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Hybrid Systems Modeling for (Cancer) Systems Biology

Roel Dobbe and Claire J. Tomlin, ICBP Member

Abstract—The advent of biological data of increasingly
higher resolution in space and time has triggered the use of dy-
namic models to explain and predict the evolution of biological
systems over space and time. Computer-aided system modeling
and analysis in biology has led to many new discoveries and
explanations that would otherwise be intractable to articulate
without the available data and computing power. Nevertheless,
the complexity in biology still challenges many labs in capturing
studied phenomena in models that are tractable and simple
enough to analyze. Moreover, the popular use of ordinary
differential equation models have their limitations in that
they solely capture continuous dynamics, while we observe
many discrete dynamic phenomena in biology such as gene
switching or mutations. Hybrid systems modeling provides a
framework in which both continuous and discrete dynamics can
be simulated and analyzed. Moreover, it provides techniques to
develop approximations and abstractions of complex dynamics
that are tractable to analyze.

I. MOTIVATION

In biology, many of the dynamic processes that we are
interested in studying or affecting with treatments are inher-
ently complex, i.e. nonlinear and varying across time and/or
space. In the study of how biological systems behave we can
make one important distinction between different dynamic
phenomena, i.e. the difference between continuous and dis-
crete dynamics. Continuous state variables model processes
that evolve in some continuum, either time and/or space. This
can be the evolution of protein expression over time or its
diffusion throughout space. Discrete state variables model
“sudden” changes or events in a system, such as a binary
switch turning on or off, or, more involved, for a cancer cell
switching through a sequence of distinct phenotypic states.

Ordinary differential equations (ODEs) modeling is gen-
erally excepted to be able to capture many physical and
biological phenomena quantitatively as we observe them in
nature and experiments. On the other hand, logical models
like Boolean networks (BNs) seek completely qualitative
rather than quantitative models of biological systems. BNs
can succeed in capturing high-level discrete phenomena such
as activation or deactivation with fewer parameters than
their ODE counterpart and can be used to evaluate model
structure. However, they cannot capture transient response,
only steady state. Unfortunately, ODEs strict use of only
continuous state variables is not able to model the discrete
dynamics in a system, and vice-versa logical models can-
not describe more complicated dynamical evolutions. This
motivates the use of hybrid system models, that can capture
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both continuous dynamics and discrete events. Additionally,
trying to capture dynamics that are nonlinear and varying in
time or space with one ODE model can lead to expressions
that are intractable to simulate and hard to analyze. Instead,
one can often get away with modeling an abstraction with
simple ODE models that approximate the dynamics locally
in space or time, and use discrete state variables to model the
connection between local models, yielding a hybrid system
model that represents the overall system behavior. As such,
the motivation for hybrid systems is two-fold: modeling
continuous and discrete state dynamics in an integrated
fashion, and building approximations that allow for tractable
analysis, simulation and hypothesis development and testing.

II. MODELING FRAMEWORK

A dynamical system describes the evolution of state
variables, typically real valued over time. Some dynamical
systems can also be influenced by exogenous inputs, which
represent either uncontrollable disturbances or controlled
input signals. For example, we might be able to specifi-
cally target a certain protein on the cell membrane with
an inhibitor, which is an input to the internal signaling
pathway system. Other dynamical systems have outputs,
which represent either quantities that can be measured (e.g.
a biomarker), or quantities that need to be controlled or
regulated (e.g. blood sugar level). Dynamical systems with
both inputs and outputs are sometimes referred to as control
systems. Based on the type of their state variables, dynamical
systems may be classified into the following categories:

1) Continuous State: If the state takes values in Eu-
clidean space R" for some n > 1. We will use x € R"
to denote the state of a continuous dynamical system.
This can for instance be the expression of a protein,
or the proportion of cells with a specific phenotype.

2) Discrete State: If the state takes values in a finite or
countable set {q1, g2, ...}. We will use ¢ to denote the
state of a discrete system. Consider for example a cell
which can switch between three distinct phenotypic
states: basal, luminal or stem-like. In this case the
discrete state denotes ¢ € {basal, luminal, stem-like}.

3) Hybrid State Variables: If a part of the state takes
values in R”, and another part takes values in a
finite set. For example, consider the example of basal
and luminal cells, each having their own “mode” that
yields a unique signaling pathway dynamics - this is a
hybrid system: part of the state (protein expressions) is
continuous, while another part (namely the phenotypic
state) is discrete.
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To formalize the transition between discrete states of a
hybrid systems model entail so-called edges, and a guard
and reset function. Edges capture to which discrete states we
can transition from each discrete state. The guard function
models where in time ¢ or space x a discrete state transition
takes place or is triggered. The reset function explains what
happens to the continuous state x as we go through a discrete
state transition from g; to g;.

III. APPLICATIONS IN SYSTEMS BIOLOGY

Since the application of hybrid systems modeling is rel-
atively new to systems biology as a whole, and under-
explored within cancer systems modeling, in this section,
we provide examples of hybrid systems used for study of
different biological systems. We distinguish between four
important types of analysis and give examples for each.

o Understanding the dynamic evolution of complex
biological system: It can be extremely tedious to do this
for a system that has both continuous and discrete states.
Moreover, most biomolecular systems of interest in-
volve many interactions connected through positive and
negative feedback loops for which an understanding of
dynamics is hard to obtain. Simulating a hybrid system
model can reveal insight into counterintuitive qualitative
behaviors, that would otherwise be hard to interpret
from experiments. In [1], the authors motivate the use
of hybrid models for analyzing glucose metabolism in
humans and spore formation in Bacillus subtilis. They
argue that often encountered sigmoidal curves can be
approximated by piecewise linear functions. In [2], our
group studied the biologically observed equilibria of
the multiple cell Delta-Notch protein signalling using
reachability analysis, in which protein concentration
dynamics inside each biological cell are modeled using
linear differential equations; inputs activate or deactivate
these continuous dynamics through discrete switches,
which themselves are controlled by protein concentra-
tions reaching given thresholds.

¢ Studying multi-cellular ensembles: The authors in [3]
study multicellular behavior in prokaryotes that rely
on cell-density-dependent gene expression. In Vibrio
fischeri, a single cell is able to sense when a quorum of
bacteria, a minimum population unit, is achieved. Under
these conditions, certain behavior is efficiently per-
formed by the quorum, such as bioluminescence. This
is naturally modeled as a multi-modal hybrid system,
resulting in simulations that are in accordance with ex-
perimental observations. In [4], our lab studied a multi-
cellular pattern called Planar cell polarity (PCP) signal-
ing in Drosophila melanogaster wings. PCP signalling
generates subcellular asymmetry called autonomy, and
through a poorly understood mechanism, mutant cell
clones cause polarity disruptions of neighboring, wild-
type cells, a phenomenon referred to as domineering
non-autonomy. A cell-to-cell contact dependent signal-
ing hypothesis, derived from experimental results is
used to develop a hybrid system partial differential

equation model. The sufficiency of this model, and
the experimental validation of model predictions, re-
veal how specific protein-protein interactions produce
autonomy or domineering non-autonomy. [5] provides
a comprehensive survey of the use of hybrid models
for tumor growth. They motivate the use of hybrid
models to capture the multiscale nature of cancer and to
handle multiple intra- and extracellular factors acting on
different time and space scales. The cell centric nature
of hybrid models naturally connects with cell biology
and makes it possible to incorporate microenviromental
components. Moreover, intracellular changes that result
from mutations, altered intra- and intercellular signaling
or protein trafficking can also be captured using hybrid
models.

Parameter estimation and system identification: In
general, data-driven modeling of biological systems
remains a difficult problem. The complexity and di-
mensionality of the modeled system often leads to ill-
posed/underdetermined problems, and nonlinearities in
system dynamics and measurement noise make this
problem even more challenging. A key strategy to
overcome these challenges is to use hybrid systems
modeling to form higher-level abstractions, e.g. with
compositions of simpler (often locally linear) models,
that can grasp some low-dimensional structure of the
system, while still representing biologically meaningful
features that are worth analyzing. In [6], the authors
study the problem of reconstructing dynamic fluxes and
enzyme Kinetics, using piecewise affine approximation
models. The parameter estimation procedure is im-
proved by separating it into two different phases. First,
a dynamic flux profile in time is reconstructed using
functions that are piecewise affine. Second, the time-
dependent profiles are embedded in the concentration
space and the enzyme kinetic functions for the single
reactions are identified independently. The technique
enables comparing different kinetic hypotheses very
efficiently and thus promises to improve the biological
knowledge of in vivo enzyme Kkinetics.

Modeling and identifying different network con-
figurations with distinct dynamics: Many cellular
networks are capable of changing their configuration,
through mutations or time-sequenced switching. If hy-
potheses for the different configurations and discrete
events exist, hybrid models can be used to capture such
phenomena. In [7], the authors study the problem of
genetic network structure identification in a stochastic
hybrid modeling framework. They considered a piece-
wise deterministic model of genetic networks where
protein synthesis is triggered by discrete random bind-
ing events and follows simple deterministic kinetics.
Using this approximation, they introduced an identifica-
tion procedure that is based on matching the covariance
function of the model to the data, which provides an
estimate of the average effect of each transcription
factor on every gene. In [8], a hybrid Boolean model
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(ODE+Boolean) is proposed for capturing biological
signal pathways with postulated epigenomic feedback.
The basic idea in this model is to combine continuous
dynamical systems (an ODE model for already well-
known parts of the network) with a discrete transition
system (Boolean, for postulated but largely unknown
components). The authors use an existing, well-known
ODE model to “trigger” signal pathways represented by
a Boolean model. This framework is easier to validate
than a complete ODE model for large and complex
signal pathways, for example to find unknown path-
ways to match the response to experimental data. The
advantage of using a Boolean model for the unknown
parts of the network is that relatively few parameters are
needed. Thus, the framework avoids over-fitting, covers
a broad range of pathways and easily represents various
experimental conditions.
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