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Abstract 22 

Large scale genomic sequencing is now widely used to decipher questions in diverse realms 23 

such as biological function, human diseases, evolution, ecosystems, and agriculture. With the 24 

quantity and diversity these data harbor, a robust and scalable data handling and analysis 25 

solution is desired. Here we present interactive analytics using public cloud infrastructure and 26 

distributed computing database Dremel and developed according to the standards of Global 27 

Alliance for Genomics and Health, to perform information compression, comprehensive quality 28 

controls, and biological information retrieval in large volumes of genomic data. We demonstrate 29 

that such computing paradigms can provide orders of magnitude faster turnaround for common 30 

analyses, transforming long-running batch jobs submitted via a Linux shell into questions that 31 

can be asked from a web browser in seconds.  32 
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 2 

Main Text 1 

Genomic sequencing projects have gone from sequencing a few genomes to hundreds or 2 

thousands of genomes in the past decade 1-11. The massive amount of data generated from 3 

these studies has presented challenges ranging from affordable long-term storage, controlled 4 

data sharing, flexible data retrieval, fast and scalable data processing, and interactive 5 

downstream mining of biological information. Recently, jointly analyzing genomic data from 6 

multiple studies 12 and with other types of data 13 has proven to be invaluable in improving study 7 

power and thus yielded important new discoveries. These data integration efforts have 8 

highlighted the need for a scalable analysis platform that can combine various information 9 

sources. Standard public tools, run on local files on fixed-size computer clusters, do not readily 10 

scale for large studies. Public cloud platforms can provide part of the solution, with sufficient 11 

computing capacity for large batch analysis jobs, and have demonstrated early potential to grow 12 

into mature solutions for handling large-scale biology and health data 14-17.  Another part of the 13 

solution may be new interactive analytics frameworks based on distributed computing 14 

approaches, such as Dremel 18, 19, a query engine based on a columnar database and available 15 

in both open source and commercial implementations. Here we present cloud platform-based 16 

data processing and Dremel-based interactive analytic solutions for very large scale genomic 17 

data. We have built such solutions according to the standards of Global Alliance for Genomics 18 

and Health, aiming to help achieve the goal of creating a common framework for securely 19 

sharing and analyzing genomic and clinical data. 20 

 21 

The dataset of this study contains 460 whole human genomes sequenced with 101 base-pair 22 

paired-end reads on the Illumina HiSeq 2000 with an average genome coverage of 50x, totaling 23 

48 terabytes of pre-aligned reads presented in BAM format. We processed these data using our 24 

automated BWA and GATK Unified Genotyper pipeline 20 as implemented on an in-house 25 

computer cluster at Stanford University (Figure 1 step i [Figure 1.i]). Each genome was 26 

processed individually, and we turned on the option in GATK to detect both reference and 27 

variant bases, yielding in total 9 terabytes of genotypic information presented in compressed 28 

VCF format (Methods). To enable cloud-based analysis, we uploaded these VCF files to a 29 

storage bucket (Figure 1.ii). As the calls were presented for each position individually and large 30 

amount of them were reference calls, we transformed the calls for every genome from VCF to 31 

gVCF format in which variant calls were retained in single entries and consecutive reference 32 

calls were collapsed into single intervals (Methods, Figure 1.iii). This transformation reduced 33 
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 3 

data size by 150 times as compared to their uncompressed VCF formats, therefore largely 1 

reduced storage and facilitated retrieval of variant information. During the transformation we 2 

also tagged the calls by quality, marking the low quality reference and variant calls for 3 

downstream processing. Subsequently, we imported the gVCF files into a single variant set 4 

called genome_calls, which followed the standard of variant set in Global Alliance for Genomics 5 

and Health. Then we exported genome_calls to an interactive analytics system based on 6 

Dremel for further analysis (Figure 1.v).  7 

 8 

Dremel was originally built by Google to analyze petabyte scale log files. Available 9 

implementations include open source databases such as Apache Drill and Cloudera Impala, 10 

and Google BigQuery. We adapted a Dremel schema for scalable variant mining to achieve 11 

interactive performance for genomic queries. The schema we designed organizes variant calls 12 

in a tree-structured schema analogous to the VCF format but with nested and repeated fields 13 

(Figure 2). It lists definitive parameters such as chromosome names, positions, and reference 14 

bases as single variables, and diversified parameters such as alternate bases as repeated 15 

variables to accommodate multiple scenarios that appeared in the cohort. We also hierarchically 16 

organized records into flat and nested fields. For example, call is nested to record multiple 17 

parameters from read alignment and variant calling, as distinct from other fields such as 18 

chromosome name and dbSNP ID. This hierarchical structure facilitates queries for cohort 19 

information, e.g. counting total unique variants in the cohort, by traversing less data and 20 

therefore reducing both computation time and cost. On other occasions where we need to 21 

examine the calls from multiple aspects such as depth, mapping quality score, and variant 22 

score, we can unfold the nested fields to access details. Due to these repeated and nested 23 

fields, parameters of read alignment and variant calling as recorded in the original VCF files can 24 

be maintained for each genome and accessed in a single table. Our schema is designed to be 25 

intuitive while enabling interactive response to typical queries in a large scale research project.  26 

 27 

The table genome_calls contains all reference calls and variant calls. To facilitate variant-centric 28 

analysis, we generated the table, multi_sample_variants, based on the genome_calls to 29 

document calls for all the variable sites (Figure 1.vi). These are the positions where a variant 30 

was detected in any of the genomes in the cohort. Positions where only reference calls were 31 

detected were omitted, hence the multi_sample_variants resembles the commonly accepted 32 

multi-sample VCF file but with repeated and nested fields. 33 

 34 
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 4 

To derive a list of high quality samples and variants for downstream data mining, we 1 

implemented comprehensive quality control (QC) metrics over the SNVs and INDELs using 2 

mostly SQL queries. Altogether there are three levels of quality controls: data processing QC, 3 

sample health QC, and variant health QC (Figure 3; Supplemental Table 1; Figure 1.iii, vii-x). 4 

The data processing QC was implemented during the data transformation step, as mentioned 5 

above. In this step, QC of variant calls largely relied on variant quality score recalibration 6 

(VQSR) in GATK, which studied the distribution of a variety of parameters for the dbSNP 7 

variants identified in our cohort, and expanded the true set to the previously unknown variants 8 
20. For reference calls, we hard coded the filtering criteria (Methods). In the tables genome_calls 9 

and multi_sample_variants, high quality calls retain their original genotypes (REF: 0/0, VAR: 10 

0/1, 1/1 or 1/2), whereas low quality calls were changed to  -1/-1 genotypes (Supplemental 11 

Table 2). At the levels of sample health and variant health QC, we considered principles for 12 

individual and population genomics. Sample health QC identifies problematic genomes by 13 

assessing potential batch effect, unexpected relatedness (e.g. IBS and inbreeding coefficients), 14 

concordance to the SNP array data, concordance with phenotypic data (e.g. sex and ethnicity), 15 

and distribution of the variants within the cohort (e.g. missingness, singleton, and 16 

heterozygosity). Problematic genomes identified from this step were removed entirely from the 17 

dataset. The remaining genomes were collected for variant health QC, which aimed to detect 18 

problematic variants that 1) mapped to genes that were previously known to have higher failure 19 

rate of alignment and variant calling (blacklisted genes 22), 2) were mistakenly called as 20 

heterozygous in sex chromosomes in male genomes (heterozygous haplotype), 3) were 21 

undetected in a significant portion of the cohort (missingness), or 4) failed population genetics 22 

tests (HWE and Ti/Tv). Variants failing QC were tagged in the final table. Code for each step is 23 

published online (GitHub 1, 2), and the QC process was automated using a custom pipeline that 24 

executes queries through a web-based Application Program Interface (API) (GitHub 3). 25 

 26 

To test the accuracy of our QC steps as implemented in Dremel, we extracted all calls on the 27 

BRCA1 gene and compared the QC results with those derived from VCFtools, Plink, and 28 

PlinkSeq (Methods: Query validation). Our point-to-point comparison shows very close 29 

concordance with those commonly used tools (GitHub 4).  We found that most of the few 30 

differences were explained by the academic tools disregarding multi-allelic sites. We attempted 31 

to better handle multi-allelic sites where appropriate. We then applied these QC steps to our 32 

whole genome sequencing cohort (Supplemental Figure 1), and results were summarized in 33 

Supplemental Figure 2 and Supplemental Table 3. 34 
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 1 

After extensive QC on our 460 human genome cohort, we derived in total 446 genomes with 2 

27,076,770 good quality SNVs and 640,341 INDELs. We developed SQL-like, interactive 3 

queries to obtain statistical, biological, and medical information. For cohort statistics, we queried 4 

these genotypes at various levels to understand how the genotypes distributed within this 5 

population (Supplemental Figure 3). We assessed callable rates and a typical scenario in a 6 

single genome is displayed in Supplemental Figure 4. We calculated genomic statistics such as 7 

Ti/Tv, Het/Hom, novel SNVs and INDELs that were not reported in dbSNP, and private SNVs 8 

and INDELs (Supplemental Figure 5). After computing variant allele frequencies within the 9 

cohort (Supplemental Figure 6) we observed that close to half of the SNVs were found in only 1-10 

3 genomes, likely due to the fact that these genomes were deeply sequenced. We queried for 11 

regions where variation occurred more frequently, the so-called “mutational hotspots”. As an 12 

example, we summed the number of SNVs for every 1 kb for P53 gene in each genome 13 

(Supplemental Figure 7). We also implemented more comprehensive analytics such as genome 14 

wide association studies to facilitate discovery of trait-associated SNVs (GitHub 5). To study the 15 

potential impacts the variants could have on biological functions, we annotated the variants 16 

using Annovar and uploaded the results to Dremel (Methods, Figure 1.xiii-ix). By querying the 17 

annotated features, we identified variants in different genic regions and when normalized by 18 

chromosome lengths, we observed that chromosome 19 tended to have denser variation related 19 

to coding events locating on exonic, splicing, UTR5 and UTR3 regions (Supplemental Figure 8). 20 

There have been increasing efforts to understand medical implications from genomic 21 

sequencing data 23-26. We imported into Dremel the pharmGKB database 27 and queried for all 22 

variants in our study that could affect Warfarin dosage effect (Fig 1.xv). Results show that a 23 

third of our study subjects should be given a lower dose of Warfarin (Supplemental Figure 9). 24 

 25 

Dremel, like other database systems, allows a researcher to join their data with other public and 26 

private sources. In our experimentation, we uploaded the calls of the 1000 Genomes Phase 1 27 

project and compared allele frequency distributions in our cohort and in the European 28 

populations of the 1000 Genomes Project (Supplemental Figure 10). We observed that in the 29 

lower allele frequency categories, our whole genome sequencing study contributed significantly 30 

more variants. This can be expected as our deep sequencing was able to identify more rare 31 

variants.  32 

 33 
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 6 

Scalability and cost are two major concerns for many computational platforms when hundreds to 1 

tens of thousands of genomes need to be analyzed. Our tests on 5 to 460 genomes in Dremel 2 

are shown in Figure 4. The underlying distributed storage and elastic computer cluster is built 3 

for scalability, and we designed the schema to specifically address interactive variant mining for 4 

large scale genomic studies, with the expectation that the platform will scale up well to orders of 5 

magnitude more genomes. Runtime comparison between Dremel and other public tools are 6 

provided and we observed that as we went from 5 to 460 genomes (90x), the run-time 7 

continued to be interactive (i.e. in seconds) whereas the public tools run-time increased from 8 

interactive mode (i.e. 1-2 minutes) to batch mode (i.e. 1-2 hours) (Methods, Supplemental Table 9 

4). While costs of platforms are hard to compare, we found Dremel to be marginally more 10 

expensive when compared to public tools running on fixed-size computer clusters running near 11 

capacity (Methods, Supplemental Table 5). However, any hypothetical cost savings must be 12 

traded off against the orders of magnitude longer total wall time and the inability to do interactive 13 

queries for data exploration. 14 

 15 

In this study we have presented the computational paradigm combining cloud-based systems 16 

and distributed query engines to address the scalability and interactivity in large genomic data 17 

analytics. We have demonstrated that such solutions can greatly shorten the cycle of data 18 

analysis and hypothesis testing, transforming long-running batch jobs into questions that can be 19 

asked from a web browser in seconds. We have also demonstrated, by the examples of 20 

calculating IBD and PCA, that the Global Alliance for Genomics and Health API can be used to 21 

perform real computation in a future where data is hosted in the cloud and securely accessible 22 

with interoperable standards. To our knowledge this is the first implementations of the Global 23 

Alliance for Genomics and Health API.  We envision that with such APIs, the data processing 24 

and exploration may be simplified even further. As an example, the QC Pipeline we built for this 25 

study has greatly facilitated the analysis workflow. Even today, tools like Dremel provide 26 

flexibility for researchers to build applications beyond what we have demonstrated so far, and 27 

tailor to their own research. Though we tested a cloud-based service implementing Dremel, 28 

researchers restricted from using public clouds can choose to install and operate one of the 29 

multiple implementations on premises, and benefit from much of the performance, subject to the 30 

constraints of cluster size and utilization. The performance and scalability of these query 31 

engines make them specifically applicable to large sequencing projects. 32 

 33 

 34 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2015. ; https://doi.org/10.1101/035295doi: bioRxiv preprint 

https://doi.org/10.1101/035295
http://creativecommons.org/licenses/by-nd/4.0/


 
 
 

 7 

Acknowledgement 1 

This work was supported by research grants from the National Institutes of Health 2 

(1P50HL083800 and 1R01HL101388) and from the Veterans Affairs Office of Research and 3 

Development. We acknowledge the Genetics Bioinformatics Service Center (GBSC), a Stanford 4 

School of Medicine Service Center that provides computational infrastructure for genomics 5 

research. GBSC provided the dbGaP compliant on-premise cluster and cloud gateway for this 6 

research. We acknowledge Bina Technologies Inc (now Roche) for providing technical support 7 

for calling genomic variants on Bina servers. We thank Alicia Deng and Hassan Chaib from 8 

Stanford University for preparing the DNA for sequencing, Denis Salins and Isaac Liao from 9 

Stanford University for bioinformatics support, Elmer Garduno, Danyao Wang, and Samuel 10 

Gross from Google for bioinformatics support on Google Cloud, Shannon Rego from Stanford 11 

University for discussing results, and David Glazer from Google for insightful advice along the 12 

project. 13 

 14 

  15 

References: 16 

1. The 1000 Genomes Project Consortium. Nature 491, 56–65 (2012) 17 
2. The International Cancer Genome Consortium. Nature 464, 993-998 (2010) 18 
3. The Cancer Genome Atlas Research Network., Weinstein,J.N., Collisson, E.A. et al. Nature 19 

Genetics 45, 1113–1120 (2013) 20 
4. Ball, M.P., Bobe, J.R., Chou, M.F., et al. Genome Medicine 6:10 (2014) 21 
5. Taylor, P.N., Porcu,E., Chew, S, et. al. Nature Communications. 6;6:5681 (2015)  22 
6. CONVERGE consortium. Nature 523, 588–591 (2015)  23 
7. Boomsma, D.I., Wijmenga, C., Slagboom, E.P. et al. European Journal of Human Genetics 22, 24 

221–227. (2014) 25 
8. Middha, S., Lindor, N.M., McDonnell, S.K., et. al. Frontiers in Genetics 6: 244. (2015) 26 
9. Hussin, J.G., Hodgkinson A, Idaghdour. Y., et. al. Nature Genetics 47, 400–404 (2015) 27 
10. Rees, E., Kirov, G., Walters, J.T. et al. Translational Psychiatry. 21;5:e607. (2015) 28 
11. Bäckhed, F.,Roswall, J., Peng, Y. et al. Cell Host and Microbe. 13;17(5):690-703. (2015) 29 
12. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. et. al. Nature 30 

Genetics 46, 234–244 (2014) 31 
13. Akbani, R., Ng, P.K.S., Werner, H.M.J,. Nature Communications | 5:3887 (2014) 32 
14. Shringarpure, S.S., Carroll, A., De La Vega, F.M., et. al. PLoS One. 10(6):e0129277 (2015) 33 
15. Huang Z, Yu J, Yu F. IEEE; 2013. p. 49–52. (2013) 34 
16. Karczewski, K.J., Fernald, G.H., Martin, A.R., et. al. PloS one. 9(1):e84860. (2013) 35 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2015. ; https://doi.org/10.1101/035295doi: bioRxiv preprint 

https://doi.org/10.1101/035295
http://creativecommons.org/licenses/by-nd/4.0/


 
 
 

 8 

17. Reid, J.G., Carroll, A., Veeraraghavan, N., et al. BMC Bioinformatics 15(1):30. (2014) 1 
18. Melnik, S., Gubarev, A., Long, J.J., et al. Proc. of the 36th Int'l Conf on Very Large Data Bases, 2 

330-339 (2010) 3 
19. BigQuery whitepaper: https://cloud.google.com/files/BigQueryTechnicalWP.pdf  4 
20. Lam, H.Y.K., Pan,C., Clark, M.J. et al. Nature Biotechnology 30(3):226-9 (2012) 5 
21. DePristo, M., Banks, E., Poplin, R. et al. Nature Genetics 43:491-498 (2011) 6 
22. Duitama, J., Quintero, J.C., Cruz, D.F. et al. Nucleic Acids Research 42(6):e44 (2014) 7 
23. Green, R.C., Berg, J.S., Grody, W.W. et al. Genetics in Medicine 15(7):565-74 (2013) 8 
24. Dewey, F.E., Grove, M.E., Pan, C. et al. The Journal of the American Medical Association. 9 

12;311(10):1035-45 (2014) 10 
25. Thompson, B.A., Spurdle, A.B., Plazzer, J.P. et al. Nature Genetics 46(2):107-15 (2014) 11 
26. McLaughlin, H.M., Ceyhan-Birsoy, O., Christensen, K.D. et al. BMC Medical Genetics 12 

14;15:134(2014) 13 
27. Whirl-Carrillo, M., McDonagh, E.M., Hebert, J.M. et al. Clinical Pharmacology & Therapeutics 14 

92(4):414-7 (2012) 15 

 16 
GitHub links: 17 

1. https://github.com/StanfordBioinformatics/mvp_aaa_codelabs/blob/master/Sample-Level-QC.md 18 
2. https://github.com/StanfordBioinformatics/mvp_aaa_codelabs/blob/master/Variant-Level-QC.md 19 
3. https://github.com/StanfordBioinformatics/mvp_aaa_codelabs/blob/master/Comparison.md 20 
4. https://github.com/StanfordBioinformatics/bigquery-genomics-qc 21 
5. https://github.com/googlegenomics/codelabs/blob/master/R/1000Genomes-BRCA1-22 

analysis/sql/gwas-brca1-pattern.sql  23 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2015. ; https://doi.org/10.1101/035295doi: bioRxiv preprint 

https://doi.org/10.1101/035295
http://creativecommons.org/licenses/by-nd/4.0/


 
 
 

 9 

Figure 1: Bioinformatics workflow describing how we utilized on-premise computer cluster for 1 

preparing genomic input files (in green) and public cloud infrastructure for carrying out file 2 

format transformation and quality controls (in blue). The derived data were imported into Dremel 3 

for interactive analysis.  i.)  BAM files provided by Illumina Sequencing Services were 4 

reanalyzed using the HugeSeq pipeline to perform primary genome analysis. Hugeseq 5 

comprises BWA and GATK UnifiedGenotyper among other tools. ii.) VCFs output from step i. 6 

were uploaded to a cloud storage bucket. iii.) The VCFs were then processed with a Hadoop 7 

Streaming job in order to group reference calls into reference-matching blocks and flaq low 8 

quality loci. iv.) gVCFs with reference matching blocks were imported into a Global Alliance for 9 

Genomics and Health (ga4gh) variant set. v.) A Dremel table resembling a gVCF was generated 10 

by exporting the contents of the variant set using the ga4gh API. vi.) A Dremel table resembling 11 

a multisample VCF was generated using a Cloud Dataflow pipeline that read data from the 12 

variant set and output a Dremel table. vii.) Sample and variant level quality control queries were 13 

run through the Dremel API using a python pipeline. viii.) Ethnicity was inferred for the genomes 14 

in this study by running a Apache Spark pipeline on 100,000 randomly selected sites from 15 

dbSNP for the 460 genomes in this study combined with the 1092 genomes from 1,000 16 

Genomes phase 110.  The pipeline reads data from the variant set through the ga4gh API and 17 

outputs the PCA results to a storage bucket. ix.) The same Apache Spark pipeline from the 18 

previous step was run on all sites of the 460 genomes from this study to test for sequencing 19 

batch effects. x.) Identity by State (IBS) was run for all genomes comparing each genome to all 20 

other genomes to identify unexpected relatedness.  xi.)  Final genome_calls and 21 

multi_sample_variants tables were generated after combining the results from each of the QC 22 

steps (vii-x). Low quality loci are flagged in the final tables with a genotype of -1/-1 and low 23 

quality samples are removed from the dataset entirely. xii.) A multisample VCF was generated 24 

from the multi_sample_variants table by exporting the table and running a python script for 25 

formatting.  xiii.) Annovar was run on a local HPC to perform variant annotation on all high 26 

quality loci. xiv.) A Dremel annotations table was created from the Annovar results. xv.)  Other 27 

genomic databases such as PharmGKB were imported as Dremel tables to perform additional 28 

annotation.   29 
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Figure 2. Dremel database schema. Column information for genome_calls, 1 

multi_sample_variants, patient_info, and annovar_hg19 tables.  Example table data is shown at 2 

the bottom for genome_calls and multi_sample_variants. 3 
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Figure 3. A three-level quality control for large scale genomic sequencing data.    1 
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Figure 4. Performance of Dremel in analyzing 5 versus 460 human genomes in this study. Top: 1 

Average run times for each query. Bottom: Estimated cost, based on $5/TB of data traversed.  2 

 3 
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