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Extensive hyperpolymorphism and sequence similarity between the HLA genes make HLA type
inference from whole-genome sequencing data a challenging problem. We address these by
representing sequences from over 10,000 known alleles in a reference graph structure, enabling
accurate read mapping. HLA*PRG, our algorithm, outperforms existing methods by a wide margin and
for the first time consistently achieves the accuracy of gold-standard reference methods with one error
across 158 alleles tested.

Genetic variation at HLA loci, both classical and non-classical, is associated with many medical
phenotypes including risk of autoimmune®? and infectious* disease, adverse drug reactions™®, success
of tissue and organ transplants’, and, via epitope presentation preferences, the success of cancer
immunotherapy®. The current gold standard for high resolution typing of HLA alleles, sequence-based
typing (SBT), uses Sanger sequencing or targeted amplification of the HLA genes followed by next-
generation sequencing and can require extensive manual curation, thus making high throughput
application of the method expensive and challenging. With the growth of high throughput genomic
technologies, methods for inferring HLA genotype have been developed that use SNP genotyping®?*2,
exome and whole-genome sequencing'®'’. These approaches offer high throughput, but, to date, are
either limited to a subset of HLA loci'’ or do not achieve the same degree of accuracy as SBT.

Multiple factors influence accuracy, including the sheer sequence and structural diversity of the
region, the presence of multiple paralogous genes (including pseudogenes) and rare, but important,
gene conversion events that generate mosaic allelic structures.

To address these challenges, we have previously introduced structures to represent known genomic
variation called population reference graphs (PRGs) and demonstrated their value in characterising
variation across the MHC and particularly within the HLA Class Il gene region®®. Briefly, a PRG is a
directed graph in which alternative alleles, insertions and deletions are represented as alternative
paths through the graph, and in which orthologous and identical regions are collapsed locally to
model potential recombination. Although expensive computationally, reads likely to arise from the
region can be identified and mapped directly to the graph structure, thus enabling the assessment of
evidence for the presence of each stretch of sequence along a path. The pairs of paths with greatest
joint support can therefore be identified and assigned as the diploid genotype for an individual.
Previously, we demonstrated that a prototype of this approach can identify the nucleotide-level
variants at classical HLA alleles with high accuracy. However, we did not address the problem of
inferring the allele present at the gene level®.

Allelic variants at HLA genes can be typed®® ?° at different degrees of resolution; low resolution (“2-

digit”) types specify serological activity; intermediate resolution (“4-digit”) HLA types specify the
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complete primary sequence of the HLA proteins and high-resolution (“6-digit”) types determine the
full exonic sequence including synonymous variants. Higher levels of resolution include non-coding
variation. SBT is typically carried out at 6-digit “G” resolution, in which only the sequences of the
exons encoding the peptide binding groove are considered: exons 2 and 3 for HLA class | genes and
exon 2 for HLA class Il genes. In most applications of typing, a set of 6-8 loci are typed (Class |: HLA-A,
-B, -C, Class Il: HLA-DQA1, -DQB1, -DRB1, -DRA1 and -DPB1), though there exist over 30 HLA genes
and pseudogenes. Supplementary Figures 1 and 2 demonstrate the high degree of sequence
similarity and its non-random spatial structure between alleles in certain groups of loci.

We set out to modify the existing PRG approach to provide accurate HLA typing at 6-digit “G”
resolution using high coverage whole-genome sequencing data, such as is being generated by large-
scale genomics projects. Details of the approach, including source data, graph-construction, read-
mapping and HLA typing are given in the Supplementary Note and a schematic is shown in Figure. 1.
Briefly, we build a gene-specific PRG comprising 46 (mostly HLA) genes and pseudogenes, 720
genomic and 10,500 coding (exon-only) alleles from IMGT/HLA?! (Supplementary Table 1). Each gene
is embedded in a stretch of surrounding reference sequence, but we don’t attempt to model the full
intergenic sequence. Reads are mapped to the PRG and the pair of alleles with the highest joint
likelihood is identified and reported with an associated quality measure for each individual allele
(integrating over the distribution of posterior probabilities, see Supplementary Note). The software
to carry out these steps, HLA*PRG, is freely available.

To assess the accuracy of the method, we used two data sets with available high coverage sequencing
data and independent SBT-based HLA type information (Table 1). First, we analysed NA12878,
NA12891 and NA12892 from the lllumina Platinum Genomes Project, sequenced to 50 - 55x with a
PCR-free 2 x 100bp protocol. We correctly infer all 36 HLA alleles. Second, we analysed 11 samples
from the 1000 Genomes Project, sequenced to 28 — 68x with a PCR-free 2 x 250bp protocol. Initial
analysis identified three discrepancies (Supplementary Note), though on re-typing these individuals
two of three were the result of initial errors in the validation data. The remaining inconsistency, (HLA-
DRB1*16:02:01 incorrectly typed as HLA-DRB1*16:23) is likely caused by HLA-DRB5 sequences
incorrectly aligned to HLA-DRB1 within IMGT (IMGT/HLA currently don’t provide genomic sequences
for HLA-DRB5 and the representation of this gene in the PRG therefore remains incomplete).

We compare the performance of HLA*PRG with PHLAT** and HLAreporter?3, two state-of-the-art
algorithms that support HLA class | and class Il. For the Platinum samples, we find that PHLAT also
correctly infers all 36 alleles, whereas HLAreporter only reports 16 alleles (of which 14 are correct).
For the 1000 Genomes Samples, we find that HLA*PRG outperforms both programs by a wide margin.
Mean accuracy at 4-digit resolution across all loci is 75% for PHLAT and 80% for HLAreporter, and
HLAreporter achieves a call rate of only 38%. To assess to what extent HLA*PRG depends on the
availability of whole-genome data, we also apply it to whole-exome sequencing data of a cohort of
HapMap samples. Results are varied and accuracies consistently lower across all loci (ranging from
79% for HLA-C to 98% for HLA-DQB1, Supplementary Table 2). To assess sensitivity of HLA*PRG to
whole-genome sequencing depth, we subsampled the NA12878 data from the Platinum and 1000
Genomes projects to average coverages of 40x, 30x and 20x in triplicates. We find that performance is
stable (all alleles correctly predicted) down to 20x for the Platinum data and down to 30x for the 1000
Genomes data (Supplementary Table 3). To assess whether HLA*PRG could be applied to additional
HLA loci beyond the set of 6 genes validated here, we used it to genotype a set of 12 additional HLA
genes and pseudogenes in the Illumina Platinum data (Supplementary Table 4). Across the 72 alleles
inferred, we find one trio inconsistency at the pseudogene HLA-K, which is driven by an allele called
with low confidence.
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Our current implementation is optimised for accuracy rather than computational efficiency.

Analysing the NA12878 Platinum data (55x depth) takes 11 hours (clock time, AMD Opteron 6174
2.2GHz), and 17 hours for the NA12878 1000 Genomes data (63x coverage). We provide a detailed
runtime (including CPU time) and memory analysis in the Supplement (Supplementary Note).
Achieving improvements in computational efficiency is ongoing work. Future versions might make use
of linear sequence alignments to seed graph alignment and also leverage population haplotype
frequencies® 2,

In conclusion, we find that HLA*PRG infers HLA types at accuracies comparable to current gold
standard typing technologies (two errors in the original reference data compared to one from
HLA*PRG at 4-digit / 6-digit resolution), provided that high-quality (PCR-free protocol, read length of
at least 100bp, coverage of at least 30x) whole-genome sequencing data are used as input. HLA*PRG
will enable researchers to augment population-scale whole-genome sequencing data with reliable
HLA type information and contribute to characterizing HLA signals in important medical phenotypes.
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Data availability

All sequencing data used in the study are publically available through existing projects. URLs for
sequencing data access and utilized HLA types are given in Section 4 of the Supplementary Note.

Software availability

HLA*PRG is implemented in C++/Perl and available under GPLv3 as part of the MHC*PRG repository
https://github.com/AlexanderDilthey/MHC-PRG. A readme file
(https://github.com/AlexanderDilthey/MHC-PRG/blob/master/HLA-PRG.md) describes how to install
and run the software.

Figure legends

Figure 1. Schematic representation of HLA type inference using HLA*PRG. a Broad-scale structure of
the HLA PRG. The included genes are separated by spacer blocks consisting of N characters. b Fine-
scale structure of the PRG input sequences. Exons, introns and UTRs are embedded in regional
haplotypes (padding sequence). Exon sequences typically outnumber intron sequences. The red line
indicates the region covered by IMGT genomic sequences. ¢ For each gene represented in the PRG,
multiple sequence alignments representing up to 3 sources of sequence data are merged for PRG
construction: exonic sequences, genomic (UTR, exons, introns) sequences, regional haplotypes
(“xMHC Ref.”). Using alleles present in both the current and the next-higher-level MSA (identifiers
printed in red), the merging algorithm determines consensus boundaries (blue bars) to connect the
MSAs of different input sequence types. For each segment so-defined, we use the MSA corresponding
to the highest-resolution input sequence type (sequence characters therefore ignored are printed in
grey). d The PRG corresponding to the input sequences shown in ¢, and a seed-and-extend alignment
of a sequencing read to the PRG. PRG nodes are represented by boxes and edges by labelled arrows.
The four blue markers correspond to the consensus MSA boundaries shown in c. The aligned
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sequence of the read is displayed below the PRG, and the alighnment path (the sequence of edges and
nodes traversed in the PRG) is highlighted. The red component of the alignment path corresponds to
the exact-match “seed” component of the alignment (spanning a graph-encoded gap), whereas the
orange components correspond to the “extend” component of the alignment (where mismatches are

allowed).
Tables
Table 1
HLA*PRG PHLAT HLAreporter
Cohort Locus N Call Call Call
Inferred Accuracy Rate Inferred Accuracy Rate Inferred Accuracy Rate
A 6 6 1.00 1.00 6 1.00 1.00 2 0.50 0.33
6 6 1.00 1.00 6 1.00 1.00 1 1.00 0.17
Platinum 6 6 1.00 1.00 6 1.00 1.00 1 0.00 0.17
Trio DQA1 6 6 1.00 1.00 6 1.00 1.00 2 1.00 0.33
DQB1 6 6 1.00 1.00 6 1.00 1.00 5 1.00 0.83
DRB1 6 6 1.00 1.00 6 1.00 1.00 5 1.00 0.83
A 22 22 1.00 1.00 20 0.45 0.91 0 NA 0.00
1000 B 22 22 1.00 1.00 20 0.35 0.91 6 0.50 0.27
Genomes C 22 22 1.00 1.00 20 0.50 0.91 2 0.50 0.09
Higheét DQA1 12 12 1.00 1.00 10 0.70 0.83 9 1.00 0.75
Resolution 1 0g1 22 22 100  1.00 20 080 091 15 1.00 068
DRB1 22 22 0.95 1.00 20 0.55 0.91 10 1.00 0.45
A 22 22 1.00 1.00 20 0.70 0.91 NA 0.00
1000 B 22 22 1.00 1.00 20 0.60 0.91 0.50 0.27
Genomes ©C 22 22 1.00 1.00 20 0.80 0.91 2 0.50 0.09
4-digit G ° DQA1 12 12 1.00 1.00 10 0.70 0.83 1.00 0.75
DQB1 22 22 1.00 1.00 20 0.95 0.91 15 1.00 0.68
DRB1 22 22 0.95 1.00 20 0.75 0.91 10 1.00 0.45

HLA type inference accuracy for HLA*PRG and two state-of-the-art algorithms

41000 Genomes Highest Resolution” and “1000 Genomes 4-digit G” represent the same set of

samples, with 6-digit validation alleles (where available) reduced to 4-digit resolution for the latter

experiment, enabling a fair comparison with algorithms that fall back to 4-digit typing in cases of

ambiguity.
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Supplementary Figure 1

Sequence homology between HLA-A, -B and -C

Graph visualizing sequence homology between HLA-A, -B and -C across exons 2 (left) and 3 (right),
based on a multiple sequence alignment (MSA) of 3284 -A, 4077 -B, 2799 -C alleles. The x axis of the
plot represents the column index of the MSA (304 columns for exon 2, 349 columns for exon 3). The
(invisible) nodes of the graph represent the set of unique 31-mers (across the 3 genes) starting at the
corresponding column of the MSA. Two nodes (representing two consecutive 31-mers in the MSA)
are connected by (visible) edges if the corresponding 32-mer, starting at the column index of the first
31-mer, is present in the MSA. Edge flow (line thickness) is proportional to the frequency of the
corresponding 32-mer at the underlying column (bounded below). Edge colour indicates the
proportions of flow attributable to the 3 genes (for each edge, the absolute count of the
corresponding 32-mer at the underlying column can be split into a triplet representing the HLA-A,
HLA-B, HLA-C rows of the alignment; the (R, G, B) colour of the edge is obtained by normalizing this
triplet). For the purpose of this plot, we treat gap characters as nucleotides.
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Supplementary Figure 2
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Supplementary Table 1

Locus Genomic alleles Exonic alleles
A 122 2430
B 162 3084
C 111 2032
DMA 7 0
DMB 13 0
DOA 8 0
DOB 13 13
DPA1 5 37
DPA2 5 0
DPA3 4 0
DPB1 7 193
DPB2 4 0
DQA1 27 51
DQA2 7 0
DQB1 18 459
DQB2 6 0
DQB3 4 0
DRA 6 7
DRB1 26 1374
DRB2 1 0
DRB3 3 58
DRB4 3 15
DRB5 1 20
DRB6 2 0
DRB7 3 0
DRB8 2 0
DRB9 7 0
E 9 13
F 22 22
G 27 50
H 9 12
J 9 9
K 6 6
L 5 5
MICA 5 93
MICB 10 40

STK19

TAP1
TAP2

—
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\Y 3 3
w 0
Z 1 0

HLA PRG input sequences

Loci represented in the HLA PRG. "Genomic alleles”: Genomic alleles represented in the gene-specific
segment of the PRG, i.e. alleles spanning the complete length of the gene. “Exonic alleles”: Exonic
alleles represented in the gene-specific fragment of the PRG.
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Supplementary Table 2

Cohort Locus N HLA*PRG PHLAT HLAreporter
Inferred alleles Accuracy Call Rate Inferred alleles Accuracy Call Rate Inferred alleles Accuracy Call Rate
A 58 58 0.86 1.00 58 0.78 1.00 20 0.95 0.34
HapMap B 48 48 0.85 1.00 48 0.90 1.00 22 0.64 0.46
Exomes C 56 56 0.79 1.00 56 0.77 1.00 17 0.59 0.30
Highest DQA1 58 58 0.95 1.00 58 0.84 1.00 42 0.98 0.72
Resolution DQB1 58 58 0.98 1.00 58 0.95 1.00 a4 1.00 0.76
DRB1 58 58 0.86 1.00 58 0.83 1.00 41 0.95 0.71
A 58 58 0.86 1.00 58 0.78 1.00 20 0.95 0.34
48 48 0.85 1.00 48 0.92 1.00 22 0.64 0.46

HapMap

Exomes 56 56 0.79 1.00 56 0.93 1.00 17 0.59 0.30
4-digit G DQA1 58 58 0.95 1.00 58 0.84 1.00 42 0.98 0.72
DQB1 58 58 0.98 1.00 58 0.95 1.00 a4 1.00 0.76
DRB1 58 58 0.86 1.00 58 0.83 1.00 41 0.95 0.71

Performance on exome sequencing data

HLA type inference accuracy, per locus, for HLA*PRG and two state-of-the-art algorithms, PHLAT and
HLAreporter, on a set of exome-sequenced HapMap samples (2 x 100bp, average per-locus coverage
at the peptide-binding site 54x (over all validated HLA loci and samples, minimum 4.4x, maximum
164x). “Highest Resolution” and “4-digit G” represent the same set of samples, with 6-digit validation
alleles (where available) reduced to 4-digit resolution for the latter experiment. Note that the
number of inferred alleles varies between algorithms.
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Supplementary Table 3

Sample Locus N HLA*PRG
Correctly

inferred Accuracy
A 6 6 1.00
NA12878 ° ° ° -
Platinum ¢ 6 6 1.00
C 210 DQA1 6 6 1.00
DQB1 6 6 1.00
DRB1 6 6 1.00
A 6 5 0.83
NAL2878 - ° ° .
Platinum ¢ 6 6 1.00
=30 DQAL 6 6 1.00
DQB1 6 6 1.00
DRB1 6 6 1.00
A 6 6 1.00
NAL2878 - ° ° .
Platinum ¢ 6 6 1.00
C=20 DQAL 6 6 1.00
DQB1 6 6 1.00
DRB1 6 6 1.00
A 6 6 1.00
NAL2878 - ° ° 199
1000G C 6 6 1.00
=40 DQAL 6 6 1.00
DQB1 6 6 1.00
DRB1 6 6 1.00
A 6 6 1.00
B 6 6 1.00
LTS o s 100
C 2320 DOAl 6 6 1.00
DQB1 6 6 1.00
DRB1 6 6 1.00
A 6 6 1.00
NA12878 - ° ° H99
1000G C 6 6 1.00
C =20 DQALl 6 6 1.00
DQB1 6 6 1.00
DRB1 6 3 0.50

Coverage sensitivity analysis
Sensitivity to reduced coverage. Results for NA12878 (Platinum and 1000 Genomes data, see main
text), down-sampled to 40x, 30x, 20x (triplicates).
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Supplementary Table 4

NA12878 NA12891 NA12982
Locus C Q |Allele Qi |Allele Qi
*11:01:46;A*11:01:47;A%11:01:4 1.00|A*01:01:01:01;A*01:01:01:02N;A*01:01:38LA  1.00  [A*0; ;A*02:01:01:03 1.00
:01: :01:51;A*01:04N;A*01:103;A*01:107;A*01: ;A*02:01:08;A*02:01:11;A*02:01:14Q;A*02:0
120,A%11:124;A%11:126,A%11 109;A%01:132,A*01:141;A%01:142,A*01:22N;A 1:15;A*02:01:21;A*02:01:48;A*02:01:50;A*02
1129,A*11:142;A*11:154,A*11:21N;A* 11:69N *01:32;A%01:37;,A*01:45,A*0L:56N;A*01:8;A* :01:79;A*02:01:80;A%02:01:89,A*02:01:97;A*
;A*11:86 01:87N 02:01:98;A%02:01:99;A*02:09;A*02:132;A%02:
134;A%02:140;A%02:241;,A%02:252;A%02:256;
A*02:266;A*02:291;A*02:294;A*02:305N;A*0
A A*01:01:01:01;A*01:01:01:02N;A*01:01:38L;  1.00(A*24:02:01:01;A*24:02:01:02L;A*24:02:01:03;  1.00 :4 1.00
A*01:01:51;A*01:04N;A*01:103;A*01:107,A* A*24:02:03Q;A*24:02:10,A%24:02:13;A%24:02: 9;A*11:01:52;A*11:01:53;A*11:100;A*11:102;
01:109;A*01:132;A*01:141;A *01:142;A *01:22 31;A%24:02:40;A%24:02:43;A%24:02:44;A*24:02 A*11:108,A*11:120,A*11:124;A*11:126;A%11
N;A*01:32;A*01:37;A*01:45;A*01:56N;A*01: :56;A*24:02:65;A*24:00N;A*24:11N;A *24:144; 1129,A%11:142;,A*11:154,A* 11:21N;A*11:69N
81,A*01:87N A*24:150,A*24:153;A%24:154;,A%24:155N;A*24 ;A*11:86
:163N;A*24:183N;A*24:231;A%24:249;A*24:25
0;A*24:251;A%24:40N;A*24:76;A*24:79;,A*24:8
3N
B B*08:01:01;8*08:01:14;B*08:01:20;8*08:109; 1.00|B*07:02:01;8%07:02:06;8%07:02:09;8*07:120;8  1.00 [B*15:01:01:01;6*15:01:01:02N;B*15:01:06;8* 1.00!
B*08:19N *07:128;B%07:129;8*07:130;B%07:156;8*07:16 15:01:07;B%15:01:20;8*15:01:22;B*15:102;8*
1N;B*07:169;8*07:44;B*07:49N; B*07:58;8*07: 15:104;B*15:140;B*15:146;8* 15:201;8*15:22
59;8*07:61 7,8%15:228;8*15:247
B B*56:01:01;8*56:24;B*56:40 1.00|B*08:01:01;8*08:01:14;B*08:01:20;B*08:109;B  1.00 [B*56:01:01;8*56:24;B*56:40 1.00
*08:19N
c C*01:02:01;C*01:02:02;C*01:02 1.00{C*07:01:01:01;C*07:01:01:02;C*07:01:02;C*07: 0.999333|C*01:02:01;C*01:02:02;C*01:02:11;C*01:02:1 1.00
2,C*01:02:14;C*01:02:15,C*01:02: 01:09;C*07:01:19;C*07:06;C*07:153;C*07:166; 2,C*01:02:14;C*01:02:15;C*01:02:23;C*01:25;
C*01:44;C*01:82;C*01:83,C*01:84 C*07:18;C*07:337,C*07:52 C*01:44;C*01:82;C*01:83,C*01:84
c C*07:01:01:01;C*07:01:01:02;C*07:01:02;C*0 1.00(C*07:02:01:01;C*07:02:01:02;C*07:02:01:03;C* 0.999333|C*04:01:01:01;C*04:01:01:02;C*04:01:01:03;C 1.00
*07:153;C*07:1 07:02:01:04;C*07:02:01:05,C*07:02:21;C*07:02 *04:01: C*04:01:01:05;C*04:01:54;
23;C*07: ;C*07:02:51;C*07:159;C*07:160; 09N ;C*04:106;C*04:144;C*04:146;C*04:
C*07:167;C*07:245;C*07:308;C*07:50;C*07:66; 04:30;C*04:41;C*04:79;C*04:82;C*04:84
C*07:74
DOA1L DQA1*01:01:01;DQA1*01:01:02;,DQA1*01:04 1.00|DQA1*01:02:01:01;,DQA1*01:02:01:0,DQA1*0  1.00 [DQA1*01:01:01;DQA1*01:01:02;,DQA1%01:04 1.00;
:01:01;DQA1*01:04:01:02;DQA1*01:04:02;0Q 1:02:01:03;DQA1*01:02:01:04;,DQA1*01:02:02; :01:01;DQA1*01:04:01:02;DQA1*01:04:02;0Q
A1*01:05,DQA1*01:12 DQA1*01:02:03;DQA1*01:02:04;DQA1*01:08; A1*01:05,DQA1*01:12
DQA1*01:09;DQA1*01:11
DOA1L ;DQA1*05:01:01 DQA1*05:01:01:01;DQA1*05:01:01:02;DQA1*0  1.00 1.00
*05:03;DQA1*05:05:01:01;DQA1*05:05: 5:03;DQA1*05:05:01:01;DQA1*05:05:01:02;0Q :01:01;DQA1*01:04:01:02;DQA1*01:04:02;0Q
;DQA1*05:05:01:03;DQA 1*05:06;DQA1*05:0 A1*05:05:01:03;DQA1%05:06,DQA 1%05:07;0Q A1*01:05,DQA1*01:12
7,;DQA1%05:08,DQA1*05:09;DQA1*05:11 |A1*05:08;DQA1*05:09;DQA1*05:11
DQB1 DQB1*02:01:01;DQB1%02:01:08,DQB1*02:02: 1.00|DQB1%02:01:01;,0QB1*02:01:08;DQB1*02:02:0  1.00 [DQB1*05:01:01:01;DQB1*05:01:01:02;DQB1* 1.00!
01;0QB1*02:02:02;DQB1*02:04;DQB1*02:06; 1;DQB1*02:02:02;DQB1*02:04;DQB1%02:06;D 05:18;DQB1*05:27;DQB1*05:31;DQB1*05:32;
DQB1*02:09;DQB1*02:10 DQB1*05:45
DQB1 DQB1*05:01:01:01;,0Q81*05:01:01:02;DQB1* 1.00| 12,0QB1%06:109;  1.00 |DQB1*05:01 DQB1*05:01:01:02;,0QB1* 1.00
05:18;DQB1*05:27;DQ81*05:31;DQB1*05:32; ;DQB1*06:116;DQB1*06:117,0Q 05:18;DQB1*05:27;DQB1*05:31;DQB1*05:3:
DQB1*05:45 B1*06:47,DQB1*06:84 DQB1*05:45
DRB1 DRB1%01:01:01;,0RB1*01:50 1.00| DRB1*03:01:01:01;DRB1*03:01:01:02,DRB1*03  1.00 |DRB1*01:01:01;DRB1*01:50 1.00
:01:08
DRB1 DRB1*03:01:01:01;DRB1*03:01:01:02;DRB1*0 1.00|DRB1*15:01:01:01;DRB1*15:01:01:02;DRB1*15  1.00 [DRB1*01:01:01;DRB1*01:50 1.00
:01:01:03;DRB1*15:01:01:04;DRB1*15:01:17
DPAL 1,DPA1%01:03:01:02,DPA1* 1.00DPA1%01:03:01:01;,0PA1*01:03:01:02,DPA1*0  1.00 |DPA1%01:03:01:01;,DPA1%01:03:01:02,DPA1* 1.00
01:03:01:03;DPA1*01:03:01:04;DPA1*01:03:0 1:03:01:03;DPA1*01:03:01:04;DPA1*01:03:01: 01:03:01:03;DPA1*01:03:01:04;DPA1*01:03:0
105 05 105
DPAL DPA1%02:01:01 1.00|DPA1*01:03:01:01;,DPA1*01:03:01:02,DPA1*0  1.00 |DPA1*02:01:01 1.00
1:03:01:03;DPA1*01:03:01:04;DPA1*01:03:01:
DPB1 DPB1*04:01:01:01;DPB1*04:01:01:02;DPB1*1 1.00|DPB1*03:01:01;0PB1*104:01;DPB1*124:01 1.00 (DPB1*06:01 1.00
26:01
DPB1 DPB1*14:01 1.00|DPB1*04:01:01:01;,DPB1%04:01:01:02;DPB1*12  1.00 |DPB1*14:01 1.00
DRA DRA*01:01:01:01;DRA*01:01:01:02;DRA*01:0 1.00|DRA*01:01:01:01;DRA*01:01:01:02;DRA*01:01  1.00 [DRA*01:01:01:01;DRA*01:01:01:02;DRA*01:0 1.00!
1:01:03;DRA*01:01:02;DRA*01:02:01;,DRA*01 :01:03;DRA*01:01:02;DRA *01:02:01;DRA*01:0 1:01:03;DRA*01:01:02;DRA*01:02:01;DRA*01
:02:02;DRA*01:02:03 2:02;DRA*01:02:03 :02:02;DRA*01:02:03
DRA DRA*01:01:01:01;DRA*01:01:01:02;DRA*01:0 1.00|DRA*01:01:01:01;DRA*01:01:01:02;DRA*01:01  1.00 [DRA*01:01:01:01;DRA*01:01:01:02;DRA*01:0 1.00!
1:01:03;DRA*01:01:02;DRA*01:02:01;DRA*01 :01:03;DRA*01:01:02;DRA*01:02:01;DRA*01:0 1:01:03;DRA*01:01:02;DRA*01:02:01;DRA*01
:02:02;DRA*01:02:03 2:02;DRA*01:02:03 :02:02;DRA*01:02:03
DRB3 1;,DRB3*01:01:02:02 1.00|DRB3*01:01:02:01;DRB3*01:01:02:02 1.00 |DRB3*01:01:02:01;DRB3*01:01:02:02 0.04]
DRB3 1.00(DRB: ;DRB3*01:01:02:02 0.99 |DRB3*01:01:02:01;DRB3*01:01:02:02 0.00]
DRBA4 DRB4*0 0.18D ;DRBA4*01 0.18 |DRB4*01:01:01:01;DRB4*01:03:01:01;,DRB4*0 0.18
:03:01:02N; D! DRB4*01:03:02; 1:03:01:02N;DRB4*01:03:01:03;DRBA4*01:03:0
2,DRB4*01:06 DRB4*01:06 2,DRB4*01:06
DRB4 DRB4 DRB4*0 0.02(D ;DRBA4*01:03:01:01;,DRB4*01  0.02 |DRB4*01:01:01:01;DRBA4*01:03:01:01;DRB4*0 0.02
:03:01:02N; D DRBA*01:03:02; 1:03:01:02N;DRB4*01:03:01:03;DRB4*01:03:0
2,DRB4*01:06 DRB4*01:06 2,DRB4*01:06
F F*01: :01:01:03;F 1.00|F*01:01:01:01;F*01:01:01:02;F*01:01:01:03;F*  1.00 [F*01:01:01:01;F *01:01:01:02;F*01:01:01:03;F ' 1.00|
*01:01:01:04;F*01:01:01:05;F*01:01:01:06;F* 01:01:01:04;F*01:01:01:05;F *01:01:01:06;F*01: *01:01:01:04;F*01:01:01:05;F *01:01:01:06;F*
01:01:01:07;F*01:01:01:08;F*01:01:02:0L;F *0 01:01:07;F *01:01:01:08;F *01:01:02:01;F*01:01: 01:01:01:07;F*01:01:01:08;F*01:01:02:01;F*0
1:01:02:02;F*01:01:02:03;F 01:01:02:04;F*01: 02:02;F*01:01:02:03;F *01:01:02:04;F*01:01:02: 1:01:02:02;F*01:01:02:03;F *01:01:02:04;F *01:
01:02:05;F *01:01:02:06;F *01:01:03:01;F *01:0 05;F*01: }F*01:01:03:01;F*01:01:03:02; 01:02:05;F *01:01:02:06;F *01:01:03:01;F *01:0
1:03:02;F*01:01:03:03;F *01:01:03:04;F*01:02; F*01:01:03:03;F*01:01:03:04;F *01:02;F *01:03: 1:03:02;F*01:01:03:03;F*01:01:03:04;F*01:02;
01;F*01:03:01:02 01:01;F*01:03:01:02 F*01:03:01:01;F *01:03:01:02
F :01; 01:01:01:03;F | 1.00|F*01:01:01:01;F*01:01:01:0: * 100 [F*01:01:01:01 +01:01:01:03;F 1.00|
:04;F*01:01:01:05;F *01: :05;F*01:01:01:06;F *01: *01:01:01:04;F *01:01:01:05;F *01:01:01:06;F *
07;F*01:01:01:08;F*0! 01;F*01: F*01:01:01:08;F*01:01:02:01;F*0
1:01:02:02;F*01:01:02:03;F *01:01:02:04;F *01: 02:02;F *01:01:02:03;F *01:01:02:04;F *01:01:02: 1:01:02:02;F*01:01:02:03;F *01:01:02:04;F *01:
5;F *01: 06;F*01:0; F*01:0 05;F*01:01:02:06;F *01:01:03:01;F *01:01:03: 01:02:05;F *01:01:02:06;F *01:01:03:01;F *01:0
1:03:02;F*01:01:03:03;F*01:01:03:04;F*01:02; F*01:01:03:03;F*01:01:03:04;F *01:02;F *01:03: 1:03:02;F*01:01:03:03;F*01:01:03:04;F*01:02;
01;F*01:03:01:02 01:01;F*01:03:01:02 F*01:03:01:01;F *01:03:01:02
G 1;G*01:01:03:02;G*01:01:03:03  1.00|G*01:01:02:01;,G*01:01:02:02;G*01:01:18;G*01  1.00 |G*01:01:03:01;G*01:01:03:02;G*01:01:03:03 1.00
:01:19;G*01:06;G*01:08;G*01:18
G :01:02:01;G*01:01:02:02;G*01:01:18;G*0 1.00(G*01:04:01;6*01:04:04 1.00 1.00
1:01:19;G*01:06;G*01:08;G*01:18 G*01:01:01:04;G*01:01:01:05;G*01:01:01:06;
G*01:01:06
H H*02:01:01:01;H*02:01:01:02 1.00{H*02:01:01:01;H*02:01:01:02 1.00 |H*01:01:01:01;H*01:01:01:02;H*01:01:01:03  1.00
H H*02:04 1.00{H*02:01:01:01;H*02:01:01:02 1.00 |H*02:04 1.00
J 1%01:01:01:01;J%01:01:01:02;) *01:01:01:03;)* 1.00|J*01:01:01:01;J*01:01:01:02;J *01:01:01:03;J*0  1.00 [1*01:01:01:01;J*01:01:01:02;)*01:01:01:03;)* 1.00
01:01:01:04;1*01:01:01:05;1*02:01 1:01:01:04;) ¥01:01:01:05;J*02:01 01:01:01:04;J*01:01:01:05; *02:01
J 1*01 01;)%01:01:01:02;1*01:01:01:03;J*  1.00|J*01:01:01:01;J*01:01:01:02;)*01:01:01:03;J*0  1.00 [J*01:01:01:01;)*01:01:01:02;1*01:01:01:03;)* 1.00|
01:01:01:04;1*01:01:01:05;1*02:01 1:01:01:04;1*01:01:01:05;1*02:01 01:01:01:04;1*01:01:01:05;*02:01
K K*01:01:01:02 1.00(K*01:01:01:02 1.00 1.00
K K*01:01:01:04 1.00(K*01:01:01:02 1.00 0.50]
L *01:01:01:02;L*0. * 1.00(L*01:01:01:01;L*01:01:01:02;L*01:01:01:03;L*0  1.00 2;L*01:01:01:03;L* 1.00]
1:01:02
L 1.00{L*01:01:01:01;L*01:01:01:02;L*01:01:01:03;L*0  1.00 1.00
1:01:02
v V*01:01:01:01 1.00{V*01:01:01:01 1.00 |V*01:01:01:01 1.00
v V*01:01:01:02;V *01:01:01:0: 1.00|V*01:01:01:02;V*01:01:01:03 1.00 |v*01:01:01:01 1.00

Inferred non-classical HLA type for the Platinum trio

HLA types for the NA12878 (child), NA12891 (parent), NA12892 (parent) Platinum trio, including
additional loci and typing quality scores. Genes from _ (list of all genes in the
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PRG) not appearing here are not antigen-presenting or cannot be typed for technical reasons (no
IMGT exon data available or incomplete resolution of the exon-to-genomic, genomic-to-haplotype
alignment steps during PRG construction). HLA-DRB3 and HLA-DRB4 copy numbers are variable and
linked to DRB1 genotype (neither aspect is modelled by HLA*PRG). Assumedly absent alleles (as
determined by linkage with the inferred DRB1 alleles) are shaded in grey, and we note that these
carry low quality scores. We detect one trio inconsistency at the HLA-K pseudogene (shaded in bright
red), and note that the allele driving the inconsistency carries a low quality score.
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1 Constructing a PRG for the HLA genes

In this section, we describe how to build a Population Reference Graph (PRG) for the HLA genes (and
other genes in IMGT). Basic PRG algorithms and methodology were described in Dilthey, Cox et al.
(2015). We briefly recapitulate some important concepts:

e PRGs are derived from multiple sequence alignments (MSAs) of alleles or alternative
sequences, such as the 8 extended MHC (xMHC) haplotypes in GRCh38.

e If the number of input sequences is variable across the region to be covered, it is necessary
to partition the region into blocks; each individual block contains the same number of
sequences across the length of the block. The blocks are processed separately and their
graphs later concatenated. For example, for most genes, there are genomic sequences,
spanning the entire length of the gene, and additional coding sequences (without intronic /
UTR sequences). Each exon therefore becomes a separate block (with an identical number of
sequences), as does each intronic region (Fig. 1 b).

e Although not discussed explicitly in Dilthey, Cox et al. (2015), there is no need for the PRG to
span a contiguous genomic region; here we build one just from a set of genes, ignoring most
of the inter-genic sequence.

1.1 Topology of the HLA PRG

The HLA PRG comprises 46 genes, including all classical HLA genes. We have at least one genomic
sequence for each gene, and sometimes also coding sequences (see Supplementary Table 1 for a list
of genes and input data). For most genes, all available data come from IMGT; however, when there
were no IMGT data for a gene (or pseudogene), we have extracted reference sequences directly from
the xMHC haplotypes. Input sequences for the HLA PRG are available for download as part of the
HLA*PRG data package (http://birch.well.ox.ac.uk/HLA-PRG.tar.gz, list of files: segments.txt).

Sequence data for each gene are transformed into alignment blocks (described below). We connect
alignment blocks from different genes with buffer regions, consisting of 2000 bases of undefined
sequence (equivalent to ‘N’ characters).
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Gene 1 |--NNN--| Gene 2 |--NNN--| Gene 3

Figure 1 Topology of the HLA PRG: Gene-specific regions are connected with large blocks of undefined sequence ('N'
characters).

1.2 Gene-specific alignment blocks
For each gene, we combine different data sources, when available:

e MSA of genomic sequences (always available), spanning the whole length of the gene.

e MSA of coding sequences, spanning the exons of a gene. Exon boundaries are marked in the
alignment.

e XMHC haplotypes from GRCh38, used to embed each gene into a short stretch of genomic
context sequence (“padding sequence”; enabling the mapping of reads that span the
boundaries of the gene)

For each gene, we harmonize and integrate the available data; and construct a sequence of
contiguous multiple sequence alignments.

For each gene, the sequence of MSA blocks comprises (from left to right):

1. Left-padding sequence (xMHC genomic context)
Intermittent blocks of intron/UTR and exon sequence, or a monolithic block of genomic
sequence.

3. Right-padding sequence (xXMHC genomic context)

Region covered by 'genomic’ sequences

Padding (left) UTR Exon 1 Intron 1 Exon 2 UTR Padding (right)

Figure 2 Schematic depiction of the block structure of sequence data for an HLA gene. The Y axis represents the number of
sequences going into the corresponding block.

1.2.1 Graphical illustration
Before describing the process for combining and harmonizing gene-specific data in detail, we give a
graphical summary and high-level algorithmic of the process and its outcome.
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Figure 3 Upper part of figure: input data. Lower part: constructed alignment blocks. We integrate different sources of data
based on sequences present at more than one level. Sequence identifiers in red mark the sequences that are present in the
next-lower level and that are used to construct a joint coordinate system. The green line marks the boundary of the MSA
exon block utilized, the orange line the boundary of the genomic sequence alignment block utilized. The shown sequences
are illustrative.

1.2.2 Intuitive description of the MSA merging algorithm
We now give an intuitive description of the MSA merging algorithm.

Each gene is processed independently.

From the description above it is clear that the key challenge is to determine the “switching points”
between the different MSAs when constructing the PRG. To give a generic example, we start with the
genomic sequences MSA for the gene, and we switch to the exon 1 MSA as soon as possible (because
the exon sequences MSA contains more alleles and thus a better representation of sequence
diversity). After exon 1 we return to the genomic sequences, and switch to the exon 2 MSA as soon
as possible etc. until the whole gene is represented (this example ignores the padding sequences, for
which we employ a similar procedure).

The switching points are visualized as vertical lines in Figure 3 of this document (above), and we refer
to the contiguous areas of one MSA in which no switch happens as “alignment blocks”. Note that
each vertical line has 2 coordinates, one for each MSA that the line connects.
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To determine the coordinates of the switching points, we leverage the fact that there are alleles
which are represented both in the exon-level MSA and in the genomic-level MSA: if we know that the
allele T*1 is represented in both alignments, we should expect to find the exon sequences of T*1 as
substrings of the genomic sequence of T*1.

Translating (for each exon independently) the substring match coordinates relative to the un-aligned
sequences into alignment space (taking into account the alignments’ gap structure) gives us the
alignment coordinates of the switching points between exon and genomic MSAs (and by implication
the coordinates of the alignment blocks).

There is additional complexity if there is more than one allele shared between the exonic and
genomic MSAs (which is generally the case) : there is no guarantee that the switching points
computed independently for each shared allele agree. In this case we compute consensus exon
alignment blocks: for each exon MSA, we define the left boundary of the corresponding alignment
block as the maximum of the left boundaries of all independently computed per-allele alignment
blocks (and we proceed analogously for the right boundary). The consensus exon alignment blocks
define which areas of the exon MSAs go into the PRG and the corresponding switching points. In a
final step, we re-compute MSAs for the genomic sequence alignment blocks for the shared alleles to
connect the consensus exon blocks (for each shared allele’s genomic sequence, we extract the
corresponding substring in the raw unaligned genomic sequence, and create an MSA of the
sequences so-extracted for each block).

1.2.3 Formal description: Base case

We give a formal description for the case of merging the MSA for a single exon into the MSA for
surrounding genomic sequence (resulting in 3 alignment blocks). More complex cases follow
immediately (see next section). We assume that there are multiple shared alleles (which is almost
always the case — the algorithm presented here also works for the one shared allele case).

1) Consensus block coordinates for the exon MSA:

a) Shared alleles: Identify the alleles that are present in both the exon MSA and in the genomic
sequence MSA. These alleles will be used for determining the 2 switch points.

b) Initialize P, = { } and P = { }. These two lists will store the coordinates of the allele-specific
left and right switch points in the exon MSA (i.e. the entry and exit points in the exon MSA at
which the PRG will switch from genomic MSA to exon MSA and back).

c) Allele-specific switch points: For each shared allele, add the exon MSA coordinates of the
beginning and the end of the un-aligned allele sequence to P; and Py, respectively (for
example, if the exon MSA sequence of a shared allele looks like ——ACGT..., we add the value
3 to P;, — because there are two gaps in front of the allele exon sequence).

d) Consensus exon alignment block: Set the coordinates of the consensus exon alignment block
(in exon MSA space) to G;, = max(P;) and G = min(Pg). The consensus exon alignment
block so-defined is extracted and goes into the PRG construction process.

2) Genomic MSA alignment blocks:
a) Extract the consensus exon MSA sequence of each shared allele [see Point 1 a) above] —i.e.
the allele’s exon sequence bounded by the exon MSA switch points G; and Gg. Remove all
gaps from the sequences so-extracted.
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Each sequence so-extracted has an exact match in the un-aligned genomic sequence of the
corresponding allele.

Use the match so-defined to split the un-aligned genomic sequences of the shared alleles.
This results in two subsequences per shared allele, corresponding to the left and right
genomic MSA alignment blocks.

Create the left and right genomic MSA alignment blocks by creating an MSA (e.g. using
Muscle (Edgar 2004)) of the left and right split sequences of the shared alleles. The two MSAs
so-created go into the PRG construction process.

To obtain a combined PRG, we create 3 PRGs from the 3 MSA blocks (exon consensus, 2 genomic)

and merge them accordingly (Dilthey, Cox et al. 2015).

1.2.4

Formal description: Extension cases

Merging genomic into padding sequences: Exactly like the base case.

Merging multiple exons into a genomic sequence MSA: Like the base case, with three modifications:

We require that the exons be non-overlapping.

In the base case, we create 2 genomic sequence MSA blocks for the sequences to the left and
to the right of the exon. If we have multiple exons, we create additional genomic sequence
MSA blocks to cover the space between each pair of subsequent exons (x + 1 genomic
sequence MSA blocks in total, where x is the number of merged exons).

The sequences for these genomic MSA blocks are, like in the base case, defined by using the
exon consensus block sequences of the shared alleles to split the un-aligned sequences of
the shared allele genomic sequences.

We use an extended definition of “shared alleles”: we additionally require that all members
of the “shared alleles” group have the same number of exon sequences that can be mapped
uniquely onto their corresponding genomic sequences (this would not be the case, for
example, if a particular allele is associated with an exon deletion).

If this extended definition is violated, we employ a heuristic that populates the “shared
alleles” group in a manner that gives priority to the alleles found on the PGF reference
haplotype, and to alleles that have a higher number of exons that can be uniquely mapped.

We use MUSCLE (Edgar 2004) for all MSAs.

2 HLA typing
Before describing the algorithms employed in HLA*PRG in detail, we give a high-level summary. HLA
typing by HLA*PRG comprises three steps:

1.

Read extraction from BAM: Read pairs putatively coming from the HLA genes (i.e. the regions
covered by the HLA PRG) are, based on kMer statistics, extracted from an input BAM file.
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2. Read-to-graph alignment: Each candidate read is aligned to the HLA PRG. Read mapping
quality gives an indication of alighnment certainty. If the original alignment from the input
BAM file is from a position not covered by the HLA PRG, we re-scale mapping quality
accordingly.

3. Inference (6-digit “G” resolution): Only the peptide binding site (PBS) is fully characterized for
most alleles present in IMGT/HLA (exons 2 and 3 for class | genes, exon 2 for class Il genes).
At each locus, we combine all alleles with identical PBS sequences into “clusters” (i.e. one
cluster comprises all alleles with identical PBS sequence) and select the most likely pair of
allele clusters. This gives HLA types at 6-digit “G” resolution.

This process is carried out independently for each locus. Selection of the most likely pair of
alleles is based on a likelihood framework.

2.1 Step 1: Read extraction from BAM file
We iterate through all read pairs stored in a BAM file and keep only read pairs that

e both reads combined have >30% kMers present in the HLA PRG (positive selection).
e thereis at least one read with at least one kMer unique to the HLA PRG, or there is at least
one read that has <45% kMers present in regions outside the HLA PRG (negative selection).

For longer reads with lower base qualities, the first criterion is modified to apply to just one read.
This feature is activated with the command-line switch --ziseq250bp 1.

To improve performance, we only consider reads

e aligning to chromosome 6, coordinates 28,000,000 — 34,000,000, and unmapped reads
e or chromosome 6 (complete coordinate range) only (if --#iseq250bp 1.).

Thresholds for positive and negative selection are based on exploratory initial experiments. None of
the samples used in these experiments are part of the validation cohort.

Positive selection and negative selection are implemented as separate steps — positive selection is
slower and requires less memory, whereas negative selection is faster (operating on the results from
positive selection only) and memory-intensive (we use parts of the Cortex assembler to compile and
hold in memory a list of all kMers present in reference genome regions not covered by the HLA PRG).

For all reads that pass negative and positive selection and that are at least partially aligned (in the
BAM file), we score the BAM alignments (separately for each member read of the read pair)
corresponding to the likelihood metric presented below, and also store the insert size between the
two member pairs. These data will be used later to compare the best alighment from the BAM file
with the best HLA PRG alignment.

We use k = 25 for the read extraction step.
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2.2 Step 2: Read alignment

Alignment of read pairs to the HLA PRG is based on the algorithms presented in (Dilthey, Cox et al.
2015). Let R be the set of all read pairs. To align a read pair r € R consisting of the two member reads
rrandry,

1. We find alighments of r1and r; to the graph (independently for r; and r), which we refer to
as the sets A(r1) and A(r,). We refer to these as “member alignments”.

a. The alignment procedure starts by determining strandedness (i.e. determining
whether the read is aligned to the + or — strand of the PRG) based on a simple kMer
statistic. We compare the number of kMers from the + strand of the read present in
the PRG with the number of kMers from the — strand of the read (i.e., the reverse-
complemented read sequence) present in the PRG, and assign strandedness
accordingly.

b. We identify double-unique kMers (i.e. present once in the read and at only one level
in the PRG), which represent exact matches between read and PRG.

c. We proceed by extending each double-unique match with further exact matches to
the left and right.

d. The alighment procedure finishes with a local extension step (based on Needleman-
Wunsch / Smith-Waterman) that terminates when all bases from the read to be
aligned are present in the alignment. Details of a dynamic programming sequence-
to-graph alignment algorithm are given in (Dilthey, Cox et al. 2015).

2. We score each element a € ( A(r1) U A(r2) ) according to a simple likelihood function.

Alignment a of length L consists of L, alignment columns, which we referto as (c; .. cy), i.e.

a=(cy,..,cL,)

Each such column c;is an ordered pair (c;.1, ¢;.») of two elements, the first of which (¢;.1)
represents the label and level of the edge in the PRG that the alighment traverses, and the
second of which (c;.,) represents the aligned character from the read (both elements can
also specify “gap” symbols). We note that c;., has an associated base quality score if ¢;., is
not the “gap” symbol, and we refer to that quality (after converting the FASTQ Phred score
to the probability that the specified base is correct) as q(c;.,).

The member alignment score score_member(a) is defined as [+, score_pos(c;), and
score_pos(c;) is defined according to the following table:

Normal “gap” Base SCORE_INSERTION x 1/4
symbol
Base “Gap” symbol SCORE_DELETION
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“Graph gap” symbol  “Gap” symbol 1

“Graph gap” symbol Base SCORE_INSERTION x 1/4

Base Base (1 - [SCORE_INSERTION + SCORE_DELETION]) x Q,
where Q =

Q(Ci;z)' if (¢i;1) = (¢i;2)
(1-q(ci2)) X §' otherwise

In the current implementation we use SCORE_INSERTION = SCORE_DELETION = 0.01, and we
cap q(ci;z) at 0.999.

3. We consider the set Az () = {(a;, aj): a; € A(rp),a; € A(r,)} (i.e. the set of all
combinations of member read alignments). We refer to each element of Az (7) as an
“alignment” (i.e. the members of Ar(r) are paired alignments).

To score a particular combination (ai, aj) € Agr(r), we
a. initialize the score with score_member(a;) X score_member(aj).
b. check whether ajand ajare strand-compatible (inverse strands, compatible relative
positions of the two member alignments).

i. if not, multiply the score with a penalty factor.

ii. otherwise (i.e. they are strand-compatible), multiply the score with the
likelihood of the observed insert size between the two fragments, according
to an empirical normal distribution (mean and standard variance of this
distribution are heuristically estimated during a preliminary run for each
sample).

4. We normalize the scores for all alignments (i.e. the elements of Ag(r)). We refer to the
normalized scores as “PRG-only” alignment qualities.

5. Asthe HLA PRG only covers a fraction of the genome, and as we are operating on a candidate
set of reads, we compute a “genomic” alignment quality that takes into account the
possibility that the read pair might originate from a region not covered by the HLA PRG.

We compute the score for the original alignment as observed in the BAM, unless it is
contained (for both member reads) in the region covered by the HLA PRG. Per-read member
alignment scores were extracted while filtering the BAM (see Step 1; importantly, the same
scoring function is utilized), and mean and standard deviation to calculate the score
component for observed insert size based on a normal distribution are now available.

We add the score for the original BAM alignment to the list of scores that we normalized
during the previous step, and repeat normalization. We call the normalized scores “genomic”
alignment qualities (of note, unlike PRG-only alignment qualities, the genomic alignment
qualities will typically not sum up to 1 for all possible alignments of a read pair; the original
BAM alignment score is part of the normalization procedure, but the alignment itself is not
reported).
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We refer to the genomic mapping quality for an alignment (ai, aj)e Agr(r) of read r as

gQ(; (as, a7)).

6. In some cases there is considerable uncertainty in only parts of the alignment (meaning that
the alignment score distribution is relatively flat, but that specific combinations of “aligned
edge / aligned base" appear in many possible alignments).

We initialize an empty hash table and define that, if an element not present in the table is
accessed, the element is created and its value is set to 0.

We follow the following algorithm:
a. lIterate over all possible alignments (a;,a;) € Ag(7):
i. Forainf{a;a;}

1. Forall columns in a, specifying a traversed edge label and the edge
level in the graph, and the aligned sequence character (the character
itself and its relative position in the aligned read):

a. Construct a string index containing these properties, as well
as a flag specifying whether the alignment a is relative to the
+ or — strand of the PRG.

b. Retrieve the current value of the string index so-constructed
from the hash table and increase it by value gQ(r; (al-, aj)).

We can now use the constructed hash table to attach a “per-position” alignment quality
value to each column in any of the alignments considered (by constructing the corresponding
key for the column under consideration, and retrieving its value).

We use the notation pQ(r; (ai, a]-); n) to refer to the per-position alignment quality of

columnn in alignment (al-, aj) for read r (n is a contiguous index over the columns of a; and

aj,ie.ne€ {1..(Lal. + Laj)}.

2.3 Step 3: HLA typing

We employ a likelihood framewaork for HLA tying. That is, we compute the likelihood of the (aligned)
read pairs conditional on an assumed underlying pair of HLA types. We consider each locus we want
to make an inference for independently.

The inference algorithm (described in this Section) genotypes the HLA genes at the peptide binding
site (PBS)-coding positions; for class | genes, these are exons 2 and 3, for class Il genes, this is exon 2.

When genotyping at the PBS, we combine (cluster) all reference alleles with identical PBS sequences.
No attempt is made to further distinguish between the alleles in a cluster. The results are equivalent
to 6-digit “G” resolution HLA typing.

We now give a formal description of the PBS typing process for a specified HLA gene.
10


https://doi.org/10.1101/035253

bioRxiv preprint doi: https://doi.org/10.1101/035253; this version posted December 24, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2.3.1 Clustering

There is a set of HLA type reference sequences for the gene we are making inference for. These
sequences were (by definition) used for the construction of the HLA PRG, i.e. there is an MSA
between them; each column of the respective MSA corresponds to one level in the PRG. Also, these
sequences are annotated, i.e. intron and exon boundaries (and their positions in the MSA, and hence
in the PRG) are available.

We identify the levels of the PRG that correspond to the peptide binding site (PBS) of the gene we
are making inference for (these are all levels corresponding to exons 2 and 3 for HLA class | genes,
and all levels corresponding to exon 2 for HLA class |l genes), and we use the notation PBS; to
denote this (ordered) set (each level in the PRG carries a unique identifier, and we require that PBS;,
is ordered according to order of levels in the PRG; to give a simplified example, PBS;, could have the
following structure:

{HLA_A_exon_2_pos_1, HLA_A_exon_2_pos_2, .., HLA_A_exon_2_pos_n, HLA_A_exon3_pos_1, ...}).

We determine the (ordered) set of unique HLA type reference sequences SEQPBS across the level set
PBS,, (i.e. for each HLA type, we extract the nucleotide positions specified by PBS;, in their correct
order from the corresponding MSAs, concatenate the characters — including gaps, if there are any -,
and ensure that the resulting string is present in SEQpgs), and refer to the i-th element of SEQPBS as
SEQEBS. We also refer to these elements in un-concatenated form as “string lists”, in which each PRG
level represents one individual member element.

We define *SEQPBS = { (SEQLPS, SEQRES): (SEQLES € SEQpgs) A (SEQRES € SEQpgs) A (In < n)} as

the set of possible diploid PBS sequences, and use the notation ZPBSFBS to refer to its i—th element.

2.3.2 PBSinference
We now state the inference problem in likelihood terms:

Maximize the likelihood function Lpgs(R| S) over %S € 2SEQPES, where R is the set of aligned
read pairs.

We define

Lpgs(R| %S) == Tl er Lpps(7| %S), and further

Lpgs(7| 2S) = Lpps(7|(SEQPS, SEQR™S)) = % X Lpgs (7| (SEQm®)) + % X Lpgs(r[(SEQR®)).

LPBS(r|(SEQP,’,?S)) is the likelihood of one read pair, conditional on an assumed underlying (haploid)
HLA type sequence (across the PBS).

Read likelihood: Definition of LpBS(r| (SEanBS))

As the PBS sequences we operate on are defined in terms of PRG coordinates, and as the reads we
operate on are aligned to the PRG, there is usually a 1:1 correspondence between aligned bases from
the read, underlying PRG edges and underlying PRG levels.

However, whenever a read is aligned in a manner that introduces “gap” symbols along the graph

11
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dimension, such as for the third position in the following example alignment, this strict

correspondence is broken.

Level 1 2 3 4
Edge label A C _ T G
Read A C C T G

We deal with this case by attaching read bases without defined graph level to the preceding

alignment column. For the example alignment, we wish to obtain the following result:

Level 1 2 3 4
Edge label A C T G
Read A CcC T G

This section describes the technicalities of this transformation and how we proceed to calculate the
likelihood.

For the following, note that PRG edges themselves can be labelled with gap characters, such as in the

following example:

Level 1 2 3 4 5
Edge label T A _ T G
Read T A _ T G

We refer to these gap-labelled edges as “graph gaps” and note that “graph gaps” will not be

transformed during the following steps.

Best alignment: To define LpBS(r|(SEQ,PnBS)), we select the optimal quality alignment (a;, a;)

from Ar(r) (i.e. the alignment achieving the maximum gQ (r; (ai, a]-)) value).

Per-read alignment concatenation: We concatenate the two per-read alignments (a;, a;) to

obtain a combined alignment vector:

We define the combined column set C as the concatenation of the columns of a; and g; (i.e.
IC| = Lai + Laj)'

From the definitions given earlier, we recapitulate that each element ¢; € C consists of two
sub-elements, i.e. ¢; = (¢;.1, Ci;2). The first element ¢;.; specifies label and level of the edge

traversed in the PRG, and the second element c;., specifies the corresponding base from the
aligned read (both sub-elements can also specify “gaps”).

Removal of “gaps”: We create the set C’ by removing all columns from C that specify “gap”
symbols along the graph dimension (but not proper “graph gaps”), using the following
algorithm:

12
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a. SetC'=¢C
If there is no element (¢;.q, ¢;.2) € C' that does not specify a gap for ¢;., set €' = {}
and return C’ (note that we differentiate between “gap” symbols and “graph gap”
symbols, the latter of which indicate traversed edges in the graph that are
themselves labelled with “graph gap” symbols; we only want to remove proper “gap”
columns).
c. Traverse C' from left to right and find the first column c¢; with (Ci;1' ci;z) specifying a
“gap” for c;.q.
i. Ifi>1andthecolumnc;_; = (Ci—1;1. Ci—1;2) to the left of the current
position does not specify a graph “gap”, attach c;., to ¢;_;., and remove ¢;
from C’. Go back to Step c.
ii. If1=1,attach c;, to the beginning of ¢;.4.,, remove ¢ from C', and go back
to Step c.
d. If no such columns were found during the last iteration of Step c, terminate and
return C'.

We note that C’ may now contain elements (c;.1, ¢;,») with sub-elements c;., longer
than one character.

4. 1f C" = {3, set Lpps(7|(SEQEES)) to 1 and return.

5. Each remaining column in C' has one and only one corresponding level in the PRG. We
remove all columns with levels not present in PBS;. If C' is now the empty set, set
Lpgs(7|(SEQEES)) = 1 and return.

7. We define
Lpps (7| (SEQR®)) = T(cy,c00)ecr SCOTE_POS_2(Cyy1, Cii2,5€qmap(SEQry>, ¢;;1)), where
a. score_pos_2 is defined below
b. seqmap is a function that returns the underlying genotype of HLA type sequence
SEQE;BS at the PRG level specified by the level component of ¢; ;.

Value of score_pos_2((c;.1, €i;2),GT)

Gap (Non-gap) base(s) (SCORE_INSERTION x %4)ALENGTH((c;.3))
Gap “Gap” symbol 1
Base String Algorithm:

forReturn :=1
IF SUBSTRING((c;.2),0,1) ==“_"
forReturn *= SCORE_DELETION
ELSE
forReturn *=
(1 - [SCORE_INSERTION + SCORE_DELETION]) X Q,

13
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where Q =

q(SUBSTRING(c;, 0,1)), ,if GT=SUBSTRING((c;.2),0,1)
(1- q(SUBSTRING(c;2,0,1))) X 5 , otherwise

ENDIF

forReturn *= (SCORE_INSERTION x
%)ALENGTH((c;:2)-1)
RETURN forReturn

SUBSTRING is defined equivalent to the string::substr function in C++.

2.3.3 Posterior probabilities and best-guess extraction

We normalize Lpgs(R| 2S) to obtain posterior probabilities over possible diploid genotypes. To
obtain a “best guess” of two individual alleles, we employ the same procedure as for HLA*IMP:02
(Dilthey, Leslie et al. 2013). Briefly, for each allele in 2S, we first compute the probability of occurring
at least once (integrating over all allele pair probabilities). We fix the maximum allele as the first
best-guess allele, and use this marginal probability as our quality score for allele 1. Having fixed the
first allele, we now extract all pairs that contain at least one instance of allele 1, and select the pair
with the maximum absolute posterior probability. We use the second allele as the second best-guess
allele, and use the absolute probability of the allele pair as the quality score for allele 2.

2.4 Runtime and computational resources
We measured runtime and RAM usage for all steps of the HLA typing process for NA12878 (Platinum
and 1000 Genomes):

2.4.1 NA12878 Platinum 55x 2 x 100bp

Step Clock CPU time Maximum Threads Comments
(wall) (user time, RAM
time all threads
combined)
1.1 Positive 7h 6.9h 12G 1
filtering
1.2 Negative 29m 0.35h 75GB 1
filtering
2 Read 3h 32.5h 70G 40
alignment
3 HLA type 9m 0.46h 1.6G 32
inference

2.4.2 NA12878 1000 Genomes 63x 2 x 250bp

Step Clock CPU time Maximum Threads Comments
(wall) (user time, RAM
time all threads
combined)
1.1 Positive 10.5h 10.4h 13G 1 Run with
filtering 1—HiSeq250bp

14


https://doi.org/10.1101/035253

bioRxiv preprint doi: https://doi.org/10.1101/035253; this version posted December 24, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1.2 Negative 39m 0.5h 75GB 1
filtering

2 Read 6h 215h 70GB 40
alignment

3 HLA type 8m 0.3h 1.4G 32
inference

3 Validation

Due to the complexities of HLA type nomenclature, validating and comparing the performance of
different HLA type inference algorithms in a fair manner is not always straightforward. Below we
describe our validation approach in detail.

3.1 Input data format
We use BAM files, the current standard for storing genomic data, as the starting point for all analyses
and comparisons between algorithms.

If necessary, we create BAMs from raw FASTQ data with BWA 0.6.2. For the 1000 Genomes samples
in particular, we use BAM files downloaded from the 1000 Genomes website (see Section “Data” for
the URLs).

The first step of the HLA*PRG pipeline, positive selection, operates on BAM files. HLAreporter and
PHLAT require FASTQ input, which we extract, using Picard (http://picard.sourceforge.net), from the
BAM files analyzed by HLA*PRG.

3.2 4-digit, 6-digit and ambiguous HLA types
Performance assessment and performance comparisons are complicated by the fact that there are
multiple resolutions for HLA types:

e 6-digit HLA types (“high resolution”) specify the sequence of all exons of the HLA gene.

e 4-digit HLA types (“intermediary resolution”) specify the primary structure of the HLA
protein, i.e. they specify the amino acids encoded by the exons of the HLA gene.

e 6-digit “G” types specify the sequence of the exons encoding the peptide binding site (PBS)
region of the HLA gene (exons 2 and 3 for HLA class | genes and exon 2 for HLA class Il genes).
The reference list of 6-digit “G” groups is available at the IMGT/HLA website:
http://hla.alleles.org/wmda/hla_nom g.txt.

e 2-and 8-digit HLA types are not relevant in the context of this publication,

The current gold-standard for HLA typing is sequence-based typing (SBT), and most of the validation
data used here was generated by SBT. SBT typically gives results at 6-digit “G” resolution. We briefly
highlight some important properties of 6-digit “G” codes:

e A b6-digit “G” code is often ambiguous: that is, many individual 6-digit “G” codes map to a list
of possible underlying 6-digit (non-G) codes (which are differentiated by polymorphisms in
non-PBS exons — see the list provided by IMGT/HLA).

e A 6-digit “G” code can map to multiple 4-digit HLA codes (if a polymorphism in a non-PBS
exon leads to an amino acid change).

15
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3.3 Ambiguity in the validation data
When dealing with ambiguous validation data (which is almost always the case, see above), we

explicitly carry the ambiguity through the validation process and validate at the highest resolution

specified by the validation data.

The following table lists some examples (a formal definition is given below):

Validation Allele 1 | Validation Allele Inferred Allele | Inferred Allele 2 Number of

(possibly a set of 2 1 inferred alleles

alleles) (possibly a set of counted as
alleles) correct

02:01:01;02:01:02 | 01:01:01 01:01:01 02:01:01 2

02:01:01;02:01:02 | 01:01:01 01:01:01 02:01:03 1

02:01 01:01:01 01:01:01 02:01:03 2

3.4 Ambiguity in HLA*PRG results (and these of other algorithms)
Similar to SBT, the primary output from HLA*PRG is at 6-digit “G” resolution.

That is, ambiguity exists not only in the validation data, but also in the inference dataset, but (at least
for HLA*PRG and SBT validation data) the allele groups found in the inference and validation data will
be identical.

This, however, is not necessarily the case for the other programs we benchmark HLA*PRG against.
We generally preserve ambiguity in the inference results as specified by the other programs, and we
count an inferred allele (or ambiguous allele group) as correct if and only if one of the contained
alleles validates successfully against one of the specified validation alleles (or ambiguous validation
allele groups). Importantly, an inferred allele that is at a lower resolution than the validation allele
will never validate successfully (because the validation data determines validation resolution; but see
below for a 2" validation metric).

We give some examples for ambiguity and different HLA type resolutions in the inference set:

Validation Allele 1 | Validation Allele Inferred Allele Inferred Allele 2 Number of
(possibly a set of 2 1 (possibly a (possibly a set of inferred alleles
alleles) (possibly a set of | set of alleles) alleles) counted as
alleles) correct

02:01:01 01:01:01 01:01:01 02:01:01,02:01:02 | 2

02:01 01:01:01 01:01:01 02:01:03 2

02:01:01 01:01:01 01:01:01 02:01 1

3.4.1 “4-digit” validation

The approach described above is arguably biased against programs that output 4-digit alleles instead
of 6-digit allele groups if resolution of ambiguity is not possible (both points apply to PHLAT).

Therefore we also consider an additional metric of accuracy for which we reduce all validation alleles
(and by implication all inferred alleles) to 4-digit resolution.
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We note that this reduction, by definition, doesn’t result in proper 4-digit alleles: as most of the
original validation data is at 6-digit “G” resolution, amino acid positions outside exons 2 and 3 (or 2
for class Il) remain undetermined. After applying our reduction, an inferred allele will only validate
successfully if it has the same amino acid sequence over exons 2 and 3 (or 2 for class Il) as the
validation allele.

3.5 Formal description

We now give an algorithmic description of our validation approach. The “4-digit evaluation”
described in the previous paragraph follows immediately by converting all validation alleles to 4-digit
accuracy.

HLA-X data for individual Y:

Allele 1 Allele 2
Inferred I; ={allelel, allele2, ...} I, = {allelel, allele2, ...}
Validation V, ={allelel, allele2, ...} V, ={allelel, allele2, ...}

We note again that I, I, V5, V, are groups of alleles that can, without loss of generality, consist of
only one member.

We now define the number of correctly inferred alleles as

correct(ly, I, V4, V,) == max(correct2(ly, I, V;,V5), correct2(ly, I, Vo, V1)),
and we define

correth(Ix, Ly, Vs, V;,) := correctl1(ly, V) + correctl(ly, V),

and finally

1,if (3(a;, ay) € {I, X Vi }: (same_resolution(a;, a,) = a,))

correctl(ly, V) = { 0, otherwise

same_resolution(a;, a,,) is a function that transforms (and then returns) a; to the same resolution as
a, (either by removing digit groups or by adding “:00” groups). We give three examples:

a; a, same_resolution(a;, a,)
01:02:01 03:01:04 01:02:01
01:02 03:01:04 01:02:00
01:02:01 03:01 01:02

n u

We also integrate the notion of “missingness”. “Missingness” can arise, for example, due to only one
validation allele (group) being specified for a sample, or due to the removal of one inferred allele
(group) because of the application of a posterior probability call-threshold which the removed allele
(group) doesn’t meet.

We define correct1(l,, ;) as O for all instances in which I, or V, are set to “missing”.

The number of “called” alleles (always 2 when there is no missingness) is defined as
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calledZ(Ix, Ly, Vs, V;,), if [correth(Ix, Ly, Vy, V;,) = correct2(ly, I, V,, V)]

called(/y, 1, V., V) =
(Lo Iy, Vi V) {calledZ(Ix,Iy,Vy,Vx). otherwise

called2(Iy, I, Vs, V) := called1(l,, V) + called1(l,, ),

1,if (["L, not missing"] A ["V, not missing"])

called(ly, V) = { 0, otherwise

Accuracy and call rate for a set of samples are computed by summing over the number of correct
alleles: accuracy is computed by dividing the sum of correct alleles by the sum of called alleles, and
call rate is computed by dividing the number of called alleles by [“number of samples” x 2]

3.6 PHLAT-specific details

The output from PHLAT is validated as it is produced. To account for the fact that PHLAT emits lower-
resolution alleles in cases of ambiguity, we report the “4-digit” validation metric. During the 1000
Genomes validation experiment, PHLAT consistently failed to produce output for one sample, which
we count as “not called”.

3.7 HLAreporter-specific details

HLAreporter sometimes emits alleles specified at 6-digit “G” resolution. We transform these into the
corresponding 6-digit allele groups as specified by IMGT

(http://hla.alleles.org/wmda/hla_nom g.txt).

We observe that HLAreporter often generates empty call files. These are interpreted as “missing”,
will lower the measured call rate and will not contribute to accuracy metrics.

The authors of HLAreporter suggested modifications to deal with 2 x 250bp reads. Specifically, they
recommended generating a new set of pseudo-reads by splitting each 250bp read in half. To give an
example, the read pair (original_read_1, original_read_2) would generate the two new pseudo read
pairs: (firstHalf_original_read_1, secondHalf_original_read_1), (firstHalf_original_read_2,
second_half_original_read_2). Results without this modification were very similar.

HLAreporter call files are processed according to the following algorithm:

e Forclass | loci, we search for the string “Allele pair”, and extract the next two lines.

If the first line specifies a valid allele (with the right locus identifier), we use the specified
allele as allele 1 — otherwise we specify allele 1 = allele 2 = “missing”.

If the second line also specifies a valid allele, we use the specified allele as allele 2. Finally, if
allele 1 was set but not allele 2, we define allele 2 = “missing”.

e Forclass Il loci, we search for the occurrence of the string “Allele” at the beginning of a line,
and read the subsequent lines (which specify alleles) until we hit another “Allele” string or
the string “HLA data quality profile” (which marks the end of the allele list).

We define allele 1 as the list of all alleles specified after “Allele” (i.e. allele 1 is potentially a
18
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list of alleles).

If we find another “Allele” string, we repeat the same process, but now use the found alleles
to define allele 2.

Finally, if allele 1 was set but not allele 2, we define allele 2 = “missing”.

If the call file contains a “low data quality” warning (as it almost always does in our case), we assign
low posterior probabilities to the extracted alleles.

3.8 DRB1 correction for NA19238, NA19239

3.8.1 NA19238
The following HLA-DRB1 types are specified in the original (non-corrected) validation data:

NA19238 16:02 11:01:01/11:01:08
NA19239 13:01 13:01
NA19240 16:02 12:01

NA19240 is the child of NA19238 and NA19239. We noted that these HLA types are transmission-
incompatible. The most likely scenario is that either one of the 13:01 alleles of NA19239 is an error,
or the 12:01 allele of NA19240.

HLA*PRG also infers that NA19239 has one 12:01 allele, which would be transmission-consistent.

High-resolution sequence-based re-typing confirms that the correct DRB1 genotype is

NA19239 12:01:01;12:10 13:01:01

3.8.2 NA19239
For NA19238, the originally specified genotype for HLA-DRB1 was 16:02 / 11:01:01;11:01:08.

HLA*PRG predicts 11:01:02 / 16:23.

High-resolution sequence-based typing confirms that the DRB1 genotype for this sample is 11:01:02 /
16:02:01, i.e. one of the two discrepancies for NA19239 between HLA*PRG and the original
reference data was driven by an error in the original reference data.

4 Data

4.1 HLA types

HLA types for 1000 Genomes Samples (Gourraud, Khankhanian et al. 2014) were downloaded from
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/working/20140725 hla genotypes/.

High-resolution HLA typing for some samples present in the HapMap cohort was available from
Dilthey, Leslie et al. (2013).

Two HLA-B alleles for NA12891 were added from Erlich, Jia et al. (2011).
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We identified two errors in the 1000 Genomes Data and changed the allele accordingly (see Section
3.8).

4.1.1 Validated HLA types for Platinum samples

IndividuallD HLAA HLAB HLAC HLADQA1 HLADQB1 HLADRB1
AA0209Q_72 0101/1101 0801/5601 0102/0701 0101g/0501g 0201/0501 0101/0301
NA12891 0101/2402 0801/0702 0702/0701 0102/0501g 0201/0602 0301/1501
NA12892 0201/1101 1501/5601 0102/0401g 0101g/0101g 0501/0501 0101/0101
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4.1.2 Validated HLA types for 1000 Genomes samples

IndividuallD
HGO01112

NA12878
NA12891
NA12892
NA18939

NA19238

NA19239

NA19240

NA19625

NA19648

NA20502

HLAA
02:01:01:01;02:01:01:02
L;02:01:01:03;02:01:08;
02:01:11;02:01:14;02:01
:15;02:01:21;02:09;02:4
3N;02:66;02:75;02:83N;
02:89;02:97;02:132;02:1
34;02:140/26:01:01;26:
01:07;26:24;26:26
0101/1101

0101/2402

0201/1101
11:01:01;11:21N/31:01:
02;31:14N;31:23

30:01:01;30:01:02;30:24
;30:81/36:01

02:01:01:01;02:01:01:02
L;02:01:01:03;02:01:01:
04;02:01:08;02:01:11;02
:01:14Q;02:01:15;02:01:
21;02:01:48;02:01:50;02
:01:79;02:01:80;02:01:8
9;02:01:97;02:01:98;02:
01:99;02:01:104;02:09;0
2:43N;02:66;02:75;02:8
3N;02:89;02:97:01;02:9
7:02;02:132;02:134;02:1
40;02:241;02:252;02:25
6;02:266;02:291;02:294;
02:305N;02:327;02:329;
02:356N;02:357;02:397;
02:411;02:446;02:455;0
2:469;02:481;02:538/68
:02:01:01;68:02:01:02;6
8:02:01:03
30:01:01;30:01:02;30:24
;30:81/68:02:01:01;68:0
2:01:02;68:02:01:03

02:01:01:01;02:01:01:02
L;02:01:01:03;02:01:08;
02:01:11;02:01:14;02:01
:15;02:01:21;02:09;02:4
3N;02:66;02:75;02:83N;
02:89;02:97;02:132;02:1
34;02:140/23:01:01;23:
07N;23:17;23:18;23:20

03:01:01:01;03:01:01:02
N;03:01:01:03;03:01:07;
03:20;03:21N;03:26;03:
37;03:45/11:01:01;11:2
1N

01:01:01:01;01:01:01:02
N;01:04N;01:22N;01:32;
01:34N;01:37/31:01:02;
31:14N;31:23

HLAB
38:01:01/44:02:01:01;4
4:02:01:02S;44:19N;44:
27;44:66

0801/5601
0801/0702
1501/5601
27:04:01/67:01:01

53:01:01/57:03:01

52:01:02/35:01:01:01;3
5:01:01:02

57:03:01/35:01:01:01;3
5:01:01:02

07:02:01;07:02:06;07:02
:09;07:44,07:49N;07:58;
07:59;07:61/44:03:02

07:02:01;07:02:06;07:02
:09;07:44;07:49N;07:58;
07:59;07:61/51:01:01;5
1:01:05;51:01:07;51:11
N;51:30;51:32;51:48;51:
51

07:02:01;07:02:06;07:02
:09;07:44;07:49N;07:58;
07:59;07:61/35:02:01

HLAC HLADQA1
05:01:01:01;05:01:01:02 ????/??2??
;05:01:04;05:01:05;05:0
3/12:03:01:01;12:03:01:

02;12:03:06
0102/0701 0101g/0501g
0702/0701 0102/0501g

0102/0401g 0101g/0101g

;07:02:01:03;07:50;07:6
6;07:74/12:02:01;12:02:

02

04:01:01:01;04:01:01:02 0102/0102
;04:01:01:03;04:01:01:0
4,04:01:01:05;04:82/18:

01;18:02

16:01:01/04:01:01:01;,0 0103/0501g
4:01:01:02;04:01:01:03;
04:01:01:04;04:01:01:05

;04:82

04:01:01:01;04:01:01:02 0102/0501g
;04:01:01:03;04:01:01:0
4,04:01:01:05;04:82/18:

01;18:02

07:01:01;07:01:02;07:01 ????/2?2??
:09;07:06;07:18;07:52/1
2:03:01:01;12:03:01:02;

12:03:06

01:02:01;01:02:02;01:02 ????/??2??
:03;01:02:04;01:02:05;0
1:02:06;01:02:07;01:02:
08;01:02:09;01:25/07:0
2:01:01;07:02:01:02;07:
02:01:03;07:50;07:66;07

74

04:01:01:01;04:01:01:02 ????/??2??
;04:01:01:03;04:09N;04:
28;04:30;04:41/07:02:0
1:01;07:02:01:02;07:02:
01:03;07:50;07:66;07:74

HLADQB1 HLADRB1

05:01:01/05:03:01 01:01:01/14:01:01;14:5
4

0201/0501 0101/0301

0201/0602 0301/1501

0501/0501 0101/0101

06:02:01/06:02:01 15:01:01:01;15:01:01:02
/15:01:01:01;15:01:01:0
2

05:02:01/06:02:01 11:01:02/16:02:01

03:01:01:01;03:01:01:02 13:01:01/12:01:01;12:1
;03:01:01:03/05:01:01:0 O
1;05:01:01:02

05:02:01/03:01:01:01;0 16:02:01/12:01:01;12:1
3:01:01:02;03:01:01:03 0

06:02:01/06:09 15:01:01:01;15:01:01:02

/13:02:01

04:02/06:02:01 15:01:01:01;15:01:01:02

/08:01:01;08:01:03

03:01:01;03:01:04;03:09 11:04:01/13:21
;03:19;03:21;03:22;03:2
4/06:03:01
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4.1.3 Validated HLA types for HapMap exome samples

IndividuallD
SRR702070
SRR707191

SRR709972
SRR709975
SRR710128
SRR715913
SRR715914
SRR716422

SRR716424

SRR716435

SRR716646
SRR716647
SRR718067

SRR718076
SRR718078
SRR764690
SRR764691
SRR764692
SRR764718

SRR766003

SRR766010
SRR766021
SRR766026
SRR766039

SRR766044
SRR766058
SRR766059
SRR766060
SRR766061

HLAA
0301/2402
29:02/26:01

03:01/02:01
01:01/03:01
02:01/02:01
0201/0201
0201/0301
25:01/11:01

02:06/26:01

11:01/32:01:01;32:01:0
2

0101/2402

0101/0301
29:02/02:01

0201/0201
2402/2902
01:01/24:02
01:01/11:01
0201/2402
01:01/02:01

32:01:01;32:01:02/02:0
1

01:01/01:01
03:01/26:01
02:01/02:01
02:01/68:01:02

24:02/01:01
03:01/02:01
24:02/02:01
02:01/01:01
02:01/02:01

HLAB

44:03:01;44:03:03;44:03

:04/44:02
07:02:01/57:01
08:01/07:02
15:01;15:28/44:02

18:01/15:01;15:12;15:1

9
35:01/38:01:01

44:03:01;44:03:03;44:03

:04/40:02
08:01/55:01
08:01/14:02

07:02/27:03;27:52;27:0

9

4402/5101
08:01/39:06
51:01/50:01:01

08:01/57:01

40:02/27:03;27:51;27:5

2;27:09

57:01/08:01
07:02/07:02
14:01/14:02
44:02/40:01

40:01/08:01
35:01;35:07/44:02
07:02/07:02
07:02/07:02

08:01/13:02:01;13:02:0

5

HLAC
0702/0702
16:01/05:01

07:02/06:02:01:01
07:01;07:06/07:02
05:01/03:04
0501/0501
0702/0702

12:03:01:01;12:03:01:02

;12:03:06/03:03

04:01/12:03:01:01;12:0

3:01:02;12:03:06
16:01/1500

0701/0702
0701/0802
07:02/01:02

0501/1402
0602/1601
07:01;07:06/07:02
15:02/06:02:01:01
0401g/1402

07:01;07:06/06:02:01:0
1;06:02:01:02;06:02:03

02:02:02/07:04

06:02:01:01/07:01
07:02/07:02
08:02/08:02
03:03;03:04/07:04

03:04:01:01/07:01
04:01/07:04
07:02/07:02
07:02/07:02

07:01;07:06/06:02:01:0
1;06:02:01:02;06:02:03

4.2 Next-generation sequencing data

4.2.1 NA12878,NA12891,NA12892 Platinum

Read data for NA12878, NA12891 and NA12892 from the lllumina Platinum

HLADQA1
0102/0102
0101g/0102

0102/0102
0102/0501g
0301g/0301g
0103/0301g
0101g/0102
0102/0301g

0101g/0301g
0101g/0201

0103/0301g
0301g/0501g
0102/0102

0301g/0401g
0201/0201
0301g/0501g
0201/0301g
0401g/0401g
0201/0501g

0102/0103

0102/0103
0102/0102
0201/0501g
0501g/0501g

0201/0301g
0101g/0301g
0101g/0102
0102/0103
0102/0301g

HLADQB1
0602/0602
05:01/06:02:01

06:02:01/06:02:01
02:01/06:02
03:01/03:02
0301/0603
0501/0602
03:02/06:02

05:01/03:02

02:01/05:03

0301/0603
0201/0302
06:02/06:02

0302/0402
0202/0303
02:01/03:02
03:01/02:01
0402/0502
02:01/03:03

06:03/06:02

06:03:01/06:02:01
06:02:01/06:02:01
02:01/03:01
02:01/03:01

03:02:01/03:03:02
05:01/03:01
05:01/06:02
06:03:01/06:02:01
03:02/06:02

HLADRB1
1501/1501
01:01/15:01

15:01/15:01
03:01/15:01
04:01/04:01
0401/1301
0103/1501
15:01/04:04

01:01/04:04:01

07:01/14:04

0407/1302
0301/0401
15:01/15:01

0401/0801
0701/0701
03:01/04:04
04:07/07:01
0801/1601
03:01/07:01

13:01/15:01

13:01/15:01
15:01/15:01
07:01/13:03
03:01/11:01:01;11:01:0
8

04:04:01/07:01
01:01/04:07
01:01/15:01
13:01/15:01
15:01/04:01

(http://www.illumina.com/platinumgenomes/) genomes project (HiSeq 2000, ~60x coverage, 100-bp

paired-end reads) were obtained from the European Bioinformatics Institute

(http://www.ebi.ac.uk/ena/data/view/ERP001960).

4.2.2 1000 Genomes High-Coverage
BAM files were downloaded from

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/{SSAMPLE ID}/high coverage alignment/

for the following sample IDs:

HG000%6

HG03642

HG00268

HGO03742

HG00419
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NA12878
HGO00759
NA12891
HG01051
NA12892
HG01112
NA18525
HGO01500
NA18939
HG01565
NA19017
HG01583
NA19238
HG01595
NA19239
HGO01879
NA19240
HG02568
NA19625
HG02922
NA19648
HG03006
NA20502
HG03052
NA20845

4.2.3 HapMap Exome Data
FASTQ files for HapMap samples were downloaded from the Sequence Read Archive:

SRR701474 NA11992
SRR702070 NA12873
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SRR715913 NA12812
SRR716435 NA12234
SRR718077 NA12813
SRR764691 NA12156
SRR766010 NA11995
SRR766058 NA12144
SRR701475 NA11994
SRR707191 NA11993
SRR715914 NA12814
SRR716646 NA12815
SRR718078 NA12813
SRR764692 NA12874
SRR766021 NA11881
SRR766059 NA12004
SRR702067 NA12154
SRR709972 NA06985
SRR716422 NA12006
SRR716647 NA12872
SRR742200 NA12046E
SRR764693 NA12414
SRR766026 NA11830
SRR766060 NA12044
SRR702068 NA12155
SRR709975 NA11831
SRR716423 NA12043
SRR718067 NA12005
SRR764689 NAO7357
SRR764718 NAO7056
SRR766039 NAO7000
SRR766061 NA12003
SRR702069 NA12489
SRR710128 NA11829
SRR716424 NA12043
SRR718076 NA12762
SRR764690 NA07357
SRR766003 NA11832
SRR766044 NA10851
SRR767596 NA12046E
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