
Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

State aggregation for fast likelihood
computations in phylogenetics

Iakov I. Davydov, Marc Robinson-Rechavi, Nicolas Salamin
∗

Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
Swiss Institute of Bioinformatics, Genopode, Quartier Sorge, 1015 Lausanne, Switzerland

Abstract

Motivation: Codon models are widely used to identify the signature of selection at the
molecular level and to test for changes in selective pressure during the evolution of
genes encoding proteins. The large size of the state space of the Markov processes used
to model codon evolution makes it difficult to use these models with large biological
datasets. We propose here to use state aggregation to reduce the state space of codon
models and, thus, improve the computational performance of likelihood estimation on
these models.
Results: We show that this heuristic speeds up the computations of the M0 and branch-
site models up to 6.8 times. We also show through simulations that state aggregation does
not introduce a detectable bias. We analysed a real dataset and show that aggregation
provides highly correlated predictions compared to the full likelihood computations.
Finally, state aggregation is a very general approach and can be applied to any continuous-
time Markov process-based model with large state space, such as amino acid and
coevolution models. We therefore discuss different ways to apply state aggregation to
Markov models used in phylogenetics.
Availability: The heuristic is implemented in the godon package (https://bitbucket.
org/Davydov/godon) and in a version of FastCodeML (https://gitlab.isb-sib.ch/
phylo/fastcodeml).

∗Corresponding author, nicolas.salamin@unil.ch

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://bitbucket.org/Davydov/godon
https://bitbucket.org/Davydov/godon
https://gitlab.isb-sib.ch/phylo/fastcodeml
https://gitlab.isb-sib.ch/phylo/fastcodeml
mailto:nicolas.salamin@unil.ch
https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

Introduction

Evolutionary models are necessary to study
the processes governing the evolution of genes,
genomes and organisms. While relatively sim-
ple models are often sufficient to provide a
good estimation of species or gene trees, in-
ferring the specific processes that govern the
evolution of molecular data (e.g. selection or
co-evolution) requires more complex models.
The ability to apply these complex models to
large datasets involving many genes and/or
species offers the promise to better understand
evolution in a more general context. This ap-
proach has, however, an important computa-
tional cost because of the large numbers of
parameters and/or the large size of the state
space involved in these complex models.

The computational performance of phyloge-
netic methods has always been an important
issue in molecular evolution. Likelihood-based
methods in phylogenetics would not be possi-
ble without the use of Felsenstein’s tree prun-
ing algorithm (Felsenstein, 1981) coupled with
the growth of computer performance. How-
ever, these methods only became commonly
used with the heuristics implemented in soft-
ware such as PhyML and RaXML (Guindon
et al., 2010; Stamatakis, 2014). Recent years
have thus seen tremendous decreases in com-
puting times, to the extent that data sets with
thousands of sequences can now be analysed.
However, most progress has been made on sim-
ple models of DNA or amino-acid evolution.
More complex models, such as codon models
used to detect selection, are still computation-
ally too costly to be applied on large genomic
datasets (e.g. all Ensemble Compara; Vilella
et al., 2009).

The complexity of codon models comes from
the large state-space that is necessary to rep-
resent the 61 codons (excluding the three stop
codons). The simplest codon model, which
is called M0 (Goldman and Yang, 1994), as-
sumes a single parameter ω to model a con-
stant selective pressure occurring on all sites
and branches of a phylogenetic tree. The M0
model is probably not realistic enough and

more complex models that involve multiple
transition matrices have been developed to de-
tect episodic positive selection on a subset of
sites and of phylogenetic branches (Zhang et al.,
2005; Smith et al., 2015; Murrell et al., 2012). The
most commonly used complex model is proba-
bly the branch-site model (Zhang et al., 2005),
which assumes three classes of selection (pa-
rameters ω0, ω1, ω2 with ω2 allowing positive
selection) on sites along specific branches of
the tree (called foreground branches) and two
classes (parameters ω0 and ω1) on the other
branches.

Since an accurate phylogenetic tree is critical
to evolutionary and comparative studies, most
developments to speedup the parameter esti-
mation of evolutionary models have focused
first on the optimization of search strategies
to find the tree topology and branch lengths.
Examples include the choice of the starting
tree topology (Guindon and Gascuel, 2003;
Huelsenbeck et al., 2001; Stamatakis, 2014; Sta-
matakis et al., 2004; Nguyen et al., 2014), im-
proved tree rearrangements strategies (Guin-
don and Gascuel, 2003; Hordijk and Gascuel,
2005; Stamatakis et al., 2005; Swofford and
Olsen, 1990; Nguyen et al., 2014), computation
economy (Gladstein, 1997; Goloboff, 1993; Ron-
quist, 1998), and independent branch-length
estimation (Guindon and Gascuel, 2003).

However, an important part of the computa-
tional cost is spent calculating the likelihood
function itself. Although this part is not the
most limiting step for tree searching methods
using simple models, it becomes a major bot-
tleneck for the evaluation of more complex
evolutionary scenarios such as codon models.
In this case, the reuse of the eigenvectors and
eigenvalues for a set of branches can improve
computational performance (Schabauer et al.,
2012; Valle et al., 2014). Other optimization tech-
niques that involve, for example, transforming
the problem of exponentiating an asymmetric
matrix into a symmetric problem, or perform-
ing matrix-matrix multiplication rather than
matrix-vectors for the estimation of conditional
vectors, have also been shown to speedup the
calculations of the likelihood (Schabauer et al.,

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

Figure 1: Example of state aggregation for one position
(highlighted in purple) in a codon alignment.

2012). There has also been some progress on
Bayesian computation, e.g. using data aug-
mentation (Lartillot, 2006; Rodrigue et al., 2008;
de Koning et al., 2012). Despite these improve-
ments, likelihood calculations still remain com-
putationally intensive.

The size of the state-space of the continuous-
time Markov chain directly impacts the most
computationally intensive steps of this likeli-
hood computation, since it affects the size of
the rate and probability matrices (Q and P, see
below), as well as of the conditional probabil-
ity vector. A method allowing a reduction of
the number of states while affecting minimally
the precision of the likelihood estimation is
therefore a potentially interesting avenue to
further reduce the computational burden of
these methods.

We propose here a heuristic method to
speedup matrix exponentiation and partial like-
lihood calculations by reducing the number of
states in a continuous-time Markov chain with-
out losing the complexity of the model. We
use state aggregation techniques to selectively
combine states of the instantaneous rate matrix.
We illustrate this technique with a simple and
a complex codon model, since their state-space
is relatively large (61 states). We show using
simulations and the analysis of an empirical
dataset that aggregation can provide signifi-
cant speedup for codon models, with a very
low cost in terms of accuracy. We further dis-
cuss the potential biological applications that
could benefit from this approach to illustrate
the wide applicability of state aggregation.

Key steps of likelihood computation
in phylogenetics

The performance of the likelihood calculations
are governed by two computationally intensive
steps: matrix exponentiation and matrix-vector
multiplication.

Matrix exponentiation is at the heart of mod-
els based on continuous-time Markov chains.
The rate of change from one state to any other
in an infinitesimally small time interval is given
by the instantaneous rate matrix Q. The prob-
ability of changing between the states of the
process in a time interval t is then given by the
probability matrix P: P(t) = eQt. For computa-
tional purposes, the rate matrix is first diago-
nalized such that Q = UΛU−1, where U is the
matrix of eigenvectors and Λ is a matrix whose
diagonal elements correspond to the eigenval-
ues of the instantaneous matrix Q. This matrix
decomposition allows the probability matrix P
to be quickly computed for any time interval t
as P(t) = eQt = UeΛtU−1.

Branches of a phylogenetic tree represent
the evolutionary path between an ancestral se-
quence and its descendants. We therefore need
to compute the matrix P for every branch of
a tree. The instantaneous rate matrix Q needs
thus to be exponentiated for every branch
length. The probabilities of observing the states
in the ancestral sequence are then calculated by
multiplying the conditional probability vectors
for each descendant branch. These probability
vectors are obtained by multiplying the P ma-
trix for branch i with the conditional vector of
the corresponding descendant. This procedure,
known as Felsenstein’s tree pruning algorithm,
is repeated for every node of the phylogenetic
tree until we reach the root of the tree (Felsen-
stein, 1973).

Algorithm

State Aggregation

The computational cost of the two steps de-
scribed above highly depends on the state-
space of the continuous-time Markov chain
used. Any reduction in the state-space can

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

therefore increase the efficiency of the like-
lihood calculations. We investigate here the
use of state aggregation to combine states of a
Markov chain into several groups and therefore
reduce the complexity of matrix exponentiation
and matrix-vector multiplication.

Let us consider a Markov chain taking val-
ues in a finite set S = {A1, A2, . . . , An} with
transition matrix P and stationary frequencies
π1, π2, . . . , πn. Let Sc = {A1, A2, . . . , Am} be a
set of states to be aggregated, where m < n.

The aggregated chain will have a space of

S̃ =
{

AC, Am+1, Am+2, . . . , An

}
,

where AC is the aggregated state. The new
aggregated state AC changes the entries of the
probability matrix P in the following way:

p̃Ai ,Aj = pAi ,Aj ,
p̃Ai ,AC = ∑

Ak∈SC
pAi ,Ak ,

p̃AC ,Aj
= 1

π̃AC
· ∑

k∈SC
πk pk,j,

p̃AC ,AC = 1
π̃AC

∑
k∈SC

∑
l∈SC

πk pk,l ,

where Ai, Aj /∈ SC.
The stationary frequencies are estimated as

π̃i = πi for Ai /∈ SC. These stationary fre-
quencies are consistent with frequencies of the
original Markov chain. The frequencies of the
aggregated state is estimated as π̃AC = ∑

k∈SC
πk.

The same method can be applied at the level
of the instantaneous rate matrix Q. The diag-
onal elements of the matrix must however be
set to − ∑

j 6=i
qi,j to ensure that the sum of every

row is equal to zero (Fig. S1 B, C) (Aldous and
Fill, 2002, chapter 2).

Aggregation for Codon Models

An obvious question in performing aggrega-
tion is the definition of “similar states” to ag-
gregate. We define all non observed states for
a position of the alignment to be “similar” in
the context of that position. The rationale is
that the codons that are not observed at this
site in any of the sequences at the tips of the

tree have low probability to occur as ancestral
states. The lack of some possible codons could
be due to chance, but in many cases we expect
a subset of codons to occur at a site because
of natural selection or mutational bias. For
example, a protein site which is constrained
to be negatively charged will only use codons
encoding such amino acids. It is thus justified
to call all other codons “similar” relative to this
site. We therefore aggregated all states unob-
served at a position (i.e. triplet of columns of
the DNA alignment) into a single state (Fig. 1).
The approach that we use here to aggregate
states in codon models resembles the models
of amino acid substitutions proposed in Yang
et al. (1998); Susko and Roger (2007). However,
we propose to select the new aggregated state-
space independently for each position of the
alignment, which was not done in the amino
acid context. Note that we performed in this
study only the aggregation on the probability
matrix P. We discuss the advantages of aggre-
gation on the P or Q matrices in the Discussion
section.

The intensity of state aggregation can be
modified and we tested two different ap-
proaches by implementing them for the codon
model M0 (Goldman and Yang, 1994). The first
and least aggressive approach aggregates only
the positions that were absolutely conserved in
any sites of the alignment. The state-space for
these sites is thus reduced to two states: the ob-
served (conserved) codon, and the “meta-state”
of the 60 other non stop codons. In the sec-
ond approach, all positions were aggregated
and the “meta-state” included all codons not
present in the position subjected to aggrega-
tion. These two approaches represent extreme
cases of the application of aggregation.

Given the small speedup of the first ap-
proach on M0 (see Results), only the second
approach was employed for the more complex
branch-site model.

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

Materials and Methods

Software

State aggregation for the M0 model was
implemented in the godon package (https:
//bitbucket.org/Davydov/godon). State
aggregation for the branch-site model was im-
plemented in a version of FastCodeML (https:
//gitlab.isb-sib.ch/phylo/fastcodeml),
which is a software that has been optimized
for computational efficiency of the calcula-
tion of the matrix exponentiation and the
matrix-vector multiplication (Valle et al., 2014).

All sequence simulations were performed us-
ing the evolver program from the PAML pack-
age (Yang, 2007).

Dataset

Six datasets were simulated for the M0 model
(see Table 1). We varied one parameter
at a time, based on the following settings:
300 codons, 18 sequences, ω0 = 0.3, κ =
2, equal codon frequencies (πi = 1/61),
default tree length (4). We used the the
ENSGT00680000099620 gene tree from the En-
sembl database (Cunningham et al., 2015) for
topology and relative branch lengths.

For the branch-site model, 2,000 alignments
were simulated with stochastic birth-death
trees and κ, ω0, ω2, p0, p1, alignment length
and number of tips sequences chosen randomly
(Table 2, Fig. S2). One thousand of the align-
ments were simulated under the branch-site
model null hypothesis with ω2 = 1, while the
other 1000 alignments represented the alterna-
tive hypothesis with ω2 > 1. In these simula-
tions every parameter was estimated at random
to have a more biologically realistic dataset.

The likelihood ratio test (LRT) was used for
model selection, with a significance level of
α = 0.05.

We performed multiple hypothesis testing
correction using the qvalue R package, π0 was
estimated using the bootstrap method (Storey
et al., 2004).

Finally, a Primates dataset from the Selec-
tome database (Proux et al., 2009; Moretti et al.,

●

●

●●
●

●●
●

●●
● ●●

●●● ●
●

●
●

●●
● ●

●
●

●
●

● ●
●

● ●●
●

●

●
●

●

●● ●

●

● ● ●●

●

●
●●

●
● ●● ●

●

●
●

●
●

● ●●
●

●
● ●

●

●●

●

●
●● ●●

●
●

●

●

●
●

● ●

●● ●●
●

●
●

●●●

●

●

●
●

●
●

● ●
●

●● ●
● ●

● ●
● ●● ●●● ●

●●

●
● ●●

●
●● ●

●
●

● ●● ●●● ●
● ●

●

● ●

●
●

●

●

●
● ●

●
●

●

●
●

●●
●

● ●

●● ●● ●
●● ● ● ●

●

●

●

●

●
●

● ●●●●
●

●
●

●●● ●

●

●
●

●

●
●

●

●
● ●●●

●

0.275

0.300

0.325

0 1000 2000 3000 4000 5000
Number of codons

E
st

im
at

ed
 ω

A

●●●

●●

●

●
●

●● ● ●●●●●
●

●
●

● ●●

●
● ●●

●
● ● ●

●
● ●●

●
●

●

●●
●

●

●

●

● ●
●●● ● ●

●

●
● ●●

●

●

●
●

●
●● ●●● ●

● ●
●

●
●
●

● ●●

●
●

● ●
● ●

●●
● ● ●

●

●●
●

●
●●●

●

●

●

●
●

●
●●

●● ●
●

●● ●
● ●

●
●

●

●
●

●

●●
●●

●
●

● ●
●

●
● ●

●
●

●●
●

●●
●

● ●
●● ● ●

●
●

●
●

●
●
● ●

●

● ●
●

●

●●
● ●

●
●

● ●●

●

● ●
●●● ●

● ● ●
● ●

●●●
● ●

●
●

●

●

●
● ●

●

●

●

●

●
●

● ●●●●

1.7

1.9

2.1

0 1000 2000 3000 4000 5000
Number of codons

E
st

im
at

ed
 κ

B

method ● No aggregation Absolutely conserved positions aggregation Full aggregation

Figure 2: Estimated ω (A) and κ (B) values depending
on the alignment length (alen dataset, M0
model). Lines correspond to the simulation
parameter values.

2014) release 6 was used to study the be-
haviour of the method on a real dataset. The
dataset consists of 15669 gene trees and align-
ments (http://selectome.unil.ch/cgi-bin/
download.cgi).

Results

M0 Model

For the simple M0 model, we compare the per-
formance of likelihood maximization in three
different modes: full likelihood (no aggrega-
tion), aggregation for conserved positions, and
full aggregation.

The parameter values obtained for all
datasets using both aggregation modes are
highly correlated with values estimated by the
full likelihood (Fig. S3, S4, S5, S6, S7, S8). The
error in estimation of the parameters is small
and is not dependent on the simulation param-
eters (Fig. 2, S9, S10), with the exception of tree
length (Fig. 3).

The mean computational speedup is approx-
imately 1.7 for aggregation on all positions
(Fig. 4), but only 1.02 (Fig. S11) for aggrega-
tion limited to fixed positions. We thus only
analyzed in details the behavior of the full ag-
gregation mode.

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://bitbucket.org/Davydov/godon
https://bitbucket.org/Davydov/godon
https://gitlab.isb-sib.ch/phylo/fastcodeml
https://gitlab.isb-sib.ch/phylo/fastcodeml
http://selectome.unil.ch/cgi-bin/download.cgi
http://selectome.unil.ch/cgi-bin/download.cgi
https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

Dataset
Sequence

length
Number of
sequences

ω0 κ
Codon

frequencies
Tree

length
Number of
sequences

wvar 300 18 ∼ Beta(2, 5) 2 1/61 4 200
kvar 300 18 0.3 ∼ Uni f (1/2, 10) 1/61 4 200
alen 100–5000 18 0.3 2 1/61 4 200
nseq 300 8–50 0.3 2 1/61 4 200

tlen 300 18 0.3 2 1/61
10p

p ∼ Uni f (−4, 4)
200

cfreq 300 18 0.3 2
∼ Direchlet(α)

α ∼ 10Uni f (−1/2,1) 4 200

Table 1: List of simulated datasets for M0 model.

Parameter Distribution

κ 1 + Exponential(1)
ω0 Beta(2, 5)

ω2
1 + Gamma(10, 2),

(= 1 for H0)
p0 + p1 Beta(10, 1)

p0
p0+p1

Beta(10, 1)
Tree length Gamma(2, 2)
Number of codons Uni f (100, 1000)
Number of sequences Uni f (8, 30)

Table 2: Model parameter distribution for the branch-
site model simulated dataset.

First, we see a strong effect of the align-
ment length on the speedups obtained (Fig. 5).
Matrix eigendecomposition is performed only
once per likelihood evaluation and the decrease
in the state-space between the full likelihood
and the aggregation does not have any im-
pact on the eigendecomposition performance.
However, a longer alignment will increase the
number of times the tree pruning step is per-
formed (i.e. once per site), which becomes
more important in the overall computational
cost. For instance, the speedup obtained with
an alignment of 500 codons is 1.8 with full ag-
gregation. The maximum speedup of 6.8 fold
was achieved on extremely long alignments
(above 10,000 codons) and short trees (total
length < 0.05).

While there is a larger error on the estimation
of model parameters (κ and ω) with shorter
alignments, this effect is identical with or with-
out aggregation (Fig. 2). The heuristic that we

●
●

● ● ● ●● ● ●

●

●

●
●

●
● ● ●

●

●
●

●
●

● ● ● ●●

●

●
●

●
● ● ●●

●
●

●
●

●

● ●●● ●● ●●●
● ●

●

●
● ●●

●

●

● ●●

●

● ●●

●
●

●
●

●● ●●
●

● ● ●●●● ●
●

● ●

●

●
● ● ●● ●●●

●●
●

●
● ●● ●●●

●

●

0.00

0.25

0.50

0.75

0.1 10.0
Tree length

E
st

im
at

ed
 ω

A

●● ● ● ● ●● ● ●●

●

●●

●

● ● ●

●

●● ● ●● ● ● ●●

●

● ●

●

● ●
●● ● ●

●
●

●
● ●●● ●● ●●●● ●

●

● ● ●●●

●

● ●●●
● ●●

●
● ●

●

●● ●●● ● ● ●●●● ●
●

● ●

●

●
●

● ●● ●●
● ●●●

●

● ●● ●●●●●
3

6

9

12

0.1 10.0
Tree length

E
st

im
at

ed
 κ

B

method ● No aggregation Absolutely conserved positions aggregation Full aggregation

Figure 3: Estimated ω (A) and κ (B) values depending
on the tree length (tlen dataset, M0 model).
Lines correspond to the simulation parame-
ter values. Tree length limited to the range
[0.01; 300], see text).

propose does therefore not increase error on a
simple model even with short alignments. In-
terplay between eigendecomposition and prun-
ing times explains the direct effect of the re-
lationship between the number of sequences
and the speedup (Fig. 6). A large number of se-
quences decreases the proportion of time spent
in the eigendecomposition phase and subse-
quently increases the speedup.

Changes in the other parameters impact the
speedup of the aggregation mode insofar as
they change the number of codon states per
alignment site. The latter has then a direct ef-
fect on the number of non aggregated states.
Indeed, we aggregate into one state all codons
which are not observed in a given position.

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

● ●

●

●●
●

●

●●●
● ●

●

●
●

●

●

●
●

●
●

●● ●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●

●

●

●●

●

●

● ●
●

●
●

●

●
●●

● ●

● ●

●

●

●
●

●

●
● ●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

● ●
●

●

● ●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

● ●

1.6

1.7

1.8

1.9

0.0 0.2 0.4 0.6 0.8
ω

S
pe

ed
up

, a
gg

re
ga

te
 a

ll
A

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

● ● ●●
● ●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

● ●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●

●

●

●
●

●

●

1.65

1.70

1.75

1.80

2.5 5.0 7.5 10.0
κ

S
pe

ed
up

, a
gg

re
ga

te
 a

ll

B

Figure 4: Speedup of aggregation on all alignment posi-
tions with M0 model. A) wvar dataset with
variable ω value, B) kvar dataset with vari-
able κ.

●
●●

●
●

●
●

●
●●

●

●●●

●

● ●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●●

●● ●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●●

●● ●
●

●

● ●
● ● ●

●

●

●● ●

●

●

●●
●

●
●

●

● ●

●

●●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ● ●

●
●

●

●

●

●
●

●●
●

●

●

●● ●

●

●

●

●

●
●

●

●
●●

●

●

●●●●

1.6

2.0

2.4

0 1000 2000 3000 4000 5000
Number of codons

S
pe

ed
up

, a
gg

re
ga

te
 a

ll

Figure 5: Speedup depending on a number of the codons
(alen dataset, M0 model).

Thus any processes that reduces the number of
different codons per position also increases the
efficiency of aggregation. Hence, the speedup
is slightly higher for smaller ω values because,
as ω approaches 0, more and more codons at a
particular site are only part of a synonymous
codon set. The number of possible codons
is thus greatly reduced and there is a higher
chance that the aggregation will lead to very
few states. In contrast, increasing ω values
will lead to an increasing number of states ob-
served. Similarly, extremely short branches
limit state variety at each site, which in turn
increase the level of aggregation possible and
thus increase speedup (Fig. 7). Biased codon

●
●

●● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●
●

●

●● ●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●
●

●

●●

●

●
●●

●
●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●

● ●

●

●

●

●

●●

●●

●
●

●
●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●●
● ●●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

1.6

1.7

1.8

10 20 30 40 50
Number of sequences

S
pe

ed
up

, a
gg

re
ga

te
 a

ll

Figure 6: Speedup versus number of sequences (nseq
dataset, M0 model).

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●●

●

●
●

●●

●

●

● ●

●

●

●
●

●

●

●

● ●●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●
●

●

●

● ●

●●

●●

●

●

●●

●

●

●●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●
●●

●

●●

●

●

●

●

●

●●

1.2

1.6

2.0

1e−02 1e+01 1e+04
Tree length

S
pe

ed
up

, a
gg

re
ga

te
 a

ll

Figure 7: Speedup versus tree length (tlen dataset, M0
model).

frequencies can also reduce diversity of states
and thus increase aggregation speedup. In our
simulations, codon frequencies were drawn
from a Dirichlet distribution and we varied
the concentration parameter α to estimate the
effect of codon frequencies on codon aggrega-
tion. We see a better speedup associated with
smaller values of the α parameter, which leads
to a higher variance between codon frequencies
(Fig. S12).

Total tree length is the only parameter in our
simulations that also affects the accuracy of the
estimation of model parameters (Fig. 3, S13).
Longer trees tend to improve the accuracy of
the estimation of the parameters ω and κ. How-
ever, extremely long trees lead to an increase
in error both in aggregated and in full likeli-
hood mode, probably because of saturation. It
appears that under reasonable conditions of
applicability of the M0 model (i.e. total tree
length < 20 substitutions per codon), aggre-
gation does not lead to any detectable bias,
while for extremely long trees aggregation can
introduce a slight bias.

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

1.0

1.5

2.0

2.5

1 2 3 4
Averege observed codons count

S
pe

ed
up

dataset

●

●

●

●

●

●

alen

cfreq

kvar

nseq

tlen

wvar

Figure 8: Speedup versus average codon count for M0
model. Each point represents one simulated
alignment, dataset indicated by color. For
the dataset with changing alignment length
(alen), variation in speedup does not depend
on the observed codon count (which does not
vary significantly), but longer alignments lead
to higher speedup, see Fig. 5.

Thus, overall speedup on the simple M0
model can be explained by average observed
codons count and by alignment length (Fig. 8).
The relationship between speedup and ω, κ,
tree length and codon frequencies is effectively
explained by a reduced size of the state space
of the continuous-time Markov chain. Aggre-
gation is thus all the more effective when se-
quence data are biased or when analyses con-
tain closely related species, which is probably
the case for many real multiple sequence align-
ments.

Branch-Site Model

Given the small speedup that we obtained for
the aggregation on fixed positions, we imple-
mented only the full aggregation mode for the
branch-site model in FastCodeML. We then
compared this new implementation with the
standard FastCodeML. We see a slight increase
in both false positives and true positives with
aggregation (Tables 3, 4). Overall, ROC curves
show that the performance of FastCodeML in
aggregation mode is similar to the full likeli-
hood mode (Fig. 9). Thus any errors in estima-
tion under aggregation seem to have very little
impact on the Likelihood ratio test (LRT) used
to test for the presence of positive selection
with the branch-site model.

●●

Sp.=0.975 Sen.=0.548

Sp.=0.970 Sen.=0.562

0.00

0.25

0.50

0.75

1.00

0.000.250.500.751.00
Specificity

S
en

si
tiv

ity method

●a

●a

normal

aggregated

Figure 9: ROC curves for FastCodeML in full likelihood
and aggregated likelihood modes.

Mode
True

positives
True

negatives
False

positives
False

negatives

normal 551 973 27 449
aggregated 562 970 30 438

Table 3: Statistical performance of FastCodeML in nor-
mal and aggregated modes on simulated data.

For ω0, κ, and p1, Pearson’s correlation coef-
ficients between aggregated and full likelihood
estimates are 0.9986, 0.9969 and 0.9735, respec-
tively (Fig. 10). A lower correlation is observed
for p0 and ω2 (0.9578 and 0.9109, respectively).
Yet, these correlations are much higher than
those obtained between the full likelihood es-
timate and simulated values: 0.35 for p0 and
0.20 for ω2.

As with the M0 model, speedup is mostly
affected by sequence length and tree length
(Fig. 11) through their effects on observed
codon counts (Fig. S14). We reached a max-
imum speedup of 4.4 fold per likelihood com-
putation for the branch-site model.

Finally, we used FastCodeML in normal and
aggregated modes on a real dataset from Pri-
mates (Table 5). After correction for multi-
ple testing, 20 branches were identified to be
under positive selection using full likelihood
computations and 18 using aggregation, with
13 branches in common. Aggregation gives a
median speedup of 2.7 on this real dataset, con-
firming that real data can be sufficiently biased
to make aggregation quite efficient.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

A
Selection detected

(aggregated)

− +
Selection detected − 963 12
(normal) + 7 18

B
Selection detected

(aggregated)

− +
Selection detected − 429 23
(normal) + 9 539

Table 4: Statistical performance of FastCodeML on the
simulated dataset. A) Without positive selec-
tion; B) With positive selection.

Discussion

We propose state aggregation as a technique
for speeding up the computation of likelihood
in a phylogenetic context. By reducing the
size of the state space of the Markov process,
aggregation accelerates the phase of tree prun-
ing during the likelihood computation and, in
some cases, the eigendecomposition of the tran-
sition rate matrix. We show that aggregation
can be applied to the likelihood calculation of
two of the most commonly used codon models.
It can also be used for other types of models
(see below), in both maximum likelihood and
Bayesian frameworks.

The speedup for codon models depends on
the alignment length and the observed codon
counts, the latter being mostly affected by the
tree length (Fig. 8, S14).

These effects are especially strong with the
M0 model, because the likelihood optimizer
uses a fixed number of iterations. The total run-
time is therefore proportional to the likelihood
computation time. We see similar effects with
the branch-site model, but less pronounced be-
cause the optimizer is using a variable number
of iterations. We see more explicitly the de-
pendency if we normalize for the number of
likelihood function computations (Fig. S15).

●●
●●

●

●●●

●●

●●●
●

●●
●

●

●●
●●

●●
●●

●●

●
●●

●

●●

●●

●●
●●

●●

●●

●●

●●

●
●

●
●●

●

●●

●●

●
●●

●

●

●

●
●

●

●

●
●

●●

●●

●
●

●●
●●

●●

●●

●●

●●

●
●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●
●●

●●

●●●●●
●●●

●●

●●●●
●●

●●

●●

●
●

●●

●●

●
●

●●

●
●●●
●●

●●

●●

●●
●●

●●

●●

●●●●

●●●●

●●●●

●●

●●●●

●●

●

●

●●●●

●●

●●

●●

●●

●●
●●

●●

●
●

●●
●

●

●●

●●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●●

●●

●●

●●

●●

●

●

●●

●
●

●

●

●●

●
●

●●

●
●

●●

●

●

●

●

●●

●●

●

●●
●

●●

●●

●●

●
●

●●

●●

●
●

●
●

●●

●●

●●

●
●

●●

●●●●

●●

●●

●
●

●●

●●

●
●

●●

●●

●
●

●●

●

●

●●

●
●

●●

●
●

●
●●

●

●●

●●

●●
●●

●●

●●

●
●

●●

●●

●●

●
●

●
●

●●
●●

●●
●●

●
●

●●

●●
●

●

●

●

●
●

●●

●●●●●●

●
●

●●

●●

● ●

●●●●
●

●

●●

●●

●●

●●

●●

●
●

●●

●●
●

●●●

●●

●●

●●

●

●●●

●●
●●●●

●
●

●●

●
●●●

●●

●●

●●

●●
●

●

●●

●
●

●●

●●
●●

●●●●
●

●

●●

●●●●
●●●●

●●●●

●
●

●●

●●

●●

●●●●

●●

●

●●●

●

●

●●●●

●
●

●●

●
●

●
●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●
●

●●

●●

●●

●
●

●●

●

●

●●

●●

●●

●
●

●●

●●

●●●●

●
●●●

●●

●●

●●●●

●
●

●●●●

●●

●●

●
●

●●

●
●

●●

●●

●●

●●

●●

●●

●●
●●

●
●

●●

●●

●●

●●

●●

●●
●

●

●
●

●●

●●
●●

●●

●●

●●●●

●●

●●

●
●

●●

●
●

●●

●●

●●

●
●

●
●

●●

●
●

●●

●●

●
●

●●
●●

●●
●●

●●

●●

●
●

●●

●

●

●
●

●●

●●

●●

●●
●●
●●

●
●

●●●●
●●●●

●
●

●●

●
●

●●

●●

●●

●

●

●
●

●
●

●●

●
●●

●

●●●●

●

●

●
●

●

●

●●
●●●●

●●●●●●

●

●

●●●●●●

●●

●●
●●●●●●

●
●●

●

●●

●●●●

●●

●●
●●

●●

●

●

●●

●●
●

●

●●

●●

●●

●●
●●

●●

●
●

●●

●
●

●

●

●●

●●

●
●●
●

●●

●●●
●

●

●●●

●●

●
●

●●
●

●

●●

●●

●
●

●●●●●
●

●
●

●●

●●

●●●●●●

●●

●●

●
●

●
●

●●●●

●●

●●

●●

●●●

●
●●●●

●
●

●●

●●

●●

●●

●
●

●

●

●●
●●●●

●●

●●

●●●●

●●

●●

●
●

●●

●

●●●

●●

●●

●●

●●

●
●

●●
●●

●●

●●●●

●●●
●

●●●
●

●●

●●

●●

●
●

●●●●●●

●●

●
●

●●

●●

●●

●●

●
●

●●

●●

●

●

●
●

●●
●●

●●
●

●

●●
●●

●●

●●

●●

●●

●●
●●

●●

●●

●●●●
●●

●●
●

●
●●

●●
●●

●●●●●●

●●●
●

●●

●●●

●

●●

●●

●●

●●

●

●●
●

●●

●●●●

●●

●●
●●●●

●●
●●

●●

●●

●●

●●●●

●
●

●●

●●

●
●

●
●

●●
●●

●●

●●

●●
●●

●●
●

●
●

●

●●●●

●●

●●●
●

●●

●

●

●●

●●

●●

●●●●

●●
●●

●●

●
●

●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●●

●●

●●

●●

●●

●●

●
●

●
●

●●

●●

●●

●●●●

●●
●●●

●●●●●

●●

●●

●

●

●●●●

●●

●●

●●

●●

●●

●●

●
●●

●

●●

●●

●
●

●●

●●
●●

●●

●●

●●
●●

●

●

●●
●●●●

●●

●●●●●●

●
●

●●

●●●●
●●

●
●

●
●

●●

●●

●●

●●

●●

●●

●●
●●

●●
●●

●●

●
●●

●

●
●

●
●

●●
●●

●●

●
●

●●

●●

●●

●●

●●
●●

●●

●●

●
●

●●
●●

●●

●●

●●

●●

●●●●

●●

●●
●●

●●

●●

●●

●●

●●

●
●

●●

●
●

●
●

●●●●●●●●

●●

●●
●●

●●

●●
●

●
●

●●●

●●

●●

●

●

●●

●●

●
●

●

●

●●
●●

●●

●●

●
●

●●

●
●

●●
●

●

●●

●●●●
●●●●

●
●

●●
●●

●●●●

●

●

●
●

●●

●
●

●●
●●

●●

●●

●●
●●

●
●

●●
●

●● ●

●●

●●

●●

●

●

●●

●
●

●
●

●●
●●

●●
●●

●●

●●

●
●

●
●

●●

●
●

●●

●

●

●●

●●

●
●

●●

●●

●
●

●●●●

●
●

●●●●●●●●

●●
●●

●●
●

●

●●

●
●

●

●

●●

●●
●●

●●

●●

●●

●●●●

●●

●●●●●●

●●
●●●●

●
●

●
●

●
●●●

●●●●●●
●

●
●

●

●●

●●

●
●

●●●●

●
●●●

●●

●

●

●●

●●

●●●●
●

●

●●
●●

●
●

●●●●

●
●

●●

●
●

●
●

●

●

●

●

●●●●
●●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●●●●●●

●●

●●
●●●●●●

●
●

●
●

●●

●●
●●●

●

●●
●●

●
●●

●

●●

●
●

●●

●

●

●●

●●

●●
●●

●

●

●

●

●●
●●●●

●●

●●
●●

●●

●
●

●●

●
●

●●

●

●

●●

●●

●

●

●
●●●

●
●

●●

●●

●●

●
●

●●

●
●

●●

●●
●

●

●●

●●
●●

●●

●●

●●

●
●

●

●●●

●●

●●●●

●

●

●
●

●●

●
●

●●

●●
●●●●

●

●

●●
●●●●

●

●
●●

●●●●

●

●

●●

●●

●●

●
●

●●

●
●

●●●●

●
●

●●

●●

●●
●●

●

●
●●

●●
●

●

●●

●●

●●

●●

●●
●●

●

●

●●

●

●●●●●
●

●

●●

●

●

●●

●●

●
●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●
●●●●

●●

●
●

●●●●

●●

●●

●●

●●

●
●●

●
●●

●●
●●●●

●●

●
●

●●

●●

●●
●●●

●

●●

●●
●

●

●

●

●
●

 r2 = 0.997
 slope = 1.004

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ω0, normal

ω
0,

 a
gg

re
ga

te
d

0.2

0.4

0.6

0.8
True ω0

●●●●●

●

●●●●●●●

●

●●●●●

●

●●●●●
●

●●●●●

●

●

●

●●●

●

●●●●●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●●●●

●●

●●● ●●●●●●●●●●

●

●●●●●●●●

●

●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●
●

●

●●

●

●●●

●

●●●●●
●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●●●●

●

●
●●●●●●
●

●

●

●●●●●

●

●●●●●●●●●
●

●●●●●

●

●●●●●●●

●

●
●●●●●

●●

●●
●●●●●●●

●
●●●●●● ●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●

●

●

●

●●●
●

●

●

●●●●●●●●●●● ●●

●

●

●

●●

●●

●
●
●

●

●●●●●●●●●

●

●●●●

●●

●●●●

●●

●
●

●●●
●

●

●

●
●

●

●

●●●●●

●

●●● ●●
●

●●●

●

●
●

●●●●●●●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●
●

●●●●●

●

●●●●●●●

●

●

●

●●●●●●●●●
●

●●●
●

●
●

●●

●

●●●●

●

●●●

●

●

●

●●●
●

●●●●●

●

●
●

●●●●●●●

●

●●●

●

●

●

●●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●
●

●●●●●
●

●

●

●●●

●

●●●
●

●●●●●
●

●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●●●

●

●
●

●●●●●●●●●●●●●
●

●
●

●●●●●●●

●

●●●●●

●

●●●●

●●

●●●●●●●

●

●● ●●●

●

●●●●●
●

●
●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●●
●

●
●

●●

●●

●
●

●●●
●

●●●●●
●

●●●●●

●

●

●

●

●

●

●

●
●

●●●●●

●

●●●●●

●

●●

●

●●

●

●●●
●

●●●

●

●●●
●

●●●●●●●●●
●

●

● ●

●
●●●●●

●
●●●●●

●
●●●●

●

●

●●●

●●●

●●●●●

●

●●●
●

●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●
●

●●●●●

●●

●●●●●●

●

●

●

●●●●●
●

●●●●●

●

●●●●●
●

●
●●●●
●

●●●●●●

●●

●●●
●

●●●

●

●●●

●

●
●

●●●●●●●
●●●●●●●●●●●

●

●

●

●●●●●

●●

●
●

●●●●●

●

●●●●●●●

●

●●●●●●●●●
●

●●●●

●

●●
●

●●

●●●●●●●●●
●

●●

●

●●●●●●
●

●●●●●

●

●

●

●●●●
●

●

●●●
●

●●●●●●●

●

●●●●

●●

●●●●●●

●●

●●●●●●●●●

●

●

●

●●

●

●●

●

●●●

●

●
●

●
●●●●●●
●

●●

●

●

●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●
●

●●●●●●●●●●●●●●●
●

●
●

●●●●●●●
●

●
●

●

●

●●●●●

●

●●●
●

●●●
●

●●●●●●● ●●
●●●●●●●●●●●●
●

●
●

●●●
●

●●
●

●

●

●

●
●

●●●●●●●

●

●●●
●
●●●●●

●
●●●●●●●

●

●●●●●●●●●
●●●●●●

●

●●●
●●●●●●●●

●

●●●●●
●

●●●●
●●●●●
●

●●●●●

●

●

●●●●

●

●●●

●

●●

●●

●●

●●

●
●

●

●

●●●
●

●

●

●●●●●
●

●
●

●●●

●

● ●●●●

●

●

●

●

●

●●●●●
●

●

●

●
●

●
●

●●

●

●●●●●●●●●●●●●●

●

●

●

●
●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●
●

●

●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●
●

●●●
●

●

●

●●●●●●●●●●●

●

●
●●●●
●

●●●●●●●
●

●●●●

●●

●●●

●

●●●●●●●●●●●
●

●

●

●

●

●
●

●●

●

●●●●●●●●
●

●
●

●●

●●

●●●●●●●
●●

●●

●

●

●

●●●●●●●●●
●

●●●●●●●
●

●
●

●●●
●●
●

●●●●●

●

●

●

●●●●

●●

●
●

●●●

●

●●●●●
●

●●●●●●●●●

●

●
●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●

●●

●

●

●●●●
●

●●●●●
●

●

●

●●●●●
●

●●●●

●

●●●●

●

●

●

●
●

●●●●●

●

●●●●●
●

●

●●●●●●

●

●
●

● ●●

●

●●●●●●●●●●●●

●●

●●●
●

●
●

●●●●●●●
●

●●●●●●●●●

●

●●●●●●

●●

●

●

●
●●●●

●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●
●

●

●

●
●

●

●

●

●

●
●
●●●●●●●●

●

●
●

●
●●●

●
●

●
●●●

●
●

●

●

●

●●●●●
●

●

●

●●●

●

●

●

●●●●

●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●●

●●●
●●

●●

●

●
●●

●

●●●●●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●●●●

●●

●●

●●

●

●

●●●
●

●
●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●
●

●●●●●●●●●
●

●●●
●

●●● ●

●
●●●●

●

●●

 r2 = 0.830
 slope = 0.942

0

250

500

750

1000

0 250 500 750 1000
ω2, normal

ω
2,

 a
gg

re
ga

te
d

10

20

30

40

50

True ω2

●

●

●●

●

●●●
●

●

●

●●

●
●

●
●

●
●

●
●

●

●●
●●

●
●

●

●●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●●
●

●

●●
●●●●

●
●

●●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●●
● ●

●
●

●

●

●

●●●●●

●

●
●

●

●

●●
●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●●

●
●●

●

●
●

●●
●

●

●●●●
●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●
●●

●

●

●●

●
●

●

●

●●

●

●

●
●

●●

●

●

●●●
●

●●
●●

●●

●

●

●●

●

●

●●

●

● ●

●

●

●

●
●

●

●
●

●●

●

●
●

●●
●

●
●

● ●

●●●

●

●
●

●

●●

●●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●● ●
●

●●

●

●

●●
●

●

●●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●
●●

●

●●
●

●

●

●
●

●

●●
●

●
● ●●
●

●
●

●●

●

●●
●

●

●

●●

●

●
●

●

●
●

●●

●●

●
●

●●

●

●
●●

●

●

●

●
●

●●●
●

●
●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●●

●

●

●●

●
●

●

●

●●

●●

●

●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●●●
●

●

●

●●

●
●

●
●●

●

●●

●

●
●●

●●

●●

●
●

●

●

●● ●

●

●●

●

●

●
●●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●
●●

●

●●

●

●

●

●●

●●●●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●●

●
●

●

●●
●●●

●●

●

●

●

●

●
●●

●●
●●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●●●

●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
● ●

●●●●●

●

●

●●

●

●

●
●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●●
●●●

●
●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●●●

●

●

●●

●
●

●

●● ●

●

●

●
●

●●
●

●

●●

●

●

●●
●●

●
●

●

●

●

●

●●

●●

●
●

●

●
●●

●
●

●

●

●●●

●

●

●
●●

●●

●

●

● ●
●

●

●

●

●

●

●●●●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●
●●

●

●
●

●●●
●●

●
●

●●

●
●

●

●

●
●

●

●●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●
●●●

●●

●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●●

●
●

●

●

●

●

●●●●

●

●
●

●

●

●

●●

●●

●●●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●●

●

●●

●

●

●
●

●●

●●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●

●

●●

●

●●

●

●
●●●

●

●

●

●
●

●

●

●●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●
●

●

●

●

●
●●●

●●
●

●
●

●

●●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●●
●

●
●

●
●●

●

●
●●

●

●
●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●
●●●

●
●

●●

●

●

●

●

●

●●●●

●

●●

●
●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●●
●

●

●●●

●

●

●
●

●●

●●
●●

●
●

●
●

●●●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●
●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●
●

●●

●

●●●
●

●

●

●●●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●
●●●

●
●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●●●

●●

●

●

●

●

●
●

●●●●●●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●
●

●
●

●

●●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●●

●
●

●
●

●●
●●

●
●●

●●
●●●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●●
●

●
●

●

●
●●

●●

●

●

●

●

●

●
●

●●

●
●

●

●●●

●

●

●●●

●

●

●

●
●

 r2 = 0.917
 slope = 0.974

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p0, normal

p 0
, a

gg
re

ga
te

d

0.4

0.6

0.8

True p0

●
●●●●

●●●
●

●

●●●●
●

●

●

●

●●
●●

●●●●
●●●●●●

●
●●●●●

●●

●●
●● ●

●

●●

●

●

●
●

●

●

●●●
●

●

●

●
●

●

●

●●●
●

●

●●
●

●●

●
●●●

●●
●●

●●●●●●●

●

●

●●●

●

●●●

●

●●●●●●
●●

●

●●
●●●

●
●

●
●

●

●

●

●●
●●●●

●●

●
●

●

●

●
●

●●
●●

●●

● ●

●●●●●●
●

●●●
●

●●●
●●●

●
●●

●●

●
●

●●

●●
●●●●●
●

●●●●

●

●

●
●

●
●

●●

●●

●●

●●
●

●
●●

●●
●●

●●

●●
●●

●●
●

●
●

●

●●●●
●●

●

●●

●
●

●

●
●●

●●●

●●

●
●

●
●

●●

●

●

●●
●●●●●

●
●●

●

●●●●●
●●

●

●

●●
●●●●

●

●

●

●●●
●●

●●●●●●

●
●

●●
●

●●●●●
●

●●●●
●
●●

●●●●●●●●
●

●
●

●

●

● ●●

●

●
●●
●●

●
●

●●●
●

●●

●

●●●
●●

●●

●

●●●
●●

●● ●●●●

●
●

●●●●●
●

●

●
●
●

●●

●●

●

●

●

●●●
●●

●●●●
●●●

●

●●
●●●●

●●●

●
●

●

●●●●

●
●

●●●
●● ●●●●●

●

●

●

●

●

●
●

●
●●

●
●

●●
●●

●
●

●●●●
●●

●●
●

●

●●

●●●●●
●

●
●

●●

●

●

●●
●

●

●●

●●●
●

●
●●●

●
●

●●

●●

●●
●●

●

●

●●●●●●
●●

●●●

●
●●

●

●●●●

●

●●
●●

● ●

●
●

●●
●●

●
●

●●●●
●●●

●

●●
●●●●●●

●
●

●●

●
●

●
●

●●

●●●●●●●●

●●

●●●●

●●
●

●●●
●

●

●

●
●●●

●●●

●●
●

●

●●
●

●

●

●

●●
●

●

●

●
●●
●

●
●●●●

●●

●●
●●●
●●●

●●

●

●●●

●●

●●
●

●
●●

●●

●

●
●●●
●

●●

●

●●
●

●●

●●

●●●●
●●

●●●●●
●

●●

●●
●●●
●

●
●

●●●●
●

●●
●

●●●●●

●

●
●●●●●●●

●
●

●●●●
●

●
●

●●●

●●

●●

●

●
●●●

●
●●

●
●

●
●

●●
●

●

●●

●

●

●

●●●
●●

●●

●●

●●●●●●●●
●

●
●●●●●●●

●

●

●
●

●

●●
●●●

●
●

●●●

●●●●●●
●●

●●
●

●●●●●
●

●
●

●●●

●

●
●●●●

●●

●●
●●●

●●

●

●●

●●

●
●

●
●

●●●●

●
●

●●●
●

●●

●

●

●
●

●
●●

●
●●●

●●●
●

●

●●

●
●

●●

●

●

●●
●●
●

●

●●
●●●

●
●●●

●

●

●

●
●

●●
●

●
●●

●●

●●●●
●●

●
●●●

●

●

●

●●●

●●
●

●

●●
●

●●●●●●
●

●●
●●●●

●●
●●

●

●●●

●

●●●
●●●●●●

●
●●●●●
●

●

●●

●●
●

●●●●●●●●●●●
●●

●

●

●●
●●

●
●

●●

●●

●
●●●

●●
●

●

●
●

●●●●●●
●●

●●
●●

●●●
●●●●●●●●●
●

●

●●
●●

●

●●
●●●
●●●●

●●
●●

●

●●●●●

●●

●●

●
●

●●●●●●●●●●●●●●

●●

●
●

●●●●●●
●

●

●●●●●●
●●

●●

●●
●●

●●

●●
●●●

●

●
●

●●●●●●●●

●●

●●●●

●●
●

●●

●

●●
●●

●●●●●●

●

●

●●●●

●

●

●
●

●●●●

●
●

●

●

●●

●●

●

●●●
●

●

●
●●●

●●
●

●

●●

●●
●

●
●●●●

●●●●
●

●●●

●
●

●
●

●● ●●●

●

●●
●

●
●●

●●
●●●●

●

●
●●

●
●

●●
●

●

●
●

●

●
●

●

●

●●●●●

●

●
●●

●●

●●

●●

●●●●

●●

●●

●

●
●●

●
●

●●
●●

●●
●

●

●
●

●●

●
●●

●

●●●●●

●●●

●●●●

●●●●●●
●●

●

●

●●●
●

●
●

●●
●●●●

●
●●

●●

●●
●

●●●
●

●

●●

●

●●
●●●●●●●●

●

●

●
●●

●

●
●

●●●
●●●

●●
●

●●
●

●●●
●●●

●●
●

●
●●

●●

●

●

●●

●
●

●●●●●●
●●

●●

●

●

●
●●●●●●●

●
●●●

●

●
●●

●

●

●●

●

●

●

●
●●●

●●●

●

●

●●

●●

●
●●●

●●

●
●

●●●●
●●●●

●

●

●

●

●●
●

●

●●
●

●

●

●●●
●●

●

●●●
●●

●●
●

●●●●●
●

●
●●●●

●●
●

●

●

●
●●

●
●

●●●●●●
●●

●●

●●

●
●

●●●●
●●

●
●

●●●●

●●

●●

●●

●●

●●

● ●

● ●

●
●

●●

●

●

●●●●

●
●

●●●●

●●

●●

●●

●●● ●

●

●

●●

●

●

●●●●●●
●●

●●●●●
●●

●
●

●●●

●●

●●●●

●●●●

●●
●●

●●

●

●●●
●●
●●

●

●●●●●

●

●●●
●●

●●

●
●

●
●

●●

●●

●
●

●●
●

●
●●●●●●●●
●●

●
●●●

●●

●

●

●●
●●

●●●●

●
●

●●
●●●●●●

●

●

●

●
●●●●●●

●●●
●

●

●

●

●

●●

●
●

●●●●
●

●

●

●

●

●

●●

●●

●
●

●●
●

●

●

●

●●

●●
●

● ●●
●●

●●
●●

●●
●●

●
●

●●●●

●
●

●●
●●

●●●●
●

●

●●●

●

●
●●●●

●

●●●●
●●●●●●

●●

●
●

●●●●

●
●

●
●●●

●●
●●●●
●●●●

●

●

●●●●
●

●

●●●
●

●●●●

●

●●●●●●●●●●●
●●

●

●

●
●

●●
●●●●

●

●

●●

●●●●

●●●

●
●●

●●

●

●

●●●●●●

●

●●●

●

●●
●

●

●

●
●
●

●
●●
●

●●
●●●●

●●●

●●

●●●●

●●

●

●

●●
●●

●

●

●●●●
●

●

●●

●
●●

●
●●

●●

●

●●●●

●
●

●

●●

●●●●

●

●

●●●

●

●●
●●

●

●

●●

●

●●●
●●

●●

●●

●
●●●

●●●●●●●●

●

●

●●

●
●

●●

●●

●●●●●●
●

●

●●

●

●●●●●

●
●
●●●●●●

●●
●

●

●●

●
●

●
●

●

●●●
●

●●●
●●

●●
●●

●

●
● ●

●●●●
●

●

●
●

 r2 = 0.948
 slope = 0.962

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75
p1, normal

p 1
, a

gg
re

ga
te

d

0.1

0.2

0.3

0.4

True p1

●●●●

●
●

●●

●

●

●
●

●●

●●●●●
●

●●●●

●●
●●

●●

●●
●●

●●

●●

●●

●

●

●●

●

●

●●
●●

●●

●●

●●

●●●●

●●
●●●

●

●●

●●

●●●●
●●

●
●

●

●

●●●●
●●

●●

●●
●●

●●

●
●

●●

●
●

●●●●

●●●●

●●

●●
●●●●
●●

●
●●●●

●

●●

●●
●

●

●●

●●

●●●●

●●

●●
●●

●●●●
●●

●●
●●

●●

●●●●

●●

●●

●●

●●

●●●●●●
●

●

●●●●
●●

●●

●●

●●

●●

●●
●●

●

●

●●●●
●

●

●

●

●●

●
●

●
●●●

●●

●●●●
●●●●

●●

●●
●●

●●

●●
●●

●●●●

●●●●

●
●

●
●

●●

●●

●●
●●

●●

●
●

●●

●●
●●●●
●●

●●

●●

●●●●●●

●●
●●●●

●
●

●●

●●●●

●●
●●

●●●●●●

●●●●

●●

●●

●●●●
●

●
●●●

●

●●

●●

●●

●●

●
●●●

●●

●●

●
●

●●

●●●●
●

●
●●

●
●

●●

●●●●

●

●

●●

●

●

●●●●

●●●
●

●●

●
●

●●

●
●

●●

●
●●

●●●
● ●

●●●●
●●●●

●
●

●
●

●●●
●

●●

●●●●

●●●
●

●●
●●

●
●

●●

●

●

●
●●

●

●●

●●

●●
●

●
●●

●●
●●

●●

●●

●●●●

●●

●
●

●●

●●

●
●

●●

●●

●●

●
●

●●
●●

●●
●●●●

●●●●●●

●
●

●●

●●

●●
●

●

●●

●

●

●●

●●

●●●
●●●

●●
●●

●●

●
●

●●

●●●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●
●

●

●●

●●

●

●
●●●●

●●

●
●

●●

●●

●●●●
●●

●●
●●●●

●

●

●●

●●

●●

●●

●

●

●●
●●

●●

●●●●

●●

●●

●●

●●

●●●●

●●●●●●

●
●

●
●

●●●●
●●

●

●
●●

●●

●●

●●

●●

●●
●●

●●
●●

●●

●
●

●●

●●
●●

●●●●

●●
●●

●●●
●●●

●●●●

●●●●
●●

●●

●●

●
●

●●
●●

●●

●●
●●●●●●

●
●

●
●

●●

●●

●●
●●

●●
●

●

●
●

●●

●●

●●

●●

●●
●●

●●

●
●

●●
●●●●

●●●●●●●
●

●●●●

●●

●●●●●●●●●●

●●
●●

●●

●●
●●

●●●●

●●●●

●●

●●

●

●

●●

●●
●●

●
●

●

●

●●

●●●
●●●

●●
●●

●
●

●
●

●●
●●

●●

●
●

●
●

●●●●
●●

●●

●
●

●●

●●●
●

●●
●●●●

●
●

●●

●
●

●
●

●●●●
●●

●●

●●●●

●●

●●●●

●
●

●●
●●

●●

●
●

●●●
●●●

●●
●●

●
●

●●
●

●

●●

●●

●●
●●

●
●

●●●●

●●

●●

●●

●●
●●

●●●●●●

●●

●●
●

●
●

●

●●

●
●

●●
●●

●●

●
●

●●

●●

●●

●●●●

●●

●●●●

●●

●
●

●

●
●●

●
●

●●

●●

●●

●●
●●

●●●●●●

●
●

●●
●●●●

●●●●
●●●●

●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●●
●

●●●

●●
●●

●●●
●

●●●●●●●●
●●

●●

●●

●●

●●

●●●●●●●●

●●

●●
●●

●
●

●●

●●

●●●●●●●
●

●●
●●●

●

●
●

●
●

●●

●
●●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●
●●

●●

●●

●●●●
●●●●
●●

●●●●●●●●

●●●●●●●●●●
●●●●●●

●●

●●

●●

●●

●●

●●

●●●●●●
●●

●●

●●

●●
●

●

●●●●

●●●●●●●●

●●
●●

●
●

●●●●

●●
●●

●●

●●

●●●●

●
●

●●

●●

●
●

●●●●

●●

●●

●
●

● ●●●

●●●
●

●●●●
●●

●●

●●
●●

●
●

●●

●●

●●
●

●
●●●●

●●

●
●

●●

●●

●●●●

●
●

●

●

●●●●

●●

●●

●
●●●

●●●●
●●

●●●●

●●

●●

●●
●●

●●

●●

●●

●●
●●

●●

●●

●
●

●●
●●

●
●

●●

●●
●●

●●

●●
●●●●●●
●●●●

●●
●●

●●

●
●

●●

●
●

●
●

●●

●●●●
●●

●●●●
●●

●●●
●

●●

●●
●

●

●●
●●

●●

●●

●
●●●

●●
●●●●

●●

●●●●

●
●

●●●●

●
●

●
●

●●
●●

●
●●●

●●

●
●

●

●

●●

●

●

●●
●●

●
●●●

●●
●●●●

●●

●●

●●

●●●●
●●

●

●
●●●●

●●

●●

●●

●
●

●●

●●

●●
●●

●●

●
●

●●

●●
●●

●●●●

●
●

●●
●●●●

●●

●●

●●●
●

●●

●●●●●●
●●●●●●●

●
●●

●●

●●

●●

●
●

●●●●

●●

●●●●

●●●

●

●●

●●

●
●

●●●●

●●●●●
●

●●

●●●●
●●

●●

●●
●

●

●●

●●
●●

●●

●●

●●
●●

●●
●●●●

●●

●●●●

●
●●●●●
●●●●●●

●
●

●●

●●
●●●●●●

●●●●●●
●●

●●
●●

●●
●●

●●

●●
●●

●●

●●●●

●●
●●

●●

●●
●●

●●●●

●●
●●

●●

●
●

●●
●●

●●●●

●●

●●
●●

●●

●

●

●●

●●
●●●

●
●●

●●
●●●●

●
●

●●

●●
●●●
●

●●

●●●●
●●

●●
●●

●●

●●

●

●

●●●●
●●

●●

●●

●
●

●●

●●

●●

●●

●
●

●●●●●●●●

●●
●

●
●●

●●

●
●

●●●●●●●●

●●

●
●

●●

●●●
●

●●●
●

●●

●●

●
●

●●

●●

●●

●●

●●
●●

●
●

●●●
●

●●
●●●●

●●

●●

●●

●●

●
●

●●
●●●

●
●

●
●

●

●●

●

●●
●

●●●●
●●

●

●

●●

●
●

●
●

●●●●●●

●●

●●●●

●●

●●●●

●
●

●●

●
●

●●

●●

●●●●

●●

●●

●●

●

●

●
●

●●
●●

●
●

●●

●●

●●
●

●
●●

●●●●

●●

●●
●●

●●

●●●●●
●●●

●●

●●

●●●●
●●

 r2 = 0.994
 slope = 1.0092

4

6

8

2 4 6 8
κ, normal

κ,
 a

gg
re

ga
te

d

2

4

6

True κ

Figure 10: Correlation between aggregated and non ag-
gregated parameter estimates for the branch-
site model.

The most time consuming stages of the like-
lihood computation are matrix exponentiation
and tree pruning. FastCodeML uses highly
optimized algorithms to do matrix exponenti-
ation (Schabauer et al., 2012) and state aggre-
gation improves the time to perform the tree
pruning steps of the likelihood calculations
(Fig. S1 A, B).

While the dependency of the speedup on the
alignment length and the codon counts make
intuitive sense, we can understand it in more
details by considering the steps of the likeli-
hood computation. Let us consider the compu-
tation time of the total likelihood (Fig. S1 A):

Tf ull = teigen + Ktexp + NK61tprun,

where teigen is the time to decompose the in-
stantaneous rate matrix, texp is the time to ex-
ponentiate the rate matrix for each internal
node, tprun is the time to compute the partial
likelihood vector per internal node per posi-
tion, K is the number of internal nodes and
N is the number of positions in the alignment.
The number of states is 61 for Markov chains
modeling codon sequences.

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

0.5

1.0

2.0
3.0
5.0

10.0

20.0
30.0

250 500 750 1000
Number of codons

S
pe

ed
up

A

0.5

1.0

2.0
3.0
5.0

10.0

20.0
30.0

0 5 10 15 20
Tree length

S
pe

ed
up

B

Figure 11: Effect of A) alignment length and B) tree
length on the speedup, branch-site model.

Similarly for the state aggregation (Fig. S1 B):

Taggr = teigen + Ktexp + NKtagg + NKMtprun,

where tagg is the matrix aggregation time per
internal node per position, and 61 is replaced
by M, the number of states after aggregation.
For a given branch and site combination, the
aggregation time is comparable to the time
spent computing a single element of the partial
likelihood vector. In the full mode, 61 elements
of the vector should be computed. The gain of
computing time observed with the aggregation
methods comes from the need to do a single
aggregation step, which is fast, followed by the
computation of M (M < 61) vector elements.

Aggregation speedup is thus:

Speedup =
Tf ull

Tagg
=

teigen + Ktexp + NK61tprun

teigen + Ktexp + NKtagg + NKMtprun
.

Generally performance is limited by eigen-
decomposition and pruning, so we can approx-
imate speedup as:

Speedup ≈
teigen + NK61tprun

teigen + NKtagg + NKMtprun
.

This representation gives a clear explanation
for the dependency of the speedup on the align-

A
Selection detected

(aggregated)

− +
Selection detected − 77576 280
(normal) + 190 1114

B
Selection detected

(aggregated)

− +
Selection detected − 79140 5
(normal) + 7 13

C
Selection detected

(aggregated)

− +
Selection detected − 79054 24
(normal) + 27 60

Table 5: Statistical performance of FastCodeML on the
Primates dataset. A) Detected selection in nor-
mal and aggregated modes of FastCodeML; B)
After correction for multiple hypothesis testing,
FDR (false discovery rate) cutoff=0.05; C) FDR
cutoff=0.4.

ment length and the observed codon counts. In-
creasing the alignment length causes a weaker
effect on the non-accelerated eigendecomposi-
tion phase, which results in a more efficient
acceleration. In contrast, a higher codon diver-
sity in each alignment position increases the
number of states in the aggregated Markov
process (M), thus reducing the advantage of
the aggregated process relative to the full one.

Not only does aggregation provide diminish-
ing speedup with longer trees (more observed
states, larger M), it also introduces a bias in
the parameter estimation for extremely long
trees. Consequently, for trees longer than 100
expected substitutions per position it is not
practical to use state aggregation: biased re-
sults would be obtained without any signifi-
cant speedup. In practice, however, extremely

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

long trees are rare, for example in the Selec-
tome database 99% of the trees has total length
below 18 expected substitutions per position.

State aggregation can be applied either to the
probability matrix P or to the instantaneous
matrix Q (Fig. S1 B, C). In the case of the ma-
trix P (Fig. S1 B), aggregation is applied after
exponentiation and must be performed for ev-
ery position independently. The performance
improvement is therefore achieved during the
tree pruning phase. In the case of the matrix Q
(Fig. S1 C), aggregation is applied prior to the
exponentiation. This leads to smaller dimen-
sions of P matrices, but eigendecomposition
and exponentiation have to be performed for
every position independently, since those posi-
tions will differ in the states aggregated. More-
over, aggregation of the matrix Q is expected to
introduce more bias that will accumulate along
the branches. Aggregation performed on the Q
matrix will discard differences in substitution
trajectories passing through unobserved states.
There will thus be an accumulation of the er-
ror during both exponentiation and pruning
phases. Aggregation done after the exponen-
tiation phase only introduces error during the
tree pruning phase. Preliminary results do not
show an advantage of aggregating the matrix
Q for codon models (not shown). A solution
might be to perform a “softer” aggregation on
clusters of sites with similar patterns of codons.
This would be done by first clustering align-
ment positions and then producing aggregated
instantaneous rate matrices for each cluster.
This should diminish the bias and allow to
exponentiate a smaller number of Q matrices
than for the aggregation per site, while still
computing on smaller Q matrices than in non
aggregated mode. It is also possible that ag-
gregation of the Q matrix could be more use-
ful for other types of models, especially those
with large instantaneous rate matrices, such
as coevolution models (Dib et al., 2014). Fi-
nally, a second round of aggregation might be
performed after the exponentiation in order to
speedup the tree pruning stage (Fig. S1 D). The
computational and statistical performance of
such approaches has yet to be investigated.

It is also possible to implement aggregation
on a subset of the data only. In our case, we
chose an extreme situation and aggregated
only the most conserved positions. The re-
sult was a large loss in speedup relative to
aggregation on all positions without any gain
in accuracy. But there might be other cases
where aggregation on a subset of data only
makes most sense in terms of the cost (accu-
racy) — benefit (speedup) trade-off. Moreover,
there are multiple ways to perform the aggrega-
tion itself. Here, we collapsed all of the states
(codons) which are not observed at the posi-
tion of the alignment. It is also possible to
use a less aggressive approach and only aggre-
gate codons reachable by more than a single
mutation (or a single non-synonymous mu-
tation). For example, models of amino acid
substitutions have been derived from codon-
based Markov models by aggregating codons
separated by only synonymous substitutions.
These models were, however, not built nor eval-
uated for computational efficiency (Yang et al.,
1998; Ren et al., 2005; Susko and Roger, 2007;
Kosiol and Goldman, 2011). Less aggressive
aggregation probably will increase accuracy
at the price of reduced speedup, although, in
our tests, accuracy was already good with the
aggressive aggregation.

The combined use of both aggregated and
non-aggregated modes in the same analysis
could be efficient in several scenarios. First, ag-
gregation could be used during likelihood max-
imization, but the final likelihood value com-
puted without aggregation, providing a more
accurate value. Second, aggregation could
be used to obtain a starting point for non-
aggregated likelihood maximization. Third,
aggregation could be used in a preprocessing
step to detect datasets of interest (e.g., gene
families with a signal of positive selection).
These datasets could then be analyze with full
likelihood to get an accurate estimation of the
parameters and model comparison. Finally, ag-
gregation could be used during the burn-in
period in a Bayesian approach (e.g. MCMC).
There are probably other scenarios where ag-
gregation can provide a faster estimation of

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

likelihood within a more complex analysis.
For the specific case of the branch-site model,

we have tested the second scenario of using
aggregation as a starting point and we do not
obtain a significant speedup (Fig. S16).

Obviously, state aggregation in phylogeny
and evolution is not limited to the branch-site
and M0 codon models. First, it is universally
applicable to Markov process-based codon
models, such as aBSREL (Smith et al., 2015),
RELAX (Wertheim et al., 2014), or any other
GY94 (Goldman and Yang, 1994) or MG94-
based (Muse and Gaut, 1994) model. Second,
it is not limited to codon models. Given a
trade-off between per-position matrix aggre-
gation slowdown and tree pruning speedup,
aggregation is unlikely to give a significant
performance improvement for models with a
small number of states (e.g., nucleotide mod-
els). But even for amino acids models we can
expect some degree of speedup. In contrast,
we expect state aggregation to provide a signif-
icant performance improvement for the models
with a large number of states, such as amino
acid coevolution models that can include up to
400 states (Dib et al., 2014; Yeang and Haussler,
2007).

The aggregation of states in a Markov pro-
cess is a powerful technique used in a vari-
ety of fields including computational biology,
such as protein network interaction analysis
(Petrov et al., 2012), reaction modeling (Ullah
et al., 2012), single molecule photobleaching
(Messina et al., 2006), or disease-progression
models (Regnier and Shechter, 2013). Its ap-
plication to phylogenetic models has not been
systematically studied, although it has been
implemented in some software (Lartillot and
Philippe, 2004, e.g. PhyloBayes;). This is, to
our knowledge, the first systematic study of
state aggregation biases and computational ef-
ficiency for molecular evolution.

In conclusion, we demonstrate that state
aggregation is a powerful method which im-
proves computational performance of codon-
based models, with little cost in accuracy. State
aggregation is not limited to codon models,
and we expect it to be useful for a large variety

of phylogenetic models and methods.

Acknowledgments

We would like to thank Bastien Boussau,
Christophe Dessimoz and two anonymous ref-
erees for useful comments. The computations
were performed at the Vital-IT (http://www.
vital-it.ch) centre for high-performance
computing of the Swiss Institute of Bioinfor-
matics.

Funding

This work was supported by the Swiss Na-
tional Science Foundation [grant numbers
CR32I3_143768, IZLRZ3_163872].

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

http://www.vital-it.ch
http://www.vital-it.ch
https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

References

Aldous, D. and Fill, J. A. (2002). Re-
versible markov chains and random walks
on graphs. Unfinished monograph, recom-
piled 2014, available at http://www.stat.
berkeley.edu/~aldous/RWG/book.html.

Cunningham, F., Amode, M. R., Barrell, D.,
Beal, K., Billis, K., Brent, S., Carvalho-Silva,
D., Clapham, P., Coates, G., Fitzgerald, S.,
et al. (2015). Ensembl 2015. Nucleic acids
research, 43(D1), D662–D669.

de Koning, A. J., Gu, W., Castoe, T. A., and
Pollock, D. D. (2012). Phylogenetics, likeli-
hood, evolution and complexity. Bioinformat-
ics, 28(22), 2989–2990.

Dib, L., Silvestro, D., and Salamin, N. (2014).
Evolutionary footprint of coevolving posi-
tions in genes. Bioinformatics, 30(9), 1241–
1249.

Felsenstein, J. (1973). Maximum likelihood and
minimum-steps methods for estimating evo-
lutionary trees from data on discrete charac-
ters. Systematic zoology, pages 240–249.

Felsenstein, J. (1981). Evolutionary trees from
DNA sequences: a maximum likelihood ap-
proach. Journal of molecular evolution, 17(6),
368–376.

Gladstein, D. S. (1997). Efficient incremental
character optimization. Cladistics, 13(1), 21–
26.

Goldman, N. and Yang, Z. (1994). A codon-
based model of nucleotide substitution for
protein-coding DNA sequences. Molecular
biology and evolution, 11(5), 725–736.

Goloboff, P. A. (1993). Character optimization
and calculation of tree lengths. Cladistics,
9(4), 433–436.

Guindon, S. and Gascuel, O. (2003). A sim-
ple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood.
Systematic biology, 52(5), 696–704.

Guindon, S., Dufayard, J.-F., Lefort, V., Anisi-
mova, M., Hordijk, W., and Gascuel, O.
(2010). New algorithms and methods to esti-
mate maximum-likelihood phylogenies: as-
sessing the performance of PhyML 3.0. Sys-
tematic biology, 59(3), 307–321.

Hordijk, W. and Gascuel, O. (2005). Improving
the efficiency of SPR moves in phylogenetic
tree search methods based on maximum like-
lihood. Bioinformatics, 21(24), 4338–4347.

Huelsenbeck, J. P., Ronquist, F., et al. (2001).
MRBAYES: Bayesian inference of phyloge-
netic trees. Bioinformatics, 17(8), 754–755.

Kosiol, C. and Goldman, N. (2011). Markovian
and non-markovian protein sequence evo-
lution: aggregated markov process models.
Journal of molecular biology, 411(4), 910–923.

Lartillot, N. (2006). Conjugate gibbs sampling
for bayesian phylogenetic models. Journal of
computational biology, 13(10), 1701–1722.

Lartillot, N. and Philippe, H. (2004). A
bayesian mixture model for across-site het-
erogeneities in the amino-acid replacement
process. Molecular biology and evolution, 21(6),
1095–1109.

Messina, T. C., Kim, H., Giurleo, J. T., and Ta-
laga, D. S. (2006). Hidden markov model
analysis of multichromophore photobleach-
ing. The Journal of Physical Chemistry B,
110(33), 16366–16376.

Moretti, S., Laurenczy, B., Gharib, W. H.,
Castella, B., Kuzniar, A., Schabauer, H.,
Studer, R. A., Valle, M., Salamin, N.,
Stockinger, H., et al. (2014). Selectome up-
date: quality control and computational im-
provements to a database of positive selec-
tion. Nucleic acids research, 42(D1), D917–
D921.

Murrell, B., Wertheim, J. O., Moola, S., Weighill,
T., Scheffler, K., and Pond, S. K. (2012). De-
tecting individual sites subject to episodic
diversifying selection. PLoS Genet, 8(7),
e1002764–e1002764.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.stat.berkeley.edu/~aldous/RWG/book.html
https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

Muse, S. V. and Gaut, B. S. (1994). A likeli-
hood approach for comparing synonymous
and nonsynonymous nucleotide substitution
rates, with application to the chloroplast
genome. Molecular Biology and Evolution,
11(5), 715–724.

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A.,
and Minh, B. Q. (2014). IQ-TREE: A fast and
effective stochastic algorithm for estimating
maximum-likelihood phylogenies. Molecular
Biology and Evolution, page msu300.

Petrov, T., Ganguly, A., and Koeppl, H. (2012).
Model decomposition and stochastic frag-
ments. Electronic Notes in Theoretical Computer
Science, 284, 105–124.

Proux, E., Studer, R. A., Moretti, S., and
Robinson-Rechavi, M. (2009). Selectome: a
database of positive selection. Nucleic acids
research, 37(suppl 1), D404–D407.

Regnier, E. D. and Shechter, S. M. (2013).
State-space size considerations for disease-
progression models. Statistics in medicine,
32(22), 3862–3880.

Ren, F., Tanaka, H., and Yang, Z. (2005). An
empirical examination of the utility of codon-
substitution models in phylogeny reconstruc-
tion. Systematic Biology, 54(5), 808–818.

Rodrigue, N., Philippe, H., and Lartillot, N.
(2008). Uniformization for sampling realiza-
tions of markov processes: applications to
bayesian implementations of codon substitu-
tion models. Bioinformatics, 24(1), 56–62.

Ronquist, F. (1998). Fast Fitch-parsimony algo-
rithms for large data sets. Cladistics, 14(4),
387–400.

Schabauer, H., Valle, M., Pacher, C., Stockinger,
H., Stamatakis, A., Robinson-Rechavi, M.,
Yang, Z., and Salamin, N. (2012). Slim-
CodeML: an optimized version of CodeML
for the branch-site model. In 2012 IEEE 26th
International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, pages
706–714. IEEE.

Smith, M. D., Wertheim, J. O., Weaver, S., Mur-
rell, B., Scheffler, K., and Pond, S. L. K. (2015).
Less is more: An adaptive branch-site ran-
dom effects model for efficient detection of
episodic diversifying selection. Molecular bi-
ology and evolution, 32(5), 1342–1353.

Stamatakis, A. (2014). RAxML version 8: a tool
for phylogenetic analysis and post-analysis
of large phylogenies. Bioinformatics, 30(9),
1312–1313.

Stamatakis, A., Ludwig, T., and Meier, H.
(2005). RAxML-III: a fast program for max-
imum likelihood-based inference of large
phylogenetic trees. Bioinformatics, 21(4), 456–
463.

Stamatakis, A. P., Meier, H., and Ludwig, T.
(2004). New fast and accurate heuristics for
inference of large phylogenetic trees. In Paral-
lel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, page 193. IEEE.

Storey, J. D., Taylor, J. E., and Siegmund, D.
(2004). Strong control, conservative point es-
timation and simultaneous conservative con-
sistency of false discovery rates: a unified
approach. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 66(1),
187–205.

Susko, E. and Roger, A. J. (2007). On reduced
amino acid alphabets for phylogenetic infer-
ence. Molecular biology and evolution, 24(9),
2139–2150.

Swofford, D. L. and Olsen, G. J. (1990). Phy-
logeny reconstruction. In D. Hillis and
C. Moritz, editors, Molecular Systematics,
pages 411–501. Sinauer Associates, Sunder-
lands, Massachusetts.

Ullah, G., Bruno, W. J., and Pearson, J. E. (2012).
Simplification of reversible markov chains
by removal of states with low equilibrium
occupancy. Journal of theoretical biology, 311,
117–129.

Valle, M., Schabauer, H., Pacher, C., Stockinger,
H., Stamatakis, A., Robinson-Rechavi, M.,

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

Davydov et. al • State aggregation for fast likelihood computations in phylogenetics

and Salamin, N. (2014). Optimization strate-
gies for fast detection of positive selection
on phylogenetic trees. Bioinformatics, page
btt760.

Vilella, A. J., Severin, J., Ureta-Vidal, A.,
Heng, L., Durbin, R., and Birney, E. (2009).
EnsemblCompara GeneTrees: Complete,
duplication-aware phylogenetic trees in ver-
tebrates. Genome research, 19(2), 327–335.

Wertheim, J. O., Murrell, B., Smith, M. D., Pond,
S. L. K., and Scheffler, K. (2014). Relax: de-
tecting relaxed selection in a phylogenetic
framework. Molecular biology and evolution,
page msu400.

Yang, Z. (2007). PAML 4: phylogenetic analysis
by maximum likelihood. Molecular biology
and evolution, 24(8), 1586–1591.

Yang, Z., Nielsen, R., and Hasegawa, M. (1998).
Models of amino acid substitution and appli-
cations to mitochondrial protein evolution.
Molecular Biology and Evolution, 15(12), 1600–
1611.

Yeang, C.-H. and Haussler, D. (2007). Detecting
coevolution in and among protein domains.
PLoS Comput Biol, 3(11), e211.

Zhang, J., Nielsen, R., and Yang, Z. (2005). Eval-
uation of an improved branch-site likelihood
method for detecting positive selection at the
molecular level. Molecular biology and evolu-
tion, 22(12), 2472–2479.

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 12, 2016. ; https://doi.org/10.1101/035063doi: bioRxiv preprint

https://doi.org/10.1101/035063
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Key steps of likelihood computation in phylogenetics

	Algorithm
	State Aggregation
	Aggregation for Codon Models

	Materials and Methods
	Software
	Dataset

	Results
	M0 Model
	Branch-Site Model

	Discussion

