frequency of 5’ end mapping positions of ERCCs in one sample can explain a

significant part of this variance in other samples prepared with the same method.

We find on average an of 0.77 and 0.85 for the Smart-Seq and TruSeq protocols,

respectively. Note, that this highR2 holds for samples that were prepared in di↵erent

labs, for example the R2 between the Smart-Seq samples prepared in our lab and the

single cell data from the Quake lab ranges between 0.56-0.90. In contrast, if the R2

is calculated for the comparison between one TruSeq and one Smart-Seq library, it

drops to 0.0012 (Figure 4 a,b). All in all, this is strong evidence that fragmentation

prefers reproducibly the same sites given a library preparation protocol and thus

read sampling is not random.

To identify potential causes for these non-random fragmentation patterns, we

correlated the GC-content of the 15 bases around a given position with the number

of 5’ read ends. This explained very little of the fragmentation patterns in the

TruSeq-data (median R2 = 0.0064, 59% of the pair-wise comparisons significant

with p < 0.05 ), and none in the Smart-Seq data (median R2 = 0.00002, 18%

significant with p < 0.05, Supplementary Figure S1a and Supplementary Table S2).

Next, we built a binding motif for the Transposase [20] from our UHRR-Smart-Seq

data and, unsurprisingly, found that the motif has a very low information content

(Supplementary Figure S1b) and accordingly a weak e↵ect on the 5’ read end count

(median R2 = 0.0019, 48% & 58% significant with p < 0.05 for scHCT116 & UHRR

Smart-Seq, Supplementary Figure S1a and Supplementary Table S2).

Although, we could not identify the cause for the fragmentation bias in the se-

quence patterns around the fragmentation site, we can still quantify the maximal

impact of fragmentation bias on the number of SE-duplicates, simply by adjusting

the e↵ective length of the transcripts. For the TruSeq data, we estimate that a

fragmentation bias that reduces the e↵ective length approximately ⇠ 2-fold gives

a reasonably good fit, leaving on average 1% ( 0.1-2.6%) of the SE-duplicates un-

explained. For the UHRR-Smart-Seq data, a ⇠ 36-fold reduction in the e↵ective
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length is needed and leaves only 3% (1.1-7.7%) of the duplicates unexplained. For

the single cell data, the fragmentation bias that gives overall the best fit is a ⇠6-

fold reduction, however the fit is worse since the fraction of unexplained duplicates

is still at ⇠5% and varies between 1% and 41% (Figure 3). In summary, we find

that fragmentation bias contributes considerably to computationally identified read

duplicates and is stronger for Smart-Seq, i.e. for enzymatic fragmentation, than for

TruSeq, i.e. heat fragmentation.

Removal of duplicates does not improve the accuracy of quantification

To evaluate the impact of PCR duplicates on the accuracy of transcript quantifi-

cation, we use again the ERCC spike-in mRNAs: Although, the absolute amounts

of ERCC-spike ins might vary due to handling, the relative abundances of these

92 reference mRNAs can serve as a standard for quantification. Ideally, the known

concentrations of the ERCCs should explain the complete variance in read counts

and any deviations are a sign of measurement errors. We calculate the R2 values of a

log-linear fit of transcripts per Million (TPM) versus ERCC concentration to quan-

tify how well TPM estimates molecular concentrations and compare the fit among

the di↵erent duplicate treatments. In no instance does removing read duplicates

improve the fit, but in most cases it gets significantly worse (t-test, p < 2 ⇥ 10�3)

except for for the computational PE-duplicate removal of the UHRR-Smart-Seq and

the duplicate removal using UMIs (Figure 5a).

Removal of duplicates does not improve power

Most of the time we are not interested in absolute quantification, but are content

to find relative di↵erences, i.e. di↵erentially expressed (DE) genes between groups

of samples. The extra noise from the PCR-amplification has the potential to create

false positives as well as to obscure truly DE genes. In order to assess the impact of

duplicates on the power and the false discovery rate to detect DE genes, we simu-

late data based on the estimated gene expression distributions of the five datasets.

For comparability, we first equalized the sampling depth by reducing the number

of mapped reads to 3 million and 1 million for bulk and single cell data, respec-

tively. Next, we estimated gene-wise base mean expression and dispersion using

DESeq2[21].
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There are no big di↵erences in the distributions of mean baseline expression and

dispersion estimates from the di↵erent duplicate treatments for the two Smart-

Seq datasets, whereas there is a shift towards lower means and higher dispersion,

when removing SE-duplicates for the TruSeq datasets. Dispersions shift only to

lower values if we exclude duplicates based on identification by UMIs (Figure 6a,

Supplementary Figure S2). The empirical mean and dispersion distributions are

then used to simulate two groups with six replicates for bulk-RNA-Seq datasets

and 45 replicates for the single cell dataset. In all cases we simulate that 5% of

the genes are di↵erentially expressed with log2-fold changes drawn from a normal

distribution with N(0, 1.5) [18]. We analysed 100 simulations per data-set using

DESeq2 and calculate the power and the FDR for detecting DE-genes with a log2-

fold change of at least 0.5.

Except for the UHRR-UMI-seq dataset, the nominal FDR that we set to ↵ = 5%

is exceeded: it varies between 7.5% and 13.3 %, whereas the HBRR TruSeq has

the lowest and the scHCT116 Smart-Seq data has the highest FDR (Figure 6d).

Computational removal of the duplicates has very little impact on the FDR, which is

significant for only two datasets: In the HBRR-TruSeq dataset SE-duplicate removal

increases the FDR by 3% and for the UHRR-Smart-Seq data PE- and SE-duplicate

removal improve the fit by 1% (Figure 6d). Again, the only convincing improvement

is achieved by duplicate removal using UMIs, which reduces the FDR from 7% to

3%. (t-test, p < 1⇥ 10�15).

The di↵erences in the power are more striking. As for the FDR, the major dif-

ferences are not between duplicate treatments, but between the datasets. For the

TruSeq and the UHRR-UMI datasets, the average power to detect a log2-fold change

of 0.5 is ⇠ 80% (Figure 6b). For those datasets the changes in power due to duplicate

removal are only marginal and for the computational removal using PE-duplicates

it actually decreases the power for the UHRR-TruSeq datasets by 2%, while for

the UMI-seq data duplicate removal increases power by 2%. The power for the

UHRR-Smart-Seq and the scHCT116 Smart-Seq datasets is with 60% and 33%,

respectively, much lower, and duplicate removal increases the power by only 1%.

The large di↵erences in power between the datasets are unlikely to be ameliorated

by increasing the number of replicates per group: Additionally to the 6 and 45 repli-

cates for which the results are reported above, we also conducted simulations for
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12 and 90 replicates for bulk and the single cell data, respectively. This doubling in

replicate number increases the power for the UHRR-Smart-Seq dataset only from

60 to 67% and for the single cell dataset from 33 to 35% (Supplementary Figure

S5, Supplementary Table 3).

Discussion

RNA-Seq has become a standard method for expression quantification and in most

cases, the sequencing library preparation involves amplification steps. Ideally, we

would like to count the number of RNAmolecules in the sample and thus would want

to keep only one read per molecule. A common strategy applied for amplification

correction in SNP-calling and ChIP-Seq protocols [22, 23] is to simply remove reads

based on their 5’ends, so called read duplicates. Here, we show that this strategy

is not suitable for RNA-Seq data, because the majority of such SE-duplicates is

likely due to sampling. For highly transcribed genes, it is simply unavoidable that

multiple reads have the same 5’end, also if they originated from di↵erent RNA-

molecules. We find that only 10% and max. 20% of the read duplicates cannot be

explained by a simple sampling model with random fragmentation. This fraction

decreases even more, if we factor in our finding that the fragmentation of mRNA or

cDNA during library preparation is clearly non-random: We find a strong correlation

between the 5’ read positions of the ERCC-spike-ins across samples. Because local

sequence content has little or no detectable e↵ect on fragmentation, we cannot

predict fragmentation, but we can quantify the observed e↵ect: a fragmentation bias

that halfs the number of break points can fit the observed proportion of duplicates

for TruSeq libraries well. For the Smart-Seq datasets, fragmentation biases would

have to be much higher to explain the observed duplicates, fit the observed duplicate

fractions less well and are also inconsistent between the datasets (35 for the UHRR

and 6 for the scHCT116 ).

Since computational methods cannot distinguish between fragmentation and PCR

duplicates, the removal of duplicates could introduce a bias rather than removing

it. Using the ERCC-spike-ins, we can indeed show that removing duplicates com-

putationally does not improve a fit to the known concentrations, but rather makes

it worse, especially if only single-end reads are available (Figure 5). This is in line

with our observation that most single end duplicates are due to sampling and frag-
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mentation, and removing duplicates is thus equivalent to a saturation e↵ect known

for microarrays.

Moreover, the Smart-Seq protocol, which was designed for small starting amounts,

involves PCR amplification before the final fragmentation of the sequencing library.

Thus in the case of Smart-Seq, computational methods cannot identify PCR dupli-

cates that occur during this pre-amplification step. When we use unique molecular

identifiers (UMIs), we find that 66% of the reads are PCR duplicates and only

34% originate from independent mRNA molecules. In contrast, when using paired-

end mapping for a comparable Smart-Seq library, we identify 27% as duplicates

and 73% as unique. Since mainly 3’ends of transcripts are sequenced in UMI-seq,

the complexity of the library is probably decreased, which increases the fraction

of PCR duplicates for a given sequencing depth. However, it seems unlikely that

library complexity can explain the 30% di↵erence in duplicate occurrence. Rather it

seems likely that the di↵erence is due to PCR-duplicates that are generated during

pre-amplification and thus remain undetectable by computational means.

In summary, computational methods are limited when it comes to removing PCR-

duplicates, but how much noise or bias do PCR duplicates actually introduce? In

other words, the metric that we are actually interested in is how PCR-duplicates

impact the power and the false discovery rate for the detection of di↵erentially

expressed genes. Both, power and FDR, are determined by the gene-wise mean

expression and dispersion. Based on simulated di↵ernitial expression using the em-

pirically determined mean and dispersion distributions, we find that computational

removal of duplicates has either a negligible or a negative impact on FDR and

power, and we therefore recommend not to remove duplicates. If PCR duplicates

are removed using UMIs, both FDR and power improve, although the e↵ects in

the bulk data analysed here are relatively small: FDR is improved by 4% and the

power by 2%. However, it is likely that UMIs get more important when using small

amounts of starting material, as it is the case for single-cell RNA-seq [24].

The major di↵erences in power are between the datasets, with the TruSeq data and

the UMI data giving 20% and 40% higher power than the Bulk and the single cell

Smart-Seq data, respectively. One possible explanation for the di↵erences in power

is the total number of PCR-cycles involved in the library preparation. With every

PCR-cycle the power to detect a log2-fold change of 0.5 appears to drop by 2.5%
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(Figure 6c). The only exception is the UMI-Seq dataset, that even if duplicates are

not removed gives a power of 80%, which is comparable to the power reached with

TruSeq despite the UMI-Seq method having 12 more PCR-cycles. Technically, UMI-

Seq is most similar to the Smart-Seq method. The biggest di↵erence between the two

is that all UMI-Seq libraries are pooled before PCR-amplification, suggesting that

the PCR-noise is due to the di↵erent PCR-reactions and not due to amplification

e�ciency per-se.

We conclude that computational removal of duplicates is not recommendable for

di↵erential expression analysis and if su�cient starting material is available so that

only few PCR-cycles are necessary, the loss in power due to PCR duplicates is

negligible. However, if more amplification is needed, power would be improved if

all samples are pooled early on, and for really low amounts as for single cell data

also removing PCR-duplicates the gain in power due the use of UMIs will become

important.

Materials and Methods

Data Sets

We used six datasets representing the TruSeq, Smart-Seq and UMI-seq protocols

and varying amounts of starting material from bulk RNA or single cell RNA. All

analysed datasets contain the ERCCs spike-in RNAs. This is a set of 92 artifical

poly-adenylated RNAs designed to match the characteristics of naturally occurring

RNAs with respect to their length (273-2022bp) , their GC-content (31-53%) and

concentrations of the ERCCs (0.01-30,000 attomol/µl). The recommended ERCC

spike-in amounts give 5 - 107 ERCC RNA molecules in the cDNA synthesis reaction.

To reduce biological variation, we used the well-characterized Universal Human

Reference RNA (UHRR; Agilent Technologies) for the two datasets produced for

this study. We downloaded UHRR- and HBRR-TruSeq data from SEQC/MAQC-III

[4]. Finally, we also analyse the single cell data published in Wu et al. 2014 [19], for

which the colorectal cancer cell-line HCT116 was used (Table 1). The input mostly

being commercially distributed human samples, we expect all biological samples

analysed in this study to have similarly high quality and complexity. All data that

were generated for this project were submitted to GEO under accession GSE75823.
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RNAseq Library preparation and Sequencing

For the 10 Smart-Seq libraries, 250 ng of Universal Human Reference RNA (UHRR;

Agilent Technologies) and ERCC spike-in control mix I (Life Technologies) were

used and cDNA was synthesized as described in Picelli et al[14], but here we only

use 9 PCR cycles for amplification. 1 ng of pre-amplified cDNA was used as input

for Tn5 transposon tagmentation by the Nextera XT Kit (Illumina), followed by 12

PCR cycles of library amplification. For sequencing, equal amounts of all libraries

were pooled.

For the UMI-Seq libraries, we started with 10 ng of UHRR-RNA to synthesise

cDNA as described in Soumillon et al[25]. This protocol is very similar to the

Smart-Seq protocol, however the first strand cDNA is decorated with sample-specific

barcodes and unique molecular identifiers. Barcoded cDNA from all samples was

pooled, purified and unincorporated primers digested with Exonuclease I (NEB).

Pre-amplification was performed by single-primer PCR for 15 cycles. 1 ng of full-

length cDNA was then used as input to the Nextera XT library preparation modified

to enrich for barcoded 3’ ends by addition of a custom i5 primer.

Library pools were sequenced on a Illumina HiSeq1500. For the Smart-Seq libraries

were sequenced using 50 cycles of paired-end sequencing on a High-Output flow-

cell. The UMI-seq libraries were sequenced on a rapid flow-cell, where the first read

contains the sequences of the sample barcode and the UMI using 17 cycles. The

second read sequence is the actual cDNA fragment with 46 cycles.

Data Processing

For Smart-Seq and TruSeq libraries, the sequenced reads were mapped to the human

genome (hg19) and ERCC reference sequences using NextGenMap [26] by local

alignment using the default parameters, except the following three the maximum

fragment size which was set to 10kb, the minimum identity set to 90% and only

the best hit per read was reported. The mapped reads were assigned to genes

[Ensembl database annotation version GRCh37.74] using FeatureCount from the

bioconductor package Rsubread [27].

For UMI-seq libraries, cDNA reads were mapped to the Ensembl transcriptome

[version GRCh37.74] also using NextGenMap. If either the sample barcode or the

UMI had at least one base with sequence quality  10 or contained ’N’s the read was

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 28, 2015. ; https://doi.org/10.1101/035493doi: bioRxiv preprint 

https://doi.org/10.1101/035493
http://creativecommons.org/licenses/by-nd/4.0/


Parekh et al. Page 13 of 21

discarded. Next, we generated count tables for Ensembl genes, using read counts or

counts of unique UMI-sequences per gene.

Finally, mitochondrial and ambiguously assigned reads were remove from all li-

braries.

Duplicates detection and removal

To flag single-end duplicates (SE), we used in-house scripting to identify reads that

map to the same 5’ position, have the same strand and the same CIGAR value.

Because we cannot determine the exact mapping position for 5’ soft clipped reads,

we discard them. To flag paired-end duplicates (PE), we used the same requirements

as for the SE-duplicates, those requirements had just to be fulfilled for both reads

of a pair.

Model for the fraction of sampling and fragmentation duplicates

We obtain an expectation for the number of reads if duplicates are identified via their

5’position and only one read per 5’end position is kept. We use the observed numbers

of reads per gene (rG) and the e↵ective length of the gene (LeG = L � 2⇥read-

length). Then the expected number of unique reads is

E[rGRMDUP ] = s
X

k21...rG

rGP (X = k)/k (1)

whereas P (X = k) derived from a positive Poisson distribution with �G = rG/LeG

and s is a scaling factor s = 1/
P

k21...rG
P (X = k).

Fragmentation pattern analysis

To compare fragmentation sites across libraries, we counted 5’ read starts per posi-

tion for the ERCCs across all datasets using samtools and in house perl scripts. To

avoid edge e↵ects in later analyses, we excluded the first and last 100 bases of each

ERCC, whereas 100 bases is the maximum read length of datasets analysed here.

We generated a Position Weight Matrix (PWM) for the transposase (Tn5) motif

by simply stacking up the 30 bases of the putative Transposase binding sites from all

UHRR-Smart-Seq reads. Those 30 bases are identified as 6 bases upstream of the 5’

read end and the 24 downstream [20]. The resulting PWMwas then used to calculate

motif scores across the ERCCs using the Bioconductor package PWMEnrich [28] .
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Power evaluation for di↵erential expression

For power analysis, we estimated the mean baseline expression and dispersion for

all datasets after downsampling them to 3 and 1 million reads for bulk and single

cell data, respectively. This was done for all three duplicate treatments (keep all,

remove SE and remove PE) using DESeq2 [21] with standard parameters. Further-

more, genes with very low dispersions (< 0.001) were removed. We chose the sample

sizes 3, 6 and 12 per condition for the bulk data and 30, 45 and 90 for the single cell

dataset, because they seemed to be a good representation of the current literature.

For the simulations, we use an in-house adaptation of the Bioconductor-package

PROPER [18]. As suggested in Wu et al. 2015 [18] , we set the fraction of di↵er-

entially expressed genes between groups to 0.05 and the log2-fold change for the

DE-genes was drawn from a normal distribution with N(0, 1.5). We generated 100

simulations per original input data-set and analysed them using DESeq2. Next, we

calculated the power to detect a log2-fold change of at least 0.5 and the according

FDR using ↵ = 0.05.
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Figures

Figure 1 Schematic of library preparation protocols and datasets. The upper panel details the

steps for the three di↵erent sequencing library preparation methods analysed in this study. In the

UMI-Seq flow-chart red and purple tags represent the sample barcodes and the green and yellow

tags the UMIs. In the lower panel, the datasets are described with the RNA-source and the

number of replicates.
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Figure 2 Fractions of SE- and PE- duplicates. In panel a), we plot the fraction of

computationally identified SE-duplicates (orange) and PE-duplicates (blue) per sample. For the

UMI-Seq data, we identify duplicates only based on the experimental evidence provided by the

UMIs. The black line marks the median of the dataset. The relation between SE- and

PE-duplicates is expected to follow a quadratic function, if the majority of duplicates are natural,

i.e. due to fragmentation and sampling. In panel b), we plot a quadratic fit for the di↵erent

datasets ( UHRR-TruSeq – purple, HBRR-TruSeq – red, UHRR-Smart-Seq – blue, scHCT116 –

green).
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Figure 3 The Fraction of SE-duplicates increases with the total number of reads . If the

correlation between sequencing depth and duplicates is due to sampling and fragmentation, we

can thus quantify the impact of sampling and fragmentation. a) The left panel shows the two

Smart-Seq datases (UHRR- blue, scHCT116- green) and the right panel the TruSeq data (HBRR-

red, UHRR- purple). Filled circles represent the observed fraction of SE-duplicates. Open symbols

represent simulated data: Open diamonds mark the expected fractions of SE-duplicates under a

simple sampling model and open circles are the expectations for a sampling model with

fragmentation bias. The lines are the log-linear fits between sampling depth and SE-duplicates per

dataset. In b), we plot only the SE-duplicate fractions (as in a) for an easier comparison between

the observed (red) and expected (sampling – green, sampling+fragmentation – blue).
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Figure 4 The fragmentation patterns of the ERCCs are highly reproducible for di↵erent

samples prepared with the same RNA-seq library method. a) Here, we plot the fraction of 5’read

ends per position of ERCC-00002. Because the TruSeq libries (blue) had read lengths of 100

bases, we do not consider the ends (grey dashed lines) for the calculation of the pair-wise R2

values for fragmentation. b) Violin plot of the adjusted R2 of a linear model of 5’read ends from

di↵erent samples. The reproducibility of fragmentation is highest between Smart-Seq samples

(orange), a little lower between the TruSeq samples and there is no correlation between samples

from one Smart-Seq and one TruSeq sample (middle,green).
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Figure 5 Removing duplicates does not improve the accuracy of expression quantification as

measured using the ERCC spike-ins. Expression levels as quantified in transcripts per million

reads (TPM) are a good predictor of the concentrations of the ERCC spike-ins. The log-linear fit

of TPM vs. Molarity for one exemplary sample of the UHRR-TruSeq dataset is shown in a). The

most accurate prediction of ERCC molarity is the TPM estimator using all reads (grey). Removing

duplicates as PE (yellow) makes the fit a little worse and removing SE-duplicates (yellow) much

worse. The adjusted R2 for all samples are summarized in b), the median for each dataset is

marked as black line. The R2 of the TPM estimate from the removal of PCR-duplicates using

UMIs (green) is surprisingly similar to keeping PCR-duplicates (grey).
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Figure 6 Duplicate removal has little influence on the power and FDR to detect DE-genes in

comparison to the library preparation method. We estimated the distributions of mean expression

and dispersion across genes for each dataset using DESeq2 after downsampling the datasets to 3

or 1 million reads. The distributions are estimated for the data including all reads (grey), removing

PE-duplicates (yellow), removing SE-duplicates (blue) and for the UHRR-UMI-Seq dataset

removing duplicates using UMIs (green). In analogy to the coe�cient of variation, we summarize

distributions of dispersion/Mean in the boxplot a. The estimated mean and dispersion distributions

served as input for our power simulations using PROPER [18]. We did 100 simulations per

dataset, whereas each dataset had two groups of six replicates (45 for scHT116) with 5% of the

genes being di↵erentially expressed between the groups. In panel b, we report the marginal power

to detect a log2-fold change of 0.5 and in panel d the corresponding FDR, whereas the nominal

FDR was set to ↵ = 0.05 (dashed line). In panel c, we plot our estimates of the Marginal power

against the number of PCR-cycles for each dataset. Error bars are standard deviation to the mean

marginal power over 100 simulations. We find a surprisingly simple linear decline in power with the

number of PCR-cycles, if we only consider datasets where PCR amplification was done separately

for each sample of the dataset (violet). To confirm this simple fit we added two other datasets: 1)

Bulk Smart-Seq dataset of mouse brain bulk RNA amplified using 20 PCR-cycles and 2) Single

cell Smart-Seq dataset of 96 mouse embryonic stem cells that were amplified using 33 cycles. The

only outlier is the UMI-Seq dataset for which samples were pooled prior to amplification (green).
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Tables

Table 1 Description of the datasets analysed here.

Study ID GSE-ID Lab Reads per sample

(Mean±SD million)

Read

Length

PCR

cycles

scHCT116 Smart-seq GSE51254 Quake 1.8±1.1 101 21*+12

UHRR Smart-seq GSE75823 Enard 1.5±1.1 50 10*+12

UHRR UMI-seq GSE75823 Enard 9±1 46 15*+12

UHRR TruSeq GSE49712 SEQC 125±33 101 15

HBRR TruSeq GSE49712 SEQC 140±29 101 15

*preamplification PCR-cycles

Table 2 Fraction of duplicates per sample

Study Name Fraction PE-duplicates Fraction SE-duplicates

HBRR TruSeq 0.15-0.26 0.67-0.76

scHCT116 Smart-Seq 0.02-0.59 0.09-0.92

UHRR Smart-Seq 0.24-0.37 0.40-0.50

UHRR TruSeq 0.14-0.24 0.70-0.77

UHRR UMI-seq 0.65-0.68*

* Fraction of duplicates based on UMI counts.
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Additional Files

Additional file 1 — Supplementary Figures S1-S4

This file contains all supplementary figures.

Additional file 2 — Supplementary Tables S1-S3

This file contains all supplementary figures.
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Supplementary figures
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Figure S1 Fragmentation does not appear to have a cutting site preference. Colors of the violin
plots represent library preparation methods, ’blue - Smart-Seq, ’orange’ - TruSeq and dots are
colored by the significance of the fit where ’red’ - pvalue  0.05 and ’black’ - pvalue > 0.05. a)
Left panel shows the violin plot of adjusted R2 of linear model fit between background corrected
GC content and 5’ mapped read depth of the middle base in the 15bases window and on the right
panel the adjusted R2 of linear model fit between the Tn5 motif score and 5’ mapped read depth
calculated for ERCC spike-in RNAs. b) Sequence logo of the Tn5 motif derived from UHRR
Smart-Seq dataset.
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Figure S2 Empirical mean and dispersion distributions are used to estimate power to detect

di↵erential expression. The left panel shows density plot of log2(mean baseline expression) and
the right panel the log2(dispersion) measured by DESeq2 for each study. Di↵erent duplicates
treatments are represented by colors, All reads- grey, removing PE-duplicates- orange, removing
SE-duplicates- blue and removing duplicate molecules in UMI-seq as green.
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Figure S3 3’ bias in fragmentation site is prominent in UMI-seq. The histogram showing
distance of the fragmentation site from 3’ end of the gene measured from ERCC spike-ins of
length 2kb. Colors represent library preparation methods, ’blue - Smart-Seq, ’orange’ - TruSeq.
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Figure S4 Power to detect di↵erential expression increases with increased sample size. The
box-plot shows marginal power to detect 0.5 log2foldchange at 5% nominal FDR for di↵erent
sample sizes. Colors gradient from light to dark represent sample sizes 3,6 and 12 for bulk and
30,45 and 90 for single cell datasets.
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Supplementary tables

Table S1 Summary of squared terms from quadratic fit between PE-dup and SE-dup

(PE-dup SE-dup+(SE-dup)

2

+0)

Study name Beta2 Std. Error t value Pr(> |t|)
scHCT116 Smart-Seq 0.6146 0.0309 19.92 0.0000

UHRR Smart-Seq -0.2044 0.6464 -0.32 0.7600
UHRR TruSeq 1.0012 0.6212 1.61 0.2054
HBRR TruSeq 1.1487 0.2229 5.15 0.0142

Table S2 Median R

2

and percentage of significant genes for the lm fit between GC content/Tn5

motif score and start coverage

Study name
GC Tn5

R2 %Significant* R2 %Significant*
scHCT116 Smart-Seq -0.00027 16% 0.00112 49%
UHRR Smart-Seq 0.00020 19% 0.00174 59%
UHRR TruSeq 0.00614 57% 0.00077 43%
HBRR TruSeq 0.00657 61% 0.00077 43%
*Percentage of genes with p-value  0.05
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