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Abstract Seed banks are a common characteristics to many plant species,1

which allow storage of genetic diversity in the soil as dormant seeds for various2

periods of time. We investigate an above-ground population following a Fisher-3

Wright model with selection coupled with a deterministic seed bank assuming4

the length of the seed bank is kept constant and the number of seeds is large.5

To assess the combined impact of seed banks and selection on genetic diversity,6

we derive a general diffusion model. We compute the equilibrium solution of7

the site-frequency spectrum and derive the times to fixation of an allele with8

and without selection. Finally, it is demonstrated that seed banks enhance the9

effect of selection onto the site-frequency spectrum while slowing down the10

time until the mutation-selection equilibrium is reached.11
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2 Bendix Koopmann et al.

1 Introduction14

Dormancy of reproductive structures, that is seeds or eggs, is described as a15

bet-hedging strategy (Evans and Dennehy 2005; Cohen 1966) in plants (Hon-16

nay et al 2008; Evans et al 2007; Tielbörger et al 2012), invertebrates (e.g.,17

Daphnia; Decaestecker et al 2007) and microorganisms (Lennon and Jones18

2011) to buffer against environmental variability. Bet-hedging is widely de-19

fined as an evolutionary stable strategy in which adults release their offspring20

into several different environments, here specifically with dormancy at differ-21

ent generations in time, to maximize the chance of survival and reproductive22

success, thus magnifying the evolutionary effect of good years and dampening23

the effect of bad years (Evans and Dennehy 2005; Cohen 1966). Dormancy24

and quiescence sometimes have surprising and counterintuitive consequences,25

similar to diffusion in activator-inhibitor models (Hadeler 2013). In the follow-26

ing study, we focus more specifically on the evolution of dormancy in plant27

species (Honnay et al 2008; Evans et al 2007; Tielbörger et al 2012), but the28

theoretical models also apply to microorganisms and invertebrate species (De-29

caestecker et al 2007; Lennon and Jones 2011.)30

Seed banking is a specific life-history characteristic of most plant species, which31

produce seeds remaining in the soil for short to long periods of time (up to32

several generations), and it has large but yet underappreciated consequences33

(Evans and Dennehy 2005) for the evolution and conservation of many plant34

species.35

First, polymorphism and genetic diversity are increased in a plant population36

with seed banks compared to the situation without banks. This is mostly due37

to storage of genetic diversity in the soil (Kaj et al 2001; Nunney 2002). Seed38

banks also damp off the variation in population sizes over time (Nunney 2002).39

Under unfavourable conditions at generation t, the small offspring production40

is compensated at the next generation t + 1 by individuals from the bank41

germinating at a given rate. Under the assumption of large seed banks, the42

observed population sizes between consecutive generations (t and t + 1) may43

then be uncoupled.44

Second, seed banks may counteract habitat fragmentation by buffering against45

the extinction of small and isolated populations, a phenomenon known as the46

“temporal rescue effect” (Brown and Kodric-Brown 1977). Populations which47

suffer dramatically from events of decrease in population size can be rescued48

by seeds from the bank. Improving our understanding of the evolutionary con-49

ditions for the existence of long-term dormancy and its genetic underpinnings50

is thus important for the conservation of endangered plant species in habitats51

under destruction by human activities.52

Third, germ banks influence the rate of natural selection in populations. On53

the one hand, seed banks promote the occurrence of balancing selection for54

example for color morphs in Linanthus parryae (Turelli et al 2001) or in host-55

parasite coevolution (Tellier and Brown 2009). On the other hand, the storage56

effect is expected to decrease the efficiency of positive selection in populations,57

thus natural selection, positive or negative, would be slowed down by the58
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The Fisher-Wright model with deterministic seed bank and selection 3

presence of long-term seed banks. Empirical evidence for this phenomenon has59

been shown (Hairston and Destasio 1988), but no quantitative model exists so60

far. In general terms, understanding how seed banks evolve, affect the speed61

of adaptive response to environmental changes, and determine the rate of62

population extinction in many plant species is of importance for conservation63

genetics under the current period of anthropologically driven climate change.64

Two classes of theoretical models have been developed for studying the influ-65

ence of seed banks on genetic variability. First, Kaj et al (2001) have proposed a66

backward in time coalescent seed bank model which includes the probability of67

a seed to germinate after a number of years in the soil and a maximum amount68

of time that seeds can spend in the bank. Seed banks have the property to en-69

hance the size of the coalescent tree of a sample of chromosomes from the above70

ground population by a quadratic factor of the average time that seeds spend71

in the bank. This leads to a rescaling of the Kingman coalescent (Kingman72

1982) because two lineages can only coalesce in the above-ground population in73

a given ancestral plant. The consequence of longer seed banks with smaller val-74

ues of the germination rate is thus to increase the effective size of populations75

and genetic diversity (Kaj et al 2001) and to reduce the differentiation among76

populations connected by migration (Vitalis et al 2004). This rescaling effect77

on the coalescence of lineages in a population has also important consequences78

for the statistical inference of past demographic events (Živković and Tellier79

2012). In practice this means that the spatial structure of populations and seed80

bank effects on demography and selection are difficult to disentangle (Böndel81

et al 2015). Nevertheless, Tellier et al (2011a) could use this rescaled seed bank82

coalescent model (Kaj et al 2001) and Approximate Bayesian Computation to83

infer the germination rate in two wild tomato species Solanum chilense and84

S. peruvianum from polymorphism data (Tellier et al 2011b).85

A second class of models assumes a strong seed bank effect, whereby the time86

seeds can spend in the bank is very long, that is longer than the population87

coalescent time (González-Casanova et al 2014), or the time for two lineages88

to coalesce can be unbounded. This latest model generates a seed bank coales-89

cent (Blath et al 2015a), which may not come down from infinity and for which90

the expected site-frequency spectrum (SFS) may differ significantly from that91

of the Kingman coalescent (Blath et al 2015b). In effect, the model of Kaj92

et al (2001) represents a special case, also called a weak seed bank, where the93

time for lineages to coalesce is bounded by the maximum time that seeds can94

spend in the bank.95

In the following we focus on the weak seed bank model where the time in the96

seed bank is bounded to a small finite number assumed to be realistic for most97

plant species (Honnay et al 2008; Evans et al 2007; Tielbörger et al 2012; Tellier98

et al 2011b). We develop a forward in time diffusion for seed banks following99

a Fisher-Wright model with random genetic drift and selection acting on one100

of two genotypes. The time rescaling induced by the seed bank is shown to101

be equivalent for the Fisher-Wright and the Moran model. We provide the102

first theoretical estimates of the effect of seed bank on natural selection by103
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4 Bendix Koopmann et al.

deriving the expected SFS of alleles observed in a sample of chromosomes and104

the time to fixation of an allele. Note that we do not prove every step in the105

most rigorous sense but keep the derivations on a more intuitive level to focus106

on the overall line of reasoning and biological implications.107

2 Model and Diffusion Limit108

2.1 Model description109

We consider a finite plant-population of size N . The plants appear in two110

genotypes A and a. We assume non-overlapping generations. Let Xn denote111

the number of type-A plants in generation n (that is, the number of living type-112

a plants in this generation is N −Xn). Plants produce seeds. The number of113

seeds is assumed to be large, such that noise in the seed bank does not play114

a role (therefore we call the seed bank “deterministic”). The amount of seeds115

produced by type-A-plants in generation n is βAXn, that of type-a plants116

βa(N − Xn). The seeds are stored e.g. in the soil and may germinate in the117

next generation, but also in later generations.118

To obtain the next generation of living plants Xn, we need to know which119

seeds are likely to germinate. Let bA(i) be the fraction of type-A seeds of age120

i able to germinate, and ba(i) that of type-a seeds. Hence, the total amount121

of type-A seeds that is able to germinate is given by122

∞
∑

i=1

bA(i)βAXn−i,

and accordingly, the total amount of all seeds that may germinate123

∞
∑

i=1

bA(i)βAXn−i +

∞
∑

i=1

ba(i)βa(N −Xn−i).

The probability that a plant in generation n is of phenotype A is given by the124

fraction of type-A seeds that may germinate among all seeds that are able to125

germinate. The Fisher-Wright model with deterministic seed bank reads126

Xn ∼ Binom(qn(X•), N), where

qn(X•) =

∑∞
i=1 bA(i)βAXn−i

∑∞
i=1 bA(i)βAXn−i +

∑∞
i=1 ba(i)βa(N −Xn−i)

. (1)

Next we introduce (weak) selection. The fertility of type a is given by127

βa = (1− s1)βA,

such that s1 = 0 corresponds to the neutral case. Furthermore, the fraction of128

surviving seeds is affected. We relate ba(i) to bA(i) by129

ba(i) = (1− s2) bA(i).
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The Fisher-Wright model with deterministic seed bank and selection 5

Of course, s2 has to be small enough to ensure that ba(i) ∈ [0, 1]. There are130

other ways to incorporate a fitness difference in the surviving probabilities of131

seeds, but we feel that this is the most simple version. If we lump s1 and s2132

in one parameter that scales in an appropriate way for selection,133

(1− s1) (1 − s2) = 1− σ/N,

(the sign is chosen in such a way that genotype A has an advantage over134

genotype a for σ > 0) then (1) with selection becomes135

qn(X•) =

∑∞
i=1 bA(i)Xn−i

∑∞
i=1 bA(i)Xn−i + (1 − σ/N)

∑∞
i=1 bA(i)(N −Xn−i)

.

As this ratio is homogeneous of degree zero in bA, we assume
∑∞

i=1 bA(i) = 1.136

That is, bA(i) is considered a probability distribution for the survival of a137

(type-A) seed. From now on, we will assume that the maximum and therefore138

also the average life time of a seed is finite, B =
∑∞

i=1 ibA(i) < ∞. The sum139

∑∞
i=1 bA(i)Xn−i is a moving average. We emphasize this fact by introducing140

the operator141

Mn(X•) =

∞
∑

i=1

bA(i)Xn−i.

As a consequence, we have Mn(N) = N , and142

qn(X•) =
Mn(X•)

Mn(X•) + (1− σ/N)(N −Mn(X•))

=
Mn(X•)

N − σ/N (N −Mn(X•))
. (2)

2.2 Diffusion limit143

The aim of this section is to demonstrate that under an appropriate scaling of144

Xn and time, the model approximates the diffusive Moran model. Before we145

start, we recall briefly the corresponding procedure for the standard Fisher-146

Wright model.147

2.2.1 The Fisher-Wright model without selection148

• Model: Xn+1 ∼ Binom(Xn/N,N).149

• Rescale population size: Let xn = Xn/N . Then, Xn+1 ∼ Binom(xn, N). For150

N large, the Binomial distribution approximates a normal distribution with151

expectation xnN and variance xn(1 − xn)N . Let ηn be i.i.d. N(0, 1)-random152

variables. Then,153

xn+1 = Xn+1/N ≈
(

xnN + (xn(1− xn))
1/2N1/2ηn

)

/N

= xn +N−1/2 (xn(1− xn))
1/2 ηn.
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6 Bendix Koopmann et al.

• Rescale time: Now define ∆τ = 1/N , introduce the time τ = n∆τ , let154

un∆τ = xn, and rescale the index of the normal random variables, that is,155

replace ηn by ηn∆τ = ητ . Then, uτ+∆τ − uτ = ∆τ1/2 (uτ (1 − uτ ))
1/2 ητ .156

According to the Euler-Maruyama formula (see e.g. Kloeden and Platen 1992),157

we approximate the diffusive Moran model for N large (that is, ∆τ = 1/N158

small)159

duτ = (uτ (1− uτ ))
1/2 dWτ .

Mostly, the approximation of the binomial distribution by a normal distribu-160

tion and the scaling of time is done in one step; however, as in seed bank161

models the different time scales are decisive, we prefer to keep these two steps162

separated.163

2.2.2 Seed bank model with a geometric germination rate and without164

selection165

There is one case where our model becomes particularly simple: if we have166

no selection, and the b(i) follow a geometric distribution with parameter167

µ ∈ (0, 1). In this case, the delay-model is equivalent to a proper Markov chain.168

As a warm-up, we will first derive the diffusion limit for this special case.169

Proposition 1 Consider the seed bank model described in section 2.1 for170

σ = 0. Define zn =
∑∞

i=1 b(i)Xn+1−i/N . Let b(1) = µ and b(i) =(1− µ)b(i− 1).171

Then,172

zn+1 = µXn+1/N + (1− µ) zn, and Xn+1 ∼ Binom(zn, N). (3)

Proof: It is simple to see that zn = µ
∑∞

i=1 (1− µ)i−1Xn+1−i/N . We imme-173

diately obtain174

zn+1 = µ
∞
∑

i=1

(1 − µ)i−1Xn+2−i/N

= µXn+1/N + µ

∞
∑

i=2

(1 − µ)i−1Xn+1−(i−1)/N

= µXn+1/N + (1− µ) zn.

Next (and with the nomenclature of (2)), we have175

qn+1(X•) = Mn+1(X•/N) =

∞
∑

i=1

b(i)Xn+1−i/N = zn.

Hence, Xn+1 ∼ Binom(qn+1, N) = Binom(zn, N).176

⊓⊔

Note that zn can be interpreted as the state of the seed bank (the fraction of177

type-A seeds that are able to germinate).178

As this model is Markovian, it is simple to derive the diffusion limit. As usual,179

we start off by defining xn = Xn/N , and obtain zn = µxn + (1 − µ) zn−1,180
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The Fisher-Wright model with deterministic seed bank and selection 7

Xn+1 = Binom(zn, N). Approximating the Binomial distribution by a normal181

distribution for N large yields182

xn+1 ≈ zn +N−1/2(zn(1− zn))
1/2ηn,

where the ηn ∼ N(0, 1) i.i.d.. As xn+1 can be expressed by zn and zn+1, the183

foregoing two equations give184

zn+1 − (1 − µ) zn
µ

= zn +N−1/2(zn(1− zn))
1/2ηn.

Therefore, zn+1 − zn = µN−1/2 (zn(1 − zn))
1/2 ηn. Scaling time by N yields185

for un/N = zn and τ = n/N186

duτ = µ (uτ (1 − uτ ))
1/2dWτ .

If we define B = 1/µ (the expected value of a geometric distribution with187

parameter µ), we may write this equation as188

duτ =
(uτ (1− uτ ))

1/2

B
dWτ . (4)

We find a diffusive Moran model for the state of the seed bank with rescaled189

time scale. We expect a similar result to hold in the general case. A difference190

between the two cases is that we here naturally considered the state of the191

seed bank, while in the general case we will focus on the state of living plants.192

2.2.3 The seed bank model with selection193

We go through the equivalent steps for the Fisher-Wright model with deter-194

ministic seed bank and selection.195

Proposition 2 Consider the seed bank model described in section 2.1 and let196

xn = Xn/N and ∆t = 1/N . Then, (2) becomes197

xn −Mn(x•)−∆tσMn(x•)(1 −Mn(x•)) +O(∆t2) (5)

= ∆t1/2

{

(

Mn(x•)(1−Mn(x•))

)1/2

+O(∆t)

}

ηn.

Proof: From (2), we immediately have198

qn(x•) = qn(X•/N) =
Mn(x•)

1−∆tσ(1−Mn(x•))
.

For N large, the binomial distribution can be well approximated by a normal199

distribution, so that200

xn ≈
Mn(x•)

1−∆tσ (1−Mn(x•))

+ ∆t1/2
(

Mn(x•)

1−∆tσ (1−Mn(x•))

)1/2(

1−
Mn(x•)

1−∆tσ (1−Mn(x•))

)1/2

ηn,
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8 Bendix Koopmann et al.

where ηn ∼ N(0, 1). As the noise and the drift term scale differently, an ∆t1/2201

order approximation for this term is sufficient, and we have202

xn −
Mn(x•)

1−∆tσ (1−Mn(x•))

≈ ∆t1/2
(

Mn(x•)

1−∆tσ (1−Mn(x•))

)1/2 (

1−
Mn(x•)

1−∆tσ (1−Mn(x•))

)1/2

ηn

= ∆t1/2

{

(

Mn(x•)(1 −Mn(x•))

)1/2

+O(∆t)

}

ηn.

Finally, we use a first-order Taylor-expansion for the drift term in ∆t to obtain203

Mn(x•)

1−∆tσ (1−Mn(x•))
=Mn(x•) +∆tσMn(x•)(1 −Mn(x•)) +O(∆t2),

which yields the desired result.204

⊓⊔

In the following we neglect the higher order terms. If we consider the scaling205

of the terms w.r.t. ∆t, then the leading term is xn −Mn(x•). This difference206

must not become too large, as all other terms in the equation are at least of207

order ∆t1/2. That is, the state xn can only slowly drift away from Mn(x•)208

(which represents the state of the seed bank). Hence, for a reasonable number209

of time steps, Mn(x•) is fairly constant. In order to understand the model, we210

define211

α = ∆tσMn(x•)(1 −Mn(x•)), β =

(

Mn(x•)(1−Mn(x•))

)1/2

.

α and β are random variables that depend on time. However, if we assume a212

separation of time scales, then we understand the dynamics of the model at a213

short time horizon by considering the surrogate model214

yn −Mn(y•)− α = ∆t1/2β ηn, (6)

according to (5), and α, β and ∆t being positive, real-valued constants. This215

recursive equation is well known as an auto-regression (AR) model in the216

statistical modelling of time series. If α 6= 0, this model incorporates a trend.217

We first remove this trend.218

Proposition 3 Assume (6) and define zn = yn − wn with wn = nα/B and219

B =
∑∞

i=1 ibA(i). Then,220

zn −Mn(z•) = ∆t1/2 β ηn.
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The Fisher-Wright model with deterministic seed bank and selection 9

Proof: By definition of Mn, we have Mn(w•) =
∑∞

i=1 bA(i) (n − i)α/B =221

nα/B−α. We replace yn by zn+wn in (6), and find withMn(y•) =Mn(z•)+222

Mn(w•),223

zn + n
α

B
−

(

Mn(z•) +Mn(w•)

)

− α

= zn −Mn(z•) + n
α

B
− α−

(

n
α

B
− α

)

= ∆t1/2β ηn.

⊓⊔

Next we convert the AR model into a moving average equation.224

Proposition 4 Let zn − Mn(z•) = ∆t1/2 β ηn, where ηn are i.i.d. N(0, 1)-225

distributed. For ∆t ≪ 1, and n large, zn satisfies approximately the recursive226

equation227

zn ≈ zn−1 +
∆t1/2 β

B
ηn.

Proof: We define the back-shift operator acting on the index of a sequence,228

Lzn = zn−1, and a power series229

ψ(x) = 1−

∞
∑

i=1

bA(i)x
i.

Therewith we may write230

ψ(L)zn = zn −Mn(z•) = ∆t1/2 β ηn.

Note that ψ(1) = 0, which does mean that the AR model is non-stationary. We231

do not find a power series ψ∗(x) well defined at x = 1 such that ψ∗(x)ψ(x) = 1.232

Therefore, we rewrite ψ(x) as ψ(x) = (1 − x) ψ̃(x) (which is the defining233

equation of ψ̃(x)). As234

ψ̃(1) = lim
x→1

ψ(x)

(1− x)
= −ψ′(1) =

∞
∑

i=1

bA(i) i = B 6= 0,

we do find ψ∗(x) such that ψ∗(x)ψ̃(x) = 1, and hence ψ∗(x)ψ(x) = 1 − x in235

a neighbourhood of x = 1. As an immediate consequence (used later) we have236

ψ∗(1) = 1/B. If we multiply the equation ψ(L)zn = ∆t1/2 β ηn by ψ∗(L), we237

obtain238

zn − zn−1 = (1− L)zn = ψ∗(L)βηn = βψ∗(L)ηn

and239

zn = zn−1 +∆t1/2 β ψ∗(L)ηn

= zn−2 +∆t1/2 β ψ∗(L)ηn +∆t1/2 β ψ∗(L)ηn−1 = · · ·

≈ ∆t1/2 β
n
∑

ℓ=0

ψ∗(L)ηn−ℓ.
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10 Bendix Koopmann et al.

Let ψ∗(z) =
∑∞

i=0 aiz
i. We expand the sum above, and obtain240

∑n
ℓ=0 ψ

∗(L)ηn−ℓ = a0ηn +a1ηn−1 +a2ηn−2 +a3ηn−3 +a4ηn−4 +a5ηn−5 + · · ·
+a0ηn−1 +a1ηn−2 +a2ηn−3 +a3ηn−4 +a4ηn−5 + · · ·

+a0ηn−2 +a1ηn−3 +a2ηn−4 +a3ηn−5 + · · ·
+a0ηn−3 +a1ηn−4 +a2ηn−5 + · · ·

+ · · · + · · · + · · ·

If we inspect not rows (that have ψ∗(L)ηi−ℓ as entries) but columns (that241

contain always the same random variable ηi−ℓ), we find that the coefficient in242

front of one given random variable ηi−ℓ approximates ψ∗(1) for ℓ→ ∞.243

At this point, we want to write zn+1 ≈ ∆t1/2 β ψ∗(1)
∑n

ℓ=1 ηℓ. This is only244

true, also in an approximate sense, if n is large and the state zn does hardly245

change over a time scale that allows
∑m

i=1 ai to converge to ψ∗(1) = 1/B.246

If ∆t1/2 is small, then zn indeed changes on a time scale given by 1/∆t (for247

our evolutionary model, we have convergence of the sum on the ecological248

time scale, and the change of zn on the evolutionary time scale, which are249

completely different if the population size is large). Hence, for ∆t small we are250

allowed to assume251

zn+1 ≈ ∆t1/2 β ψ∗(1)

n
∑

ℓ=1

ηℓ =
∆t1/2 β

B

n
∑

ℓ=1

ηℓ.

Thus, zn+1 ≈ (∆t1/2 β/B)
∑n

ℓ=1 ηℓ and zn+1 − zn ≈ (∆t1/2 β/B) ηn.252

⊓⊔

We return to yn again, and find:253

Corollary 1 Let Mn(y•) =
∑∞

i=1 bA(i)yn−i, and yn − Mn−q(y•) + α =254

∆t1/2 β ηn−q for α, ∆t, β ∈ R+. Then, for ∆t small, yn satisfies approxi-255

mately the recursive equation256

yn = yn−1 +
α

B
+
∆t1/2β

B
ηn−1,

where B =
∑∞

i=1 i bA(i).257

[Fig. 1 about here.]258

Remark 1 If we start with y0 = 0, we expect that yn is (approximately) nor-259

mally distributed with expectation nα/B, and variance n∆tβ2/B2. In order260

to check the heuristic argumentation numerically, we took α = 0.01,∆t = 0.01,261

β = 2 andMn(x·) =
1
m

∑m
i=1 xn−i form = 9, that is, B = 5. Simulations show262

an excellent agreement with our computations (Fig. 1).263

Now we return to the scaled Fisher-Wright model with seed bank. Though264

Mn(x•) will change, we expect it to change on the evolutionary time scale,265

while the generations n are still on the ecological time scale. Hence, we are266

allowed to use corollary 1 to obtain the following result.267
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The Fisher-Wright model with deterministic seed bank and selection 11

Corollary 2 The realizations {xn}n∈N0
of the AR model given in (5) satisfy268

for small ∆t (= 1/N) approximately the equation269

xn = xn−1+∆t
σ

B
Mn(x•)(1−Mn(x•))+∆t

1/2 1

B

(

Mn(x•)(1−Mn(x•))

)1/2

ηn.

This formulation allows to rescale time. We work on an evolutionary time scale270

instead of generations. This yields an SDE.271

Theorem 1 Let un∆t = xn. If xn only changes on the time scale given by272

1/∆t, then ut satisfies for ∆t small approximately the SDE273

dut =
σ

B
ut(1− ut)dt+

1

B

(

ut(1 − ut)

)1/2

dWt. (7)

Proof: Let M̂n∆t(u•) =
∑∞

i=0 bA(i+1)u(n−i)∆t (note the index shift between274

Mn and M̂n, which corresponds to an index shift in the next equation from275

xn to ut+∆t). Then,276

ut+∆t − ut = ∆t
σ

B
M̂n∆t(u•)(1− M̂n∆t(u•))

+ ∆t1/2
1

B

(

M̂n∆t(u•)(1− M̂n∆t(u•))

)1/2

ηn.

Hence, ut changes on the time scale determined by 1/∆t, that is, slowly in277

comparison with n. If the bA(i) decline fast enough (resp. ∆t is small enough),278

then xt is fairly constant on the time scale used for the moving average, that279

is, M̂n∆t(u•) ≈ ut.280

⊓⊔

Please note that this result seems to inherit the usual stability of a diffusion281

limit w.r.t. the detailed model assumptions: if we start off with a Moran model282

instead of a Fisher-Wright model combined with a seed bank, we again obtain283

a diffusion limit of similar form (see Appendix A).284

We now change the time scale such that the variance coincides with the stan-285

dard diffusive Moran model.286

Corollary 3 If we define τ = t/B2, then the SDE reads287

duτ = (σB)uτ (1− uτ )dτ +

(

uτ (1− uτ )

)1/2

dWτ . (8)

Scaling of the selection parameter. We conclude that the appropriate288

scaling of time for the Fisher-Wright model with seed bank is not 1/N but289

1/(B2N). Moreover, the effective selection rate (w.r.t. this time) is increased290

by the average number of generations B the seeds sleep in the soil.291
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12 Bendix Koopmann et al.

3 The forward diffusion equation for seed bank models with292

selection293

In analogy to above, we consider a single locus and two allelic types A and a294

with frequencies x and 1−x, respectively, at time zero. Time is scaled in units295

of 2N generations. In the diffusion limit, as N → ∞, the probability f(y, t)dy296

that the type-A genotype has a frequency in (y, y+dy) is characterized by the297

following forward equation (see Kimura 1955 for B = 1):298

∂

∂t
f(y, t) = −

∂

∂y
(a(y) f(y, t)) +

1

2

∂2

∂y2
(b(y) f(y, t)) ,

where the drift and the diffusion terms are given by a(y) = σ y(1− y)/B and299

b(y) = y(1− y)/B2, respectively.300

For the derivations of the frequency spectrum and the times to fixation we301

require the following definitions. The scale density of the diffusion process is302

given by303

ξ(y) = exp

(

−

∫ y

0

2a(z)

b(z)
dz

)

= exp (−2Bσy) .

The speed density is obtained (up to a constant) as304

π(y) = [b(y)ξ(y)]−1 =
B2 exp (2Bσy)

y(1− y)
.

The probability of absorption at y = 0 is given by305

u0(x) =

∫ 1

x ξ(z)dz
∫ 1

0
ξ(z)dz

=
exp(2Bσ(1− x)) − 1

exp(2Bσ)− 1
,

and u1(x) = 1− u0(x) gives the probability of absorption at y = 1.306

3.1 Site-frequency spectra307

The site-frequency spectrum (SFS) of a sample (e.g., Griffiths 2003; Živković308

and Stephan 2011) is widely used for population genetics data analysis . A309

sample of size k is sequenced, and for each polymorphic site the number of310

individuals in which the mutation appears is determined. In this way, a dataset311

is generated that summarizes the number of mutations ζk,i appearing in i312

individuals, i = 1, . . . , k − 1. That is, ζk,1 = 10 indicates that 10 mutations313

only appeared once, and ζk,2 = 5 tells us that five mutations were present314

in two individuals (where the pair of individuals may be different for each of315

the five mutations). Note that neither ζk,0 nor ζk,k are sensible: a mutation316

that appears in none or all individuals of the sample cannot be recognized as317

a mutation. In practice, it is often not possible to know the ancestral state.318

Then the folded SFS ηk,i = (ζk,i + ζk,k−i)(1 + 1{i=k−i})
−1 can be used. Since319

both empirical observations and theoretical results for the folded SFS follow320

instantaneously from the unfolded one, we only consider the unfolded version.321
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The Fisher-Wright model with deterministic seed bank and selection 13

For the derivation of the theoretical SFS, we assume that mutations occur322

according to the infinitely-many sites model (Kimura 1969). The scaled mu-323

tation rate is given by θ = 4N ν, where ν is the mutation rate per generation324

at independent sites. Assuming that each mutant allele marginally follows the325

diffusion model specified above, the proportion of sites where the mutant fre-326

quency is in (y, y + dy) is given by (Griffiths 2003)327

f̂(y) = θ π(y)u0(y) =
θB2

y(1− y)

exp(2Bσ)− exp(2Bσy)

exp(2Bσ)− 1

=
θB2

y(1− y)

1− exp(−2Bσ(1− y))

1− exp(−2Bσ)
,

where f̂(y) denotes the equilibrium solution of the population SFS. For neu-328

trality, we immediately obtain f̂(y) = θ B2/y by letting σ → 0 in the foregoing329

equation.330

The equilibrium solution of the SFS for a sample of size k is obtained via331

binomial sampling (see Živković et al 2015 for B = 1) as332

f̂k,i =

(

k

i

)
∫ 1

0

f̂(y)yi(1− y)k−i dy = θB2 k

i(k − i)

1− 1F1(i; k; 2Bσ)e
−2Bσ

1− e−2Bσ
,

where 1F1 denotes the confluent hypergeometric function of the first kind333

(Abramowitz and Stegun 1964). For neutrality, we again immediately obtain334

f̂k,i = θ B2/i by letting σ → 0. For a large number of mutant sites, the335

relative SFS r̂k,i = f̂k,i/
∑k−1

j=1 f̂k,j approximates the empirical distribution336

ζk,i/
∑k−1

j=1 ζk,j for a constant population size. Note that the solutions for the337

absolute SFS assume that mutations can occur at any time. When assum-338

ing that mutations can only arise in living plants (Kaj et al 2001), θ has to339

be replaced by θ/B in the respective equations. Both mutation models give340

equivalent results for the relative SFS.341

[Fig. 2 about here.]342

As shown in Figure 2a, the neutral diffusion approximation is in line with343

the simulation results of the original discrete model. The theoretical relative344

SFS for a sample of 250 individuals approximates the simulated SFS, which is345

obtained as an average over 10,093 repetitions. In every iteration, the sample346

is drawn from an initially monomorphic population of 1000 individuals after347

400,000 generations (so that the population has reached an equilibrium). Fig-348

ure 2b illustrates the enhanced effect of selection proportional to the length of349

the seed bank.350

3.2 Times to fixation351

We assume that both y = 0 and y = 1 are absorbing states and start by352

considering the mean time until one of these states is reached in the diffu-353

sion process specified above. The mean absorption time t̄ can be expressed as354
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14 Bendix Koopmann et al.

(Ewens 2004)355

t̄(x) =

1
∫

0

t(x, y)dy, (9)

where356

t(x, y) = 2 u0(x)[b(y)ξ(y)]
−1

y
∫

0

ξ(z)dz, 0 ≤ y ≤ x,

t(x, y) = 2 u1(x)[b(y)ξ(y)]
−1

1
∫

y

ξ(z)dz, x ≤ y ≤ 1.

For genic selection the integral in (9) cannot be analytically solved. For se-357

lective neutrality, we obtain t̄(x) = −2B2 (x log(x) + (1− x) log(1 − x)) (see358

e.g. Ewens 2004 for B = 1) by employing the drift term, the scale density and359

the probabilities of absorption as specified above.360

Now, we evaluate the time until a mutant allele is fixed conditional on fixation361

as t̄∗(x) =
∫ 1

0 t
∗(x, y)dy, where t∗(x, y) = t(x, y)u1(y)/u1(x). For genic selec-362

tion the mean time to fixation in dependency of x can only be derived as a363

very lengthy expression in terms of exponential integral functions. The neutral364

result is found as t̄∗(x) = −2B2(1− x)/x log(1− x) and in accordance with a365

classical result (Kimura and Ohta 1969) for B = 1. For x→ 0, we obtain366

t̄∗ =
2B

σ(e2B σ − 1)

(

(e2B σ + 1)γ − Ei(2B σ) + log(2B σ)

+ e2B σ(−Ei(−2B σ) + log(2B σ))
)

, σ > 0, (10)

t̄∗ = 2B2, σ = 0,

where γ is Euler’s constant and Ei denotes the exponential integral function367

(Abramowitz and Stegun 1964).368

[Fig. 3 about here.]369

In Figure 3a, we compare the time to absorption of the original discrete seed370

bank model by means of simulations with the theoretical result obtained from371

the diffusion approximation. For bA we use uniform distributions, where we372

vary the expected values between 1 and 8 corresponding to the length of the373

seed banks between 1 and 15. We choose an initial fraction of 0.5 for the type-374

A genotypes. The simulations show a good agreement between our analytical375

approximation and the numerical simulations. In Figure 3b, we show the effect376

of the seed bank on the times to fixation conditional on fixation of the type-A377

genotype for neutrality and positive selection.378
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The Fisher-Wright model with deterministic seed bank and selection 15

4 Discussion379

Within this study, we develop a forward in time Fisher-Wright model of a380

deterministically large seed bank with drift occurring in the above-ground381

population. The time that seeds can spend in the bank is bounded and finite, as382

assumed to be realistic for many plant or invertebrate species. We demonstrate383

that scaling time in the diffusion process by a factor B2 generates the usual384

Fisher-Wright time scale of genetic drift with B being defined as the average385

amount of time that seeds spend in the bank. The conditional time to fixation386

of a neutral allele is slowed down by a factor B2 (Figure 3b, dotted line)387

compared to the absence of seed bank. These results are consistent with the388

backward in time coalescent model from Kaj et al (2001), and differs from the389

strong seed bank model of Blath et al (2015a). We evaluate the SFS based390

on our diffusion process and confirm agreement to the SFS obtained under391

discrete time Fisher-Wright simulations.392

In the second part of the study, we introduce selection occurring at one of393

the two alleles, mimicking positive or negative selection. Two features of se-394

lection under seed banks are noticeable. First, selection is slower under longer395

seed banks (Figure 3b, solid line) confirming previous intuitive expectations396

(Hairston and Destasio 1988). Second, when computing the SFS with B = 2397

and without seed bank (B = 1) under positive selection (σ = 2) we reveal a398

stronger signal of selection for the seed bank by means of an amplified uptick399

of high-frequency derived variants. This effect becomes more prominent with400

longer seed banks and also holds for purifying selection, under which an in-401

crease in low-frequency derived variants is induced by the seed bank. We ex-402

plain this counterintuitive results as follows: longer seed banks increase, on the403

one hand, the selection coefficient σ generating a stronger signal at equilibrium404

(Figure 2b), and on the other hand, the time to reach this equilibrium state405

(Figure 3b). Our predictions are consistent with the inferred strengths of pu-406

rifying selection in wild tomato species. Indeed, purifying selection at coding407

regions appears to be stronger in S. peruvianum than in its sister species S.408

chilense (Tellier et al 2011a) with S. peruvianum exhibiting a longer seed bank409

(Tellier et al 2011b).410

Acknowledgements This research is supported in part by Deutsche Forschungsgemein-411

schaft grants TE 809/1 (AT) and STE 325/14 from the Priority Program 1590 (DZ).412

Appendix A Moran model with deterministic seed bank413

We briefly sketch the arguments that allow to handle a Moran model with seed bank; the414

reasoning is completely parallel to the time-discrete case. In order to keep this appendix415

short, we do not take into account selection but focus on the neutral model.416
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16 Bendix Koopmann et al.

A.1 Model417

We start off with the individual based model. Let the population size be N , Xt the number418

of genotype-A-plants, µ the death rate, and b(s) the distribution of the ability for a seed at419

age s to germinate; we require
∫

∞

0
b(s) ds = 1, B =

∫

∞

0
s b(s) ds < ∞, and b(s) sufficiently420

smooth. Then,421

P (Xt+∆t = Xt + 1|Xτ for τ ≤ t) = ∆tµN (1−Xt/N)

∫

∞

0
b(τ)Xt−s/Nds +O(∆t), (11)

P (Xt+∆t = Xt − 1|Xτ for τ ≤ t) = ∆tµN (Xt/N)

(

1−
∫

∞

0
b(τ)Xt−s/Nds

)

+O(∆t). (12)

Note that the delay process requires the knowledge of the complete history {Xs}s<t. The422

usual continuous limit for xt = Xt/N yields (with ε = 1/N)423

dxt = µ

(
∫

∞

0
b(s) xt−s ds− xt

)

ds+

{

εµ

∫

∞

0
b(s)(xt + xt−s − 2xt xt−s) ds

}1/2

dWt.

If we rescale time in the usual way, τ = εt, and define vετ = uεετ , we obtain424

dvετ = ε−1 µ

(

ε−1
∫

∞

0
b(s/ε)(vετ−s − vετ ) ds

)

dτ

+

(

ε−1 µ

∫

∞

0
b(s/ε)

(

vετ + vετ−s − 2 vετ v
ε
τ−s

)

ds

)1/2

dWτ . (13)

The aim here is to find heuristic arguments indicating that vετ approximates for ε → 0 the425

solution of a Moran diffusion process with rescaled time, paralleling equation (7).426

Remark 2 In some sense, the terms in this time-continuous model are better to interpret427

than the parallel terms in the Fisher-Wright model: both terms within the brackets are428

moving averages, and clearly429

lim
ε→0

(

ε−1 µ

∫

∞

0
b(s/ε)

(

uτ + uτ−s − 2uτ uτ−s
)

ds

)

→ µuτ (1− uτ )

for a function uτ that is reasonably smooth. For the drift term, we find similarly430

lim
ε→0

(

ε−1

∫

∞

0
b(s/ε) (uτ−s − uτ ) ds

)

→ uτ − uτ = 0.

However, this bracket is divided by ε, and hence does not vanish for ε → 0. If we take a431

closer look, we find that a deviation of xτ from the moving average (the state of the seed432

bank) is punished. That is, the state of living plants can change only slower in comparison433

with a model without seed bank, and therefore for ε → 0 we expect a diffusion model at a434

slower time scale.435

A.2 Scaling ε→ 0436

We drop the superscript ε in vετ , and write simply vτ . In order to use the arguments devel-437

oped above, we discetize the stochastic differential-delay equation by the Euler-Maruyama438

formula, and find439

vτ+∆τ = vτ − ε−1 µ∆τ

(

vτ −
∞
∑

i=1

vτ−i∆τϕ
(∆τ)
i

)

+

(

µ
∞
∑

i=1

ϕ
(∆τ)
i

(

vτ + vεt−i∆τ − 2 vτ v
ε
τ−i∆τ

)

)1/2 √
∆τ ητ ,
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The Fisher-Wright model with deterministic seed bank and selection 17

where ητ are i.i.d. N(0, 1) distributed, and the weights ϕ
(∆t)
i are chosen as440

ϕ
(∆τ)
i = b(i∆τ/ε)(∆τ/ε) +O(∆τ2/ε), such that

∞
∑

i=1

ϕ
(∆τ)
i = 1.

If we now define441

β =

(

µ
∞
∑

i=1

ϕ
(∆τ)
i

(

vτ + vεt−i∆τ − 2 vτ v
ε
τ−i∆τ

)

)1/2

,

ψ(x) = 1− z + µ∆τε−1

(

z −
∞
∑

i=1

ϕ
(∆t)
i zi+1

)

,

we may rewrite the discretized equation for vτ as442

ψ(L)vτ+∆τ = β
√
∆τ ητ ,

where Lvτ = vτ−∆τ . We are now in the position of the proof for Prop. 4 (neglecting the443

time-dependency of β). As444

−ψ′(1) = 1− µ∆τ/ε + µ
∞
∑

i=1

ϕ
(∆t)
i (i+ 1)∆τ/ε

= 1− µ∆τ/ε + µ
∞
∑

i=1

b(i∆τ/ε)(i∆τ/ε)(∆τ/ε)

+∆τ/εµ
∞
∑

i=1

(

b(i ∆τ/ε)(∆τ/ε) +O(∆τ2/ε)
)

,

we have445

1 + µ

∫

∞

0
b(s) s ds = 1 + µB for ∆τ/ε → 0,

and conclude that approximately446

vτ+∆τ = vτ +
β
√
∆τ

1 + µB
ητ .

Hence, for ε → 0 we expect (according to these heuristic arguments) that vετ satisfies the447

rescale diffusion equation448

dvτ =
(vτ (1− vτ ))1/2

1 + µB
dWτ .

If we define G = 1/µ, the average inter-generation time of living plants, this equation449

becomes even more close to that derived for the Fisher-Wright case,450

dvτ =
(vτ (1− vτ ))1/2

1 + B/G
dWτ (14)

as it becomes clear that the correction factor 1 + B/G measures the average time a seed451

rests in the soil in terms of generations.452
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Fig. 1: Simulation of the AR model (1000 runs). Samples have been taken at
time steps 100, 200,. . ., 1000. (a) Boxplot of the simulated time series yn at
indicated time points together with the mean according to corollary 1 (line).
(b) Variance of the simulated time series at indicated time points (dots), to-
gether with the variance according to corollary 1 (line). For parameters used:
see text.
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Fig. 2: (a) Simulation and theoretical prediction for the neutral relative SFS
and a uniformly distributed seed bank of length B = 10. For the simulation
of the original discrete model the population size was chosen as 1000, we
started without mutations and stopped the process after 400,000 generations
to calculate the SFS as an average over 10,093 repetitions. The light gray bar
shows the theoretical result, the dark gray bar shows the simulation outcome.
In both cases a sample of 250 individuals was drawn. (b) Theoretical results
for the relative SFS of a sample of size 20 are plotted for positive selection of
strength σ = 2 without (B = 1) and with a seed bank of length B = 2.
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Fig. 3: (a) Simulation and theoretical prediction for the time to fixation of
a seed bank model. The population size is 1000 and 50% of the individuals
are initially of genotype A. We simulated 10,000 runs for each mean value.
The simulated distribution of the time to fixation is shown in the histogram
at the upper left corner taking the data of the simulated seed bank of length
B = 12. (b) The ratios of the conditional fixation times with and without
seedbank are plotted against the length of the seed bank B for neutrality
and selection by employing (10). The additional index in the ratio is used to
formally distinguish the cases with and without seed bank.
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