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Abstract Seed banks are a common characteristics to many plant species,
which allow storage of genetic diversity in the soil as dormant seeds for various
periods of time. We investigate an above-ground population following a Fisher-
Wright model with selection coupled with a deterministic seed bank assuming
the length of the seed bank is kept constant and the number of seeds is large.
To assess the combined impact of seed banks and selection on genetic diversity,
we derive a general diffusion model. We compute the equilibrium solution of
the site-frequency spectrum and derive the times to fixation of an allele with
and without selection. Finally, it is demonstrated that seed banks enhance the
effect of selection onto the site-frequency spectrum while slowing down the
time until the mutation-selection equilibrium is reached.
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2 Bendix Koopmann et al.

1 1 Introduction

15 Dormancy of reproductive structures, that is seeds or eggs, is described as a
1 bet-hedging strategy (Evans and Dennehy 2005; Cohen 1966) in plants (Hon-
v mnay et al 2008; Evans et al 2007; Tielborger et al 2012), invertebrates (e.g.,
18 Daphnia; Decaestecker et al 2007) and microorganisms (Lennon and Jones
19 2011) to buffer against environmental variability. Bet-hedging is widely de-
2 fined as an evolutionary stable strategy in which adults release their offspring
a1 into several different environments, here specifically with dormancy at differ-
2 ent generations in time, to maximize the chance of survival and reproductive
23 success, thus magnifying the evolutionary effect of good years and dampening
2 the effect of bad years (Evans and Dennehy 2005; Cohen 1966). Dormancy
» and quiescence sometimes have surprising and counterintuitive consequences,
% similar to diffusion in activator-inhibitor models (Hadeler 2013). In the follow-
x ing study, we focus more specifically on the evolution of dormancy in plant
s species (Honnay et al 2008; Evans et al 2007; Tielborger et al 2012), but the
2 theoretical models also apply to microorganisms and invertebrate species (De-
% caestecker et al 2007; Lennon and Jones 2011.)

s Seed banking is a specific life-history characteristic of most plant species, which
» produce seeds remaining in the soil for short to long periods of time (up to
13 several generations), and it has large but yet underappreciated consequences
3 (Evans and Dennehy 2005) for the evolution and conservation of many plant
35 species.

s First, polymorphism and genetic diversity are increased in a plant population
s with seed banks compared to the situation without banks. This is mostly due
1 to storage of genetic diversity in the soil (Kaj et al 2001; Nunney 2002). Seed
s banks also damp off the variation in population sizes over time (Nunney 2002).
w0 Under unfavourable conditions at generation ¢, the small offspring production
o is compensated at the next generation t + 1 by individuals from the bank
2 germinating at a given rate. Under the assumption of large seed banks, the
1 observed population sizes between consecutive generations (¢ and ¢ + 1) may
w then be uncoupled.

s Second, seed banks may counteract habitat fragmentation by buffering against
s the extinction of small and isolated populations, a phenomenon known as the
w  “temporal rescue effect” (Brown and Kodric-Brown 1977). Populations which
s suffer dramatically from events of decrease in population size can be rescued
s by seeds from the bank. Improving our understanding of the evolutionary con-
so ditions for the existence of long-term dormancy and its genetic underpinnings
s is thus important for the conservation of endangered plant species in habitats
52 under destruction by human activities.

53 Third, germ banks influence the rate of natural selection in populations. On
s« the one hand, seed banks promote the occurrence of balancing selection for
55 example for color morphs in Linanthus parryae (Turelli et al 2001) or in host-
s parasite coevolution (Tellier and Brown 2009). On the other hand, the storage
s effect is expected to decrease the efficiency of positive selection in populations,
ss  thus natural selection, positive or negative, would be slowed down by the
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The Fisher-Wright model with deterministic seed bank and selection 3

s presence of long-term seed banks. Empirical evidence for this phenomenon has
o been shown (Hairston and Destasio 1988), but no quantitative model exists so
o1 far. In general terms, understanding how seed banks evolve, affect the speed
e of adaptive response to environmental changes, and determine the rate of
63 population extinction in many plant species is of importance for conservation
6 genetics under the current period of anthropologically driven climate change.

6 Two classes of theoretical models have been developed for studying the influ-
s ence of seed banks on genetic variability. First, Kaj et al (2001) have proposed a
e backward in time coalescent seed bank model which includes the probability of
e aseed to germinate after a number of years in the soil and a maximum amount
6 of time that seeds can spend in the bank. Seed banks have the property to en-
7 hance the size of the coalescent tree of a sample of chromosomes from the above
n  ground population by a quadratic factor of the average time that seeds spend
2 in the bank. This leads to a rescaling of the Kingman coalescent (Kingman
7z 1982) because two lineages can only coalesce in the above-ground population in
7 a given ancestral plant. The consequence of longer seed banks with smaller val-
75 ues of the germination rate is thus to increase the effective size of populations
7 and genetic diversity (Kaj et al 2001) and to reduce the differentiation among
7 populations connected by migration (Vitalis et al 2004). This rescaling effect
7 on the coalescence of lineages in a population has also important consequences
7 for the statistical inference of past demographic events (Zivkovié and Tellier
s 2012). In practice this means that the spatial structure of populations and seed
s bank effects on demography and selection are difficult to disentangle (Bondel
» et al 2015). Nevertheless, Tellier et al (2011a) could use this rescaled seed bank
ss  coalescent model (Kaj et al 2001) and Approximate Bayesian Computation to
s infer the germination rate in two wild tomato species Solanum chilense and
s S. peruvianum from polymorphism data (Tellier et al 2011b).

s A second class of models assumes a strong seed bank effect, whereby the time
a7 seeds can spend in the bank is very long, that is longer than the population
s coalescent time (Gonzélez-Casanova et al 2014), or the time for two lineages
s to coalesce can be unbounded. This latest model generates a seed bank coales-
w cent (Blath et al 2015a), which may not come down from infinity and for which
o the expected site-frequency spectrum (SFS) may differ significantly from that
« of the Kingman coalescent (Blath et al 2015b). In effect, the model of Kaj
e et al (2001) represents a special case, also called a weak seed bank, where the
o time for lineages to coalesce is bounded by the maximum time that seeds can
os spend in the bank.

os In the following we focus on the weak seed bank model where the time in the
or  seed bank is bounded to a small finite number assumed to be realistic for most
e plant species (Honnay et al 2008; Evans et al 2007; Tielborger et al 2012; Tellier
o et al 2011b). We develop a forward in time diffusion for seed banks following
w0 a Fisher-Wright model with random genetic drift and selection acting on one
1w of two genotypes. The time rescaling induced by the seed bank is shown to
102 be equivalent for the Fisher-Wright and the Moran model. We provide the
103 first theoretical estimates of the effect of seed bank on natural selection by


https://doi.org/10.1101/035246
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/035246; this version posted December 24, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4 Bendix Koopmann et al.

14 deriving the expected SFS of alleles observed in a sample of chromosomes and
s the time to fixation of an allele. Note that we do not prove every step in the
s most rigorous sense but keep the derivations on a more intuitive level to focus
w7 on the overall line of reasoning and biological implications.

1w 2 Model and Diffusion Limit
109 2.1 Model description

no  We consider a finite plant-population of size N. The plants appear in two
m  genotypes A and a. We assume non-overlapping generations. Let X, denote
uz  the number of type-A plants in generation n (that is, the number of living type-
us  a plants in this generation is N — X,,). Plants produce seeds. The number of
na  seeds is assumed to be large, such that noise in the seed bank does not play
us  a role (therefore we call the seed bank “deterministic”). The amount of seeds
une produced by type-A-plants in generation n is S4X,, that of type-a plants
wr Ba(N — X,,). The seeds are stored e.g. in the soil and may germinate in the
ns  next generation, but also in later generations.

ne  To obtain the next generation of living plants X,,, we need to know which
o seeds are likely to germinate. Let b (i) be the fraction of type-A seeds of age
21 4 able to germinate, and b,(7) that of type-a seeds. Hence, the total amount
12 of type-A seeds that is able to germinate is given by

Z ba(i)BaXn—i,
=1

123 and accordingly, the total amount of all seeds that may germinate
> ba(@)BaXn—i + Y balD)BalN = Xns).
=1 i=1

12« The probability that a plant in generation n is of phenotype A is given by the
15 fraction of type-A seeds that may germinate among all seeds that are able to
e germinate. The Fisher-Wright model with deterministic seed bank reads

X, ~ Binom(g,,(X,s),N), where
Z(i)il bA(Z)BAXn—z
Z:il bA(Z.)ﬂAani + Zf; ba(i)ﬂa(N - ani).

127 Next we introduce (weak) selection. The fertility of type a is given by
Ba - (1 - Sl)ﬁAa

18 such that s; = 0 corresponds to the neutral case. Furthermore, the fraction of
1o surviving seeds is affected. We relate b, (i) to ba(i) by

ba(i) = (1 — s2) ba(i).

n(Xe) = (1)
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1w Of course, sy has to be small enough to ensure that b,(7) € [0,1]. There are
1w other ways to incorporate a fitness difference in the surviving probabilities of
12 seeds, but we feel that this is the most simple version. If we lump s; and so
133 in one parameter that scales in an appropriate way for selection,

(1-51)(1—s82)=1—0/N,

13 (the sign is chosen in such a way that genotype A has an advantage over
13 genotype a for o > 0) then (1) with selection becomes

iy ba(i) Xn—s
Yt ba()Xn—i+ (1= 0/N) 322, ba(i)(N = Xpi)’

s As this ratio is homogeneous of degree zero in bu, we assume » .~ ba(i) = 1.
17 That is, ba(i) is considered a probability distribution for the survival of a
138 (type-A) seed. From now on, we will assume that the maximum and therefore
1 also the average life time of a seed is finite, B = "7~ iba(i) < co. The sum
w Yoo, ba(i)X,—; is a moving average. We emphasize this fact by introducing
m  the operator

Qn(Xo) =

My (Xe) = ba(i)Xn .

w2 As a consequence, we have M,,(N) = N, and

_ Mn(X')
qn(XO) - Mn(Xo) + (1 — O'/N)(N — Mn(X.))
_ M, (Xe) (2)
N —0/N (N — M,(X,))’

ws 2.2 Diffusion limit

s The aim of this section is to demonstrate that under an appropriate scaling of
us X, and time, the model approximates the diffusive Moran model. Before we
us start, we recall briefly the corresponding procedure for the standard Fisher-
w7 Wright model.

us  2.2.1 The Fisher-Wright model without selection

1 o Model: X,,41 ~ Binom(X,,/N, N).

10 o Rescale population size: Let x, = X,,/N. Then, X,,+1 ~ Binom(z,, N). For
151 N large, the Binomial distribution approximates a normal distribution with
152 expectation z, N and variance z,(1 — x,)N. Let n, be i.i.d. N(0,1)-random
13 variables. Then,

Tpt1 = Xpt1/N =~ (xn N+ (z,(1 - zn))l/QNl/an) /N
= 2+ N7V2 (2,(1 — 20)Y? .
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15« o Rescale time: Now define At = 1/N, introduce the time 7 = nAr, let
155 UpAr = Ty, and rescale the index of the normal random variables, that is,
s replace N, by Naar = 1. Then, uriar — ur = ATY? (u (1 — ur))/2 ;.
157 According to the Euler-Maruyama formula (see e.g. Kloeden and Platen 1992),
158 we approximate the diffusive Moran model for N large (that is, A7 = 1/N
159 small)

dur = (ur (1 —u, )2 dW,.

1o  Mostly, the approximation of the binomial distribution by a normal distribu-
11 tion and the scaling of time is done in one step; however, as in seed bank
12 models the different time scales are decisive, we prefer to keep these two steps
163 separated.

e 2.2.2 Seed bank model with a geometric germination rate and without
15 selection

16 There is one case where our model becomes particularly simple: if we have
w7 no selection, and the b(i) follow a geometric distribution with parameter
s € (0,1). In this case, the delay-model is equivalent to a proper Markov chain.
1o As a warm-up, we will first derive the diffusion limit for this special case.

w  Proposition 1 Consider the seed bank model described in section 2.1 for
w0 =0.Definez, = o, b(i)Xnt1-i/N. Let b(1) = p and b(i) =(1 — p)b(i — 1).
172 Then,

Znt1 = Xni1/N + (1= p) 2, and X,y1 ~ Binom(z,, N). (3)

s Proof: It is simple to see that z, = u> i~ (1 — u)* ' X, 41-;/N. We imme-
s diately obtain

Zngl =l Z(l — 1) Xpgo_i/N
=1

= pXnt1/N +p Z(l — )" Xnjp1--1/N

=2
= pXng1/N + (1= p) zn.

s Next (and with the nomenclature of (2)), we have
Gn+1(Xe) = Mp11(Xe/N) = Z b(i) Xnt1-i/N = zn.
i=1

we  Hence, X,,11 ~ Binom(g,+1, N) = Binom(z,, N).
O

w7 Note that z, can be interpreted as the state of the seed bank (the fraction of
s type-A seeds that are able to germinate).

w9 As this model is Markovian, it is simple to derive the diffusion limit. As usual,
wo we start off by defining x,, = X,,/N, and obtain z, = pz, + (1 — u) zp—1,
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w1 Xp41 = Binom(z,, N). Approximating the Binomial distribution by a normal
12 distribution for N large yields

xn—i—l ~ Zn + N_l/Q(Zn(l - Zn))l/ana

s where the 1, ~ N(0,1) i.i.d.. As z,4+1 can be expressed by z, and z,41, the
1e  foregoing two equations give

Znp1 — (L= 1) 2n

=z, + N_1/2(zn(1 — zn))1/2nn.
1

s Therefore, 2,41 — 2 = p N2 (2,(1 — 2,))"/? 0. Scaling time by N yields
ws for u, v = 2z, and 7 =n/N

dur = p (ur (1 —up))2dW,.

w7 If we define B = 1/u (the expected value of a geometric distribution with
s parameter p), we may write this equation as

(ur (1 - U'r))l/2
B

19 We find a diffusive Moran model for the state of the seed bank with rescaled

10 time scale. We expect a similar result to hold in the general case. A difference

11 between the two cases is that we here naturally considered the state of the

12 seed bank, while in the general case we will focus on the state of living plants.

AW, (4)

dur; =

103 2.2.8 The seed bank model with selection

1va  We go through the equivalent steps for the Fisher-Wright model with deter-
15 ministic seed bank and selection.

s Proposition 2 Consider the seed bank model described in section 2.1 and let
w X = Xp/N and At = 1/N. Then, (2) becomes

Ty — My (24) — At o My (24)(1 — M, (z4)) + O(A?) (5)
1/2
= Atl/Q { <Mn(xo)(1 - Mn(zo))) + O(At)} M-

s Proof: From (2), we immediately have

Mn(JjO)

an(e) = (Xe/N) = T = )

10 For N large, the binomial distribution can be well approximated by a normal
200 distribution, so that

S M, ()
"= Ato (1 — My(z.))

(1 jﬁ(f'}wn(x.)))m (= %(f'f)wn@.)))m e
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a1 where 1, ~ N(0,1). As the noise and the drift term scale differently, an At*/?
22 order approximation for this term is sufficient, and we have

_ My (z)
1—Ato (1 — My,(z,))

=~ (3 G ) N (- =z G ) o

1/2
= At1/? { (Mn(:c.)(l — Mn(x.))) - O(At)} .-

Ln

203 Finally, we use a first-order Taylor-expansion for the drift term in At to obtain

M, ()

1— Ato(1— My(z.)) My (24) + At o My(ze)(1 = My(24)) + O(A?),

2 which yields the desired result.
O

2s In the following we neglect the higher order terms. If we consider the scaling
26 of the terms w.r.t. At, then the leading term is x,, — M, (x.). This difference
27 must not become too large, as all other terms in the equation are at least of
x5 order At'/2. That is, the state z, can only slowly drift away from M, (z,)
200 (which represents the state of the seed bank). Hence, for a reasonable number
20 of time steps, M,,(z,) is fairly constant. In order to understand the model, we
a1 define

1/2
a=Ato My(ze)(1 — My(zs)), S= (Mn(z.)(l - Mn(:c.))> .

a2« and B are random variables that depend on time. However, if we assume a
213 separation of time scales, then we understand the dynamics of the model at a
24 short time horizon by considering the surrogate model

Yn = Mn(ye) — = AL2B 1, (6)
x5 according to (5), and «, 8 and At being positive, real-valued constants. This
2z recursive equation is well known as an auto-regression (AR) model in the

a7 statistical modelling of time series. If o # 0, this model incorporates a trend.
28 We first remove this trend.

20 Proposition 3 Assume (6) and define z, = y, — wy, with w, = na/B and
»n B = Z;}il ’LbA(’L) Then,

Zn — Mn(ZO) = Atl/Q 57771
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21 Proof: By definition of M,, we have M, (we) = > ;o ba(i) (n —i)a/B =
2 na/B—a. Wereplace y,, by z, +wy, in (6), and find with M, (ye) = M, (2zs) +

223 Mn(w.),
o
Zn + ng = (Mn(z.) + Mn(w.)) -«
« «
:znan(z.)jLnEfa— (nE—a)
= Atl/Qﬂnn.

2¢  Next we convert the AR model into a moving average equation.

»s  Proposition 4 Let z, — M, (z,) = At'/? 8n,, where n, are i.i.d. N(0,1)-
s distributed. For At < 1, and n large, z, satisfies approzimately the recursive
27 equation
At1/2 6
B

»s  Proof: We define the back-shift operator acting on the index of a sequence,
»o Lz, = z,-1, and a power series

Zp N Zn-1 + Mn-

Y(x)=1- ZbA(i)xi.

20 Therewith we may write
W(L)zy = 25 — My (2e) = A2 B,

an Note that (1) = 0, which does mean that the AR model is non-stationary. We
22 do not find a power series ¢* (x) well defined at x = 1 such that 1*(z) ¢ (z) = 1.

23 Therefore, we rewrite ¢(x) as ¢(x) = (1 — 2)9(x) (which is the defining
2 equation of (x)). As

9(1) = tim P ) = 3 i) i= B A0,

i=1

25 we do find ¥*(x) such that ¢¥*(x)y(z) = 1, and hence ¢*(x)p(x) =1 — x in
26 a neighbourhood of = 1. As an immediate consequence (used later) we have
2 1p*(1) = 1/B. If we multiply the equation 9(L)z, = At'/? gn, by ¢*(L), we
23 obtain

Zn — Zpn—1 = (1 - L)Zn = 1/}* (L)ﬂnn = 51/1* (L)nn

230 and
Zn = Zp—1+t Atl/Q Bw*(L)nn
= Zn-2+ Atl/Q ﬁw*(L)Un + Atl/Q 51/1*(1/)7771—1 =

~ AtY/? I5; Zw*(L)nn,g.
£=0
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20 Let ¢¥*(z) = .7 a;z". We expand the sum above, and obtain

ZZ:O Y (L)Nn—¢ = QoM +a1Mn—1 +a20n—2 +03Mn—3 +AaTn—a +a50n—5 + - - -
+aoMn—1 +a1Mp—2 +02Nn—3 +a3MNn—4 +a4Np—5 + -

+aoMn—2 +a1Mp—3 +02Nn—g +a3MNp—5 + -

+aonNn—3 +01Mn—4 +a2M0n—5 +---

a1 If we inspect not rows (that have ¢*(L)n;—, as entries) but columns (that
2 contain always the same random variable 7;_¢), we find that the coefficient in
23 front of one given random variable 7;_, approximates ¢*(1) for £ — oc.

2«4 At this point, we want to write 2,11 ~ At'/2 3 ¢*(1)Y_;_, ne. This is only
25 true, also in an approximate sense, if n is large and the state z, does hardly
us change over a time scale that allows Y " a; to converge to ¢*(1) = 1/B.
ar If At'/2 is small, then z, indeed changes on a time scale given by 1 /At (for
xus our evolutionary model, we have convergence of the sum on the ecological
29 time scale, and the change of z, on the evolutionary time scale, which are
50 completely different if the population size is large). Hence, for At small we are
1 allowed to assume

Zni1 m A2 B ) (1)2776 = Tﬁ ZW-
=1 =1

s Thus, zn41 = (A2 B/B) S°)_ ne and zn41 — 2, = (A2 3/ B) .

»3 We return to y, again, and find:

x4 Corollary 1 Let My, (ye) = Y ioq0a())yn—i, and yn — My_q(ye) + o =
255 Atl/Qﬂnn,q for a, At, B € Ry. Then, for At small, y, satisfies approxi-
6 mately the recursive equation

_ n « n At/2p
Yn = Yn—1 B B Tn—1,
7 where B = Z;’ilibf;(i).
258 [Fig. 1 about here.]

20 Remark 1 If we start with yg = 0, we expect that y,, is (approximately) nor-
x0 mally distributed with expectation n a/B, and variance n At3%/B2. In order
s to check the heuristic argumentation numerically, we took o = 0.01, At = 0.01,
% [=2and My(z.) =L S" x,;form =29, that is, B = 5. Simulations show
3 an excellent agreement with our computations (Fig. 1).

24 Now we return to the scaled Fisher-Wright model with seed bank. Though
s My (xe) will change, we expect it to change on the evolutionary time scale,
s while the generations n are still on the ecological time scale. Hence, we are
»7  allowed to use corollary 1 to obtain the following result.
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xs  Corollary 2 The realizations {xy tnen, of the AR model given in (5) satisfy
w0 for small At (= 1/N) approzimately the equation

o 1 1/2
Ty = xn_l—i—AtEMn(ac.)(l—Mn(x.))—i—Atl/QE (Mn(x.)(l—Mn(x.))) M-

o0 This formulation allows to rescale time. We work on an evolutionary time scale
on instead of generations. This yields an SDE.

o Theorem 1 Let upay = . If x, only changes on the time scale given by
o 1/At, then ug satisfies for At small approximately the SDE

p 1 1/2

o Proof: Let Myas(us) = Yo ba(i41)ug—ia: (note the index shift between
a5 M, and Mn, which corresponds to an index shift in the next equation from
a6 Xy t0 Usrae). Then,

o - .
Ut AL — Ut = AtEMnAt(u‘)(l = My ai(us))
, ) ) 1/2
+ Atl/QE (MnAt(uo)(l - MnAt(u°))) M-

o7 Hence, u; changes on the time scale determined by 1/At, that is, slowly in
zs  comparison with n. If the b (i) decline fast enough (resp. At is small enough),
ae then xy is fairly constant on the time scale used for the moving average, that
280 iS, MnAt(u.) X Ut.

O

s Please note that this result seems to inherit the usual stability of a diffusion
22 limit w.r.t. the detailed model assumptions: if we start off with a Moran model
23 instead of a Fisher-Wright model combined with a seed bank, we again obtain
28 a diffusion limit of similar form (see Appendix A).

s We now change the time scale such that the variance coincides with the stan-
s dard diffusive Moran model.

x7  Corollary 3 If we define T = t/B?, then the SDE reads

1/2
dur = (6B)u (1 — u.)dr + (u.r(l - u.r)> dW-. (8)

s Scaling of the selection parameter. We conclude that the appropriate
280 scaling of time for the Fisher-Wright model with seed bank is not 1/N but
20 1/(B%N). Moreover, the effective selection rate (w.r.t. this time) is increased
21 by the average number of generations B the seeds sleep in the soil.
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22 3 The forward diffusion equation for seed bank models with
203 selection

204 In analogy to above, we consider a single locus and two allelic types A and a
25 with frequencies x and 1 — z, respectively, at time zero. Time is scaled in units
26 of 2N generations. In the diffusion limit, as N — oo, the probability f(y,t)dy
27 that the type-A genotype has a frequency in (y, y +dy) is characterized by the
s following forward equation (see Kimura 1955 for B = 1):

9 F1) =~ (o) £ 0) + 5 s (6(0) S, 1)

Oy 2 Oy?
200 where the drift and the diffusion terms are given by a(y) = o y(1 — y)/B and
w0 b(y) = y(1 —y)/B?, respectively.
sm  For the derivations of the frequency spectrum and the times to fixation we
w2 require the following definitions. The scale density of the diffusion process is

33 given b
o £(y) = exp (— /O ! chz(j)) dz) = exp (—2Boy).

s+ The speed density is obtained (up to a constant) as

B2 exp (2Boy)
y(1—vy)
s The probability of absorption at y = 0 is given by

m(y) = b(y)Ey) ™' =

_ fml &(z)dz _ exp(2Bo(l —z)) —1
fol £(2)dz exp(2Bo) -1

uo ()

ws  and ug(z) = 1 — up(x) gives the probability of absorption at y = 1.

a7 3.1 Site-frequency spectra

ws  The site-frequency spectrum (SFS) of a sample (e.g., Griffiths 2003; Zivkovié
20 and Stephan 2011) is widely used for population genetics data analysis . A
a0 sample of size k is sequenced, and for each polymorphic site the number of
su  individuals in which the mutation appears is determined. In this way, a dataset
sz is generated that summarizes the number of mutations (j; appearing in ¢
a3 individuals, ¢ = 1,...,k — 1. That is, (5,1 = 10 indicates that 10 mutations
su only appeared once, and (i 2 = 5 tells us that five mutations were present
a5 in two individuals (where the pair of individuals may be different for each of
a6 the five mutations). Note that neither (i o nor (i are sensible: a mutation
a7 that appears in none or all individuals of the sample cannot be recognized as
s a mutation. In practice, it is often not possible to know the ancestral state.
no Then the folded SFS ny; = (Cks + Co—i)(1 + 1{1':1@—1'})71 can be used. Since
20 both empirical observations and theoretical results for the folded SF'S follow
a1 instantaneously from the unfolded one, we only consider the unfolded version.
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s For the derivation of the theoretical SF'S, we assume that mutations occur
w23 according to the infinitely-many sites model (Kimura 1969). The scaled mu-
324 tation rate is given by 6 = 4N v, where v is the mutation rate per generation
»s  at independent sites. Assuming that each mutant allele marginally follows the
26 diffusion model specified above, the proportion of sites where the mutant fre-
27 quency is in (y,y + dy) is given by (Griffiths 2003)

fo _ 6B?  exp(2Bo) — exp(2Boy)
f(y> - 97T(y) uo(y) - y(l — y) eXp(QBO’) 1
9B? 1 —exp(—2Bo(1—v))
y(l—vy) 1—exp(—2Bo) '

28 Where f (y) denotes the equilibrium solution of the population SFS. For neu-
2 trality, we immediately obtain f (y) = 0 B%/y by letting o — 0 in the foregoing
30 equation.

sn The equilibrium solution of the SFS for a sample of size k is obtained via
s binomial sampling (see Zivkovié et al 2015 for B = 1) as

R k 1 . ) k 1 —1F1 (i k; 230)6_23‘7
= 1 —y)*"dy = B> —
fk,l (Z) /0 f(y)y ( y) dy 0 ’L(k 7 Z) 1 — ¢—2Bo ’

33 where 1 F; denotes the confluent hypergeometric function of the first kind
s (Abramowitz and Stegun 1964). For neutrality, we again immediately obtain

s fri = 0B2/i by letting 0 — 0. For a large number of mutant sites, the
us  relative SFS 7 = fri/ Z;:ll fr,; approximates the empirical distribution

s Chif 25;11 Ck,; for a constant population size. Note that the solutions for the
18 absolute SFS assume that mutations can occur at any time. When assum-
a0 ing that mutations can only arise in living plants (Kaj et al 2001), 6 has to
s be replaced by 6/B in the respective equations. Both mutation models give
a equivalent results for the relative SFS.

302 [Fig. 2 about here.]

a3 As shown in Figure 2a, the neutral diffusion approximation is in line with
s the simulation results of the original discrete model. The theoretical relative
us  SFS for a sample of 250 individuals approximates the simulated SF'S, which is
us obtained as an average over 10,093 repetitions. In every iteration, the sample
wr is drawn from an initially monomorphic population of 1000 individuals after
us 400,000 generations (so that the population has reached an equilibrium). Fig-
us  ure 2b illustrates the enhanced effect of selection proportional to the length of
0 the seed bank.

3.2 Times to fixation

2 We assume that both y = 0 and y = 1 are absorbing states and start by
33 considering the mean time until one of these states is reached in the diffu-
14 sion process specified above. The mean absorption time ¢ can be expressed as
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35 (Ewens 2004)

il

(z) = | t(x,y)dy, 9)
/

36 where

Y

) = 2uo(@) b)) / ()dz 0<y<u,

0
iz, ) = 2un (@) b(y)E@w)] ! / ()dz w<y<l.

s For genic selection the integral in (9) cannot be analytically solved. For se-
s lective neutrality, we obtain £(z) = —2 B? (z log(z) + (1 — ) log(1 — x)) (see
30 e.g. Ewens 2004 for B = 1) by employing the drift term, the scale density and
w0 the probabilities of absorption as specified above.

1 Now, we evaluate the time until a mutant allele is fixed conditional on fixation
s as i*(z) = fol t*(z,y)dy, where t*(x,y) = t(x,y)u1(y)/ui(x). For genic selec-
%3 tion the mean time to fixation in dependency of x can only be derived as a
s very lengthy expression in terms of exponential integral functions. The neutral
s result is found as £*(z) = —2B?(1 — x)/zlog(1 — z) and in accordance with a
s classical result (Kimura and Ohta 1969) for B = 1. For « — 0, we obtain

T 2B 2Bo s
= m((e +1)y—Ei(2Bo) +log(2 Bo)

+e?B7(~Ei(-2Bo) +log(2Bo))), o>0, (10)

t* =2 B2, o =0,

7 where v is Euler’s constant and Ei denotes the exponential integral function
sse (Abramowitz and Stegun 1964).

369 [Fig. 3 about here.]

s In Figure 3a, we compare the time to absorption of the original discrete seed
sn - bank model by means of simulations with the theoretical result obtained from
sz the diffusion approximation. For b4 we use uniform distributions, where we
sz vary the expected values between 1 and 8 corresponding to the length of the
s seed banks between 1 and 15. We choose an initial fraction of 0.5 for the type-
ws A genotypes. The simulations show a good agreement between our analytical
we approximation and the numerical simulations. In Figure 3b, we show the effect
sz of the seed bank on the times to fixation conditional on fixation of the type-A
s genotype for neutrality and positive selection.
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39 4 Discussion

0 Within this study, we develop a forward in time Fisher-Wright model of a
s deterministically large seed bank with drift occurring in the above-ground
2 population. The time that seeds can spend in the bank is bounded and finite, as
;3 assumed to be realistic for many plant or invertebrate species. We demonstrate
s that scaling time in the diffusion process by a factor B? generates the usual
s Fisher-Wright time scale of genetic drift with B being defined as the average
s amount of time that seeds spend in the bank. The conditional time to fixation
w7 of a neutral allele is slowed down by a factor B? (Figure 3b, dotted line)
s compared to the absence of seed bank. These results are consistent with the
3 backward in time coalescent model from Kaj et al (2001), and differs from the
w0 strong seed bank model of Blath et al (2015a). We evaluate the SFS based
s on our diffusion process and confirm agreement to the SFS obtained under
32 discrete time Fisher-Wright simulations.

33 In the second part of the study, we introduce selection occurring at one of
s the two alleles, mimicking positive or negative selection. Two features of se-
s lection under seed banks are noticeable. First, selection is slower under longer
26 seed banks (Figure 3b, solid line) confirming previous intuitive expectations
w7 (Hairston and Destasio 1988). Second, when computing the SFS with B = 2
s and without seed bank (B = 1) under positive selection (o = 2) we reveal a
w0 stronger signal of selection for the seed bank by means of an amplified uptick
wo of high-frequency derived variants. This effect becomes more prominent with
w1 longer seed banks and also holds for purifying selection, under which an in-
w2 crease in low-frequency derived variants is induced by the seed bank. We ex-
w03 plain this counterintuitive results as follows: longer seed banks increase, on the
w4 one hand, the selection coefficient o generating a stronger signal at equilibrium
ws (Figure 2b), and on the other hand, the time to reach this equilibrium state
ws  (Figure 3b). Our predictions are consistent with the inferred strengths of pu-
w7 rifying selection in wild tomato species. Indeed, purifying selection at coding
ws regions appears to be stronger in S. peruvianum than in its sister species S.
wo  chilense (Tellier et al 2011a) with S. peruvianum exhibiting a longer seed bank
a0 (Tellier et al 2011b).

41 Acknowledgements This research is supported in part by Deutsche Forschungsgemein-
412 schaft grants TE 809/1 (AT) and STE 325/14 from the Priority Program 1590 (DZ).

a3 Appendix A Moran model with deterministic seed bank

414 We briefly sketch the arguments that allow to handle a Moran model with seed bank; the
415 reasoning is completely parallel to the time-discrete case. In order to keep this appendix
416 short, we do not take into account selection but focus on the neutral model.
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a7 A.1 Model

418 We start off with the individual based model. Let the population size be N, X; the number
419 of genotype-A-plants, p the death rate, and b(s) the distribution of the ability for a seed at
420 age s to germinate; we require fooo b(s)ds =1, B = fooo sb(s)ds < oo, and b(s) sufficiently
421 smooth. Then,

oo
P(Xttrnr = Xe + 1| X7 for 7 <t) = AtpN(1— Xt/N)/ b(T) Xi—s/Nds + O(At), (11)
0
P(Xiynr = Xt — 1| X5 for 7 < t) = AtuN(Xt/N)(l —/ b(T)Xt,S/Nds) + O(A¢). (12)
0

42 Note that the delay process requires the knowledge of the complete history {Xs}s<¢. The
423 usual continuous limit for zy = X¢/N yields (with e = 1/N)

oo oo 1/2
dry = p ( / b(s) xt—sds — xt) ds + {eu / b(s)(xt + Tp—s — 2a¢ xtfs)ds} dWy.
0 0

424 If we rescale time in the usual way, 7 = et, and define v5 = uZ,, we obtain

oo
ot = et (5*1 / b(s/e) (ve_, — vi)ds) dr
0

oo 1/2
+ (571 " / b(s/e) (vE + vE_y — 205 vE_,) ds) AW, . (13)
0

425 The aim here is to find heuristic arguments indicating that v approximates for € — 0 the
426  solution of a Moran diffusion process with rescaled time, paralleling equation (7).

427 Remark 2 In some sense, the terms in this time-continuous model are better to interpret
428 than the parallel terms in the Fisher-Wright model: both terms within the brackets are
429 moving averages, and clearly

oo
lim (z—:*lu/ b(s/e)(uTJruT_s72u7u7._s)ds) — pur(l—ur)
e—0 0

430 for a function u, that is reasonably smooth. For the drift term, we find similarly

(oo}
lim (6_1 / b(s/e) (ur—s —uT)ds) — ur —ur = 0.
e—0 0

431 However, this bracket is divided by €, and hence does not vanish for ¢ — 0. If we take a
42 closer look, we find that a deviation of z, from the moving average (the state of the seed
433 bank) is punished. That is, the state of living plants can change only slower in comparison
43¢ with a model without seed bank, and therefore for ¢ — 0 we expect a diffusion model at a
435 slower time scale.

s A.2 Scaling e — 0

437 We drop the superscript € in v, and write simply v-. In order to use the arguments devel-
438 oped above, we discetize the stochastic differential-delay equation by the Euler-Maruyama
439 formula, and find

oo
_ A
Uryar =vr —€ AT <UT > vriare! T)>
=1

o 1/2
+ <}L Z ‘PEAT) (U"' + vffiA‘r —2vr Uf'fiA‘r) > VAT N
i=1
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(At)

a0 where n; are i.i.d. N(0,1) distributed, and the weights ¢, are chosen as

oo
oA = b(i Arfe)(AT/e) + O(AT?[e), such that Y o{*7) =1.

i=1

441 If we now define

o 1/2
ﬁ = </J' Z LPEAT) (vT + v?—iAT —2vr vi—iAT) ) ’

=1

YE@)=1—2+ uAre1 <z - Z goEAt)zHl) ,
i=1

42 we may rewrite the discretized equation for v, as
w(L)UT+AT =BV AT,

43  where Lv;y = v;_ar. We are now in the position of the proof for Prop. 4 (neglecting the
444 time-dependency of ). As

—/(1) = 1 - pAr/e+p i P20+ 1)Ar/e
=1
=1—pAr/e+p Y bli Ar/e)(iAT/e)(AT/e)
i=1

+AT/ep Y (b(i Ar/e)(AT/e) + O(AT? Je))

i=1

445 we have

oo
1+,u/ b(s)sds =1+ uB for At/e — 0,
0

46 and conclude that approximately

BV AT
14+upB

Vr4Ar = Ur + Nr-

47 Hence, for ¢ — 0 we expect (according to these heuristic arguments) that vS satisfies the
w8 rescale diffusion equation

(1 —vr)t/?
do, = LT = vn)) 2
1+uB

49 If we define G = 1/pu, the average inter-generation time of living plants, this equation
450  becomes even more close to that derived for the Fisher-Wright case,

_ (o1 =)'
dv, = “TBic AW, (14)

451 as it becomes clear that the correction factor 1 + B/G measures the average time a seed
452 rests in the soil in terms of generations.
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Fig. 1: Simulation of the AR model (1000 runs). Samples have been taken at
time steps 100, 200,..., 1000. (a) Boxplot of the simulated time series y, at
indicated time points together with the mean according to corollary 1 (line).
(b) Variance of the simulated time series at indicated time points (dots), to-

gether with the variance according to corollary 1 (line). For parameters used:
see text.
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Fig. 2: (a) Simulation and theoretical prediction for the neutral relative SFS
and a uniformly distributed seed bank of length B = 10. For the simulation
of the original discrete model the population size was chosen as 1000, we
started without mutations and stopped the process after 400,000 generations
to calculate the SFS as an average over 10,093 repetitions. The light gray bar
shows the theoretical result, the dark gray bar shows the simulation outcome.
In both cases a sample of 250 individuals was drawn. (b) Theoretical results
for the relative SFS of a sample of size 20 are plotted for positive selection of
strength o = 2 without (B = 1) and with a seed bank of length B = 2.
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Fig. 3: (a) Simulation and theoretical prediction for the time to fixation of
a seed bank model. The population size is 1000 and 50% of the individuals
are initially of genotype A. We simulated 10,000 runs for each mean value.
The simulated distribution of the time to fixation is shown in the histogram
at the upper left corner taking the data of the simulated seed bank of length
B = 12. (b) The ratios of the conditional fixation times with and without
seedbank are plotted against the length of the seed bank B for neutrality
and selection by employing (10). The additional index in the ratio is used to
formally distinguish the cases with and without seed bank.
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