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ABSTRACT  

The recent availability of large-scale sequence data for the human Y chromosome has revolutionized 

analyses of and insights gained from this non-recombining, paternally inherited chromosome. 

However, the studies to date focus on Eurasian variation, and hence the diversity of early-diverging 

branches found in Africa has not been adequately documented. Here we analyze over 900 kb of Y 

chromosome sequence obtained from 547 individuals from southern African Khoisan and Bantu-

speaking populations, identifying 232 new sequences from basal haplogroups A and B. We find new 

branches within haplogroups A2 and A3b1 and suggest that the prehistory of haplogroup B2a is more 

complex than previously suspected; this haplogroup is likely to have existed in Khoisan groups before 

the arrival of Bantu-speakers, who brought additional B2a lineages to southern Africa. Furthermore, 

we estimate older dates than obtained previously for both the A2-T node within the human Y 

chromosome phylogeny and for some individual haplogroups. Finally, there is pronounced variation in 

branch length between major haplogroups; haplogroups associated with Bantu-speakers have 

significantly longer branches. This likely reflects a combination of biases in the SNP calling process 

and demographic factors, such as an older average paternal age (hence a higher mutation rate), a 

higher effective population size, and/or a stronger effect of population expansion for Bantu-speakers 

than for Khoisan groups.  

 

MANUSCRIPT  

INTRODUCTION 

The Y chromosome phylogeny has been radically revised in the past few years with the advent of 

next-generation sequencing methods, which revealed thousands of new polymorphic sites (Cruciani et 

al. 2011; Mendez et al. 2013; Francalacci et al. 2013; Wei et al. 2013; Hallast et al. 2015; Scozzari et 

al. 2014; Lippold et al. 2014; Karmin et al. 2015). However, the most comprehensive studies were 

mainly centered on Eurasian samples (Wei et al. 2013; Hallast et al. 2015; Lippold et al. 2014; Karmin 

et al. 2015). The available sequences to date therefore heavily underrepresent African populations and 

the haplogroups at the root of the phylogeny, namely haplogroup A and haplogroup B: in total, only 

24 sequences from haplogroup A and 46 sequences from haplogroup B were included in the studies 

cited above. These early-diverging haplogroups comprise sub-branches that are characteristic of 

different populations and different regions of the African continent (Batini et al. 2011; Scozzari et al. 

2014). One of the largest studies of the variation in the basal Y-chromosomal haplogroups A and B 

published to date, which is based on single nucleotide polymorphisms (SNPs) and short tandem 

repeats (STRs), localizes these haplogroups largely in Central, East, and Southern Africa, with 

different subhaplogroups found in each of the geographic regions (Batini et al. 2011). In Southern 
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Africa, three lineages have to date been described as characteristic of the autochthonous populations of 

foragers and pastoralists, also known as “Khoisan” (Underhill et al. 2000; Wood et al. 2005; Soodyall 

et al. 2008; Batini et al. 2011). In the nomenclature of the YCC refined in Karafet et al. (2008), which 

we follow here, these haplogroups are A2, A3b1 and B2b. While haplogroups A2 and A3b1 are 

restricted to southern Africa, haplogroup B2b is also very frequent in foragers of the Central African 

rainforest, albeit represented by separate subhaplogroups.  

We here use the term "Khoisan" to label populations speaking indigenous non-Bantu languages of 

southern Africa that make heavy use of click consonants (Güldemann 2014), irrespective of the fact 

that these populations are linguistically, culturally, and biologically heterogeneous. Similarly, we use 

the term “Bantu” to refer to the language family that is diffused over vast areas of sub-Saharan Africa 

(Williamson and Blench 2000), without any racial connotation. Southern African Khoisan groups are 

known to harbor a remarkable level of genetic variability both for autosomal loci (Pickrell et al. 2012; 

Schlebusch et al. 2013) and mtDNA sequences (Barbieri et al. 2014a, 2013). However, very little is 

known about the Y-chromosomal variation in Khoisan groups, as previous studies included data from 

only a few such populations (Wood et al. 2005; Soodyall et al. 2008; Henn et al. 2011), missing most 

of the cultural and linguistic diversity subsumed under this generic label (Barnard 1992; Güldemann 

2014). Thus, an in-depth Y chromosome study of large numbers of Khoisan individuals is expected to 

considerably refine our knowledge of the diversity found in the early-diverging haplogroups A and B. 

In this study, we use the array designed by Lippold et al. (2014) to generate ~900 kb of Y 

chromosome sequence data, including off-target variants from the regions flanking the captured SNPs. 

We apply this method to a dataset of 547 southern African individuals speaking Khoisan and Bantu 

languages, covering most of the cultural and linguistic diversity of the region (Supplemental Figure 

S1). Our results reveal new branches within the phylogeny as well as older ages for most of the 

haplogroups and allow us to reassess previous proposals concerning the diversity and distribution of 

the early-diverging haplogroups.  

 

RESULTS 

We sequenced ~964 kb of the Y-chromosome from 547 individuals speaking Khoisan and Bantu 

languages (see Methods). To improve the accuracy of our phylogenetic reconstruction (i.e. to avoid 

discarding informative positions because they contain missing data), we applied a conservative 

imputation method: this allowed us to recover a total of 2837 SNPs. As shown in Supplemental Figure 

S2, the imputation method used here is very robust: even when 50% of the sites are imputed, the error 

rate is less than 1%. The impact of imputation on the loss of diversity is also minimal, as shown by 

analyses of a simulated dataset and in subsets of the data that are less-imputed: at most 0.4% of the 
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sites of the entire alignment are affected by a loss of polymorphisms (Supplemental Figure S3A). For 

an upper boundary of ≤ 10% missing data, no doubletons or tripletons become invariant in the 

simulations, only singletons (Supplemental Figure S3B).  

Major southern African haplogroups 

The major haplogroups found in our dataset are A2, A3b1, B2a, B2b, and E (including E1a1a, E1a1b 

and E2); furthermore, individual sequences belonging to haplogroups G, I, O, T, and R1 were found. 

The phylogeny reconstructed with a Maximum Parsimony tree (Figure 1) and verified by means of 

network analysis (Supplemental Figure S4-S7) corresponds to that of the ISOGG consortium 

(International Society of Genetic Genealogy 2014, Version: 10.101, Date: 8 December 2015), as 

summarized in van Oven et al (Van Oven et al. 2014); however, we identify additional branches that 

have not yet been reported. Supplemental Table S1 summarizes information about the major branches 

reported in Figure 1, such as the different nomenclatures used and the mutations defining each branch. 

The haplogroup assignment for each individual is listed in Supplemental Table S2, while haplogroup 

frequencies and measures of diversity are shown in Table 1.  
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Figure 1. Maximum Parsimony (MP) tree for the southern African dataset, rooted with A00. The 

width of the triangles is proportional to the number of individuals included. Previously unreported 

lineages are highlighted. Branches are numbered to identify them in Supplemental Table S1, where 

information on the defining mutations and comparison with other nomenclature systems are reported. 

Branch number 1 indicates the branch shared by A2 and A3b1, which is not visible as a separate 

branch in the MP reconstruction.  

 

Table 1: Diversity and other statistics for the major haplogroup branches. 

 

Haplogroup A2, which is defined by 72 mutations (see Supplemental Table S1 for a list of these), 

includes five monophyletic branches in our data (Supplemental Figure S5), of which only three (A2a, 

A2b, and A2c) were previously identified in the literature. Of these, A2a is the most frequent.  

Haplogroup A3b1 is the only subhaplogroup of A3 present in our dataset, as found previously for 

southern Africa (Batini et al. 2011). It is the most frequent early-diverging lineage found in our study 

and is characterized by the highest nucleotide diversity among the major African haplogroups (Table 

1). All the individuals within this lineage harbor the defining mutation M51, whereas the P71 mutation 

is derived only in a subbranch (A3b1a). This agrees with the phylogeny presented previously (Karafet 

et al. 2008), but contradicts the ISOGG tree, which reports P71 and M51 at the same branching level. 

We also confirm the diagnostic positions for haplogroups A3b1b (V37) and A3b1c (V306) as defined 

previously (Scozzari et al. 2012), which are not included in the ISOGG list. However, the three 

lineages do not split in parallel as reported (Scozzari et al. 2012); rather, A3b1b branches first. 

Major 

Haplogroup 

Branch 

Sample 

size 
Frequency 

Nucleotide 

diversity 
Variance 

No. of 

haplotypes 

Haplotype 

Diversity 
SD Frequency 

in Khoisan 

Frequency 

in Bantu 

p-

value 

A2 49 0.09 0.009 0.00002 44 0.991 0.002 13.2 0.0 0.000 

A3b1 83 0.15 0.018 0.00007 72 0.992 0.001 20.2 3.6 0.000 

B2a 53 0.1 0.005 0.00001 38 0.913 0.015 9.2 13.6 0.195 

B2b 47 0.09 0.013 0.00004 40 0.992 0.001 11.6 2.1 0.002 

G,I,O,T,R1 20 0.04 0.042 0.00044 20 1 0 3.2 2.1 0.720 

E2 12 0.02 0.005 0.00001 10 0.955 0.019 1.1 5.0 0.017 

E1b1b 59 0.11 0.005 0.00001 47 0.978 0.003 15.1 2.1 0.000 

E1b1a+L485 101 0.18 0.006 0.00001 91 0.996 0.0004 8.9 35.7 0.000 

E1b1a1 11 0.02 0.006 0.00001 11 1 0 1.1 3.6 0.125 

E1b1a8a 112 0.2 0.004 0.000005 91 0.966 0.004 16.4 32.1 0.000 
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Furthermore, we identify two previously undetected clades in between A3b1a1 and A3b1c (Figure 1, 

Supplemental Figure S5).  

B2b and B2a differ notably in their branching structure, as visible from the network (Supplemental 

Figure S6): B2b exhibits dispersed sequences separated by long branches, while B2a shows a clear 

star-like expansion, with branches of variable length radiating from a core haplotype. Haplogroup B2b 

is also commonly found in forager populations of the Central African rainforest (Berniell-Lee et al. 

2009; Batini et al. 2011). Here we identify the two branches B2b1 and B2b4a already reported in 

southern African populations (Batini et al. 2011; Wood et al. 2005), plus four sequences that do not 

fall in previously reported branches (Supplemental Figure S6).  

Whereas most African haplogroups differ significantly in frequency between the Khoisan and Bantu-

speaking groups in our study, thereby showing a signature of having a Khoisan vs. Bantu origin in 

southern Africa, haplogroup B2a does not (Table 1). Moreover, haplogroup B2a is characterized by 

long branches radiating from a core haplotype found in both Khoisan and Bantu speakers (Figure 2A). 

As shown by the map in Figure 2B, which visualizes frequency data from these and other African 

populations (Supplemental Table S3), this haplogroup is widespread over the continent, with the 

highest frequencies found in populations from Botswana as well as from Cameroon. From these data, 

it is not clear if haplogroup B2a is an autochthonous Khoisan haplogroup, or a haplogroup brought to 

southern Africa by Bantu-speakers, or both. To further investigate this haplogroup, we generated STR 

haplotypes based on 16 loci and compared these to published data; the network generated from these 

STR haplotypes (Supplemental Table S4, Supplemental Figure S8) shows haplotypes of southern 

African Khoisan and Bantu speakers located towards the core, and two separate clusters of haplotypes 

from central Africa and elsewhere at the periphery. Hence, the STR data also do not provide a clear 

signal of the origin of this haplogroup. 
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Figure 2. Diversity and distribution of haplogroup B2a. A. Network of B2a sequences color-coded by 

linguistic affiliation (Khoisan vs. Bantu speaking individuals). The dashed line indicates the position 

of branch 21 from Figure 1, which leads to the root of B2a. B. Schematic distribution of haplogroup 

B2a in Africa: the more intense the color, the higher the frequency in the population. Small crosses 

mark the locations of the 146 African populations included in the analysis (see Supplemental Table 

S3).  

Lastly, within haplogroup E we find E2, E1b1b, and three subgroups of E1b1a, namely E1b1a1, 

E1b1a8a, and a subgroup characterized by mutation L458, which includes E1b1a7, but which was not 

recognized previously (Karafet et al. 2008). We here refer to this subgroup as E1b1a+L458 

(Supplemental Figure S7).  

 

TMRCA and variation in branch length  

Estimates of the Time to the Most Recent Common Ancestor (TMRCA) were obtained with two 

different methods: count of mutations (corresponding to the rho statistic) and BEAST analysis. The 

TMRCA for the deepest node found in our dataset (A2-T) is 218 kyrs based on counting mutations 

and 248 kyrs based on BEAST analyses (Figure 3). As shown by the comparison with TMRCA 

estimates for various nodes obtained by other studies (Figure 3), our estimates are always older than 

those published previously.  

 

Figure 3. Values of TMRCA for the A2-T node from the present study, estimated by direct count and 

by BEAST analysis, for four different mutation rates (indicated with different colors); both median 

and mean estimates are indicated. The dates are compared with estimates from other studies (indicated 

by the name of the first author), which variously dated the same A2-T node (not explicitly labeled in 

the figure) or the A00-T or A0-T nodes (identified above the bars).  
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We also estimated TMRCAs for the individual haplogroups within A and B with three different 

methods, including calculations based on the count of mutations from the root (Supplemental Table 

S5), BEAST estimates from the whole phylogeny (Supplemental Figure S9) and independent BEAST 

estimates from runs for single major haplogroups (Supplemental Figure S10). The dates we obtain are 

again substantially older than those proposed in the literature, which are based on eight STR loci 

(Batini et al. 2011). The coalescence of A2 dates to between 27 and 33 kya instead of 6 kya, that of 

A3b1 to 47-64 kya instead of 10 kya, that of B2b is dated to 46-74 kya, and that of B2a to 46-51 kya 

(Supplemental Figure S10). Bayesian Skyline Plots (BSPs) computed for the major haplogroups all 

display population expansions of varying degrees coinciding with the beginning of the Holocene, ~7-

12 kya (Supplemental Figure S11). 

An analysis of the distribution of the number of mutations from each tip to the A2-T node (Figure 4A) 

demonstrates considerable heterogeneity in branch length, with a bimodal distribution. Furthermore, 

the branch lengths differ strikingly among haplogroups (Figure 4B): A, B, E2 and E1b1b are 

characterized by shorter than average branch lengths, while the E1b1a subgroups all have significantly 

longer branches (Wilcoxon test W = 71048, p-value < 0.001). 

 

Figure 4. Distances to the A2-T node in number of mutations. A. Distribution of distances from each 

tip to the A2-T node. B. Density distribution of distances to the A2-T node for each major haplogroup. 

Haplogroups are color-coded as in Figure 1. 

 

Impact of imputation on phylogenetic reconstruction 

As described in the Material & Methods, simulations were performed to test whether the imputation 

process has an impact on the phylogenetic analysis and on the TMRCA dates, since imputation might 
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reduce the observed genetic distance between sequences, which BEAST uses to reconstruct the 

phylogeny. When analyzing the total deviation of the node heights between trees that were constructed 

from alignments with different numbers of imputed sites and a tree without missing data 

(Supplemental Figure S12A), the results for both the strict clock and the ULN clock were 

approximately the same, with slightly bigger deviations for the strict clock. This probably reflects an 

increasing effect of removal of singletons, which by definition are located on branch tips, and thus 

would lead to increasing rate variation in the tips. A relaxed clock would allow for this branch rate 

variation and hence lead to lower deviation from the expected node heights. When 50% of the sites 

were imputed the amount of deviation almost doubled, which indicates that the increase in lost 

polymorphisms is influencing the node height estimates. In order to test if imputation affects our 

height estimates for nodes close to the root, we analyzed the deviation of the root node height for the 

same data sets (Supplemental Figure S12B). For the strict clock model, there was close to no deviation 

in either the mean or the median of the observed root heights from the expected values, although the 

95% HPD intervals were consistently lower for the observed trees than for the expected tree. For the 

ULN clock model, for upper boundaries of missing data ≤ 10% both the mean and median and the 

95% HPD interval of the root height of the observed trees are very close to those for the expected tree. 

With increasing levels of missing data, the mean and the median of the root height deviates more from 

the expected values, with the median providing the better fit, indicating that the 95% HPD intervals 

are not normally distributed. Additionally, the 95% HPD intervals widen with increasing amounts of 

missing data, and are twice as large as the expected intervals for an upper boundary of 50%.  

We additionally performed analyses on subsets of the data consisting of 253 sequences that had less 

than 5% missing data before imputation (the 253L subset) as well as 10 random subsets of 253 

sequences (the 253H subset). All BEAST runs performed on these subsets return mean and median 

root heights and 95% HPD intervals of the same order of magnitude as those obtained with the 

simulated data (Supplemental Figure S13A). The 253L dataset results in lower root height estimates, 

but subsampling our dataset cannot explain this because the 253H dataset returns even lower values. 

When determining the root height by counting the number of mutations to the root no difference is 

observed between the full and less imputed datasets. In addition, the distribution of number of 

mutations to the A2-T node for the 253L and 253H datasets is not strikingly different (Supplemental 

Figure S13B); in particular, both are strongly bimodal.  

With increasing amounts of imputation the inferred clock rates over the tree deviate more strongly 

from the expected clock rates (Supplemental Figure S14A). Similarly, while no clear deviation of the 

clock rate relative to node height is detectable for upper boundaries of imputation ≤ 10%, with 

increasing amounts of imputation, more nodes show a strong deviation from the expected mutation 

rate (Supplemental Figure S14B).  
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Overall, the results of the simulations indicate that the major features of our results (namely, older 

dates for the A2-T node and various haplogroups, and branch rate heterogeneity with respect to 

particular haplogroups) are not an artifact of the imputation procedure, but reflect features intrinsic to 

the dataset.  

 

DISCUSSION 

Ancient structure in B2a 

Haplogroup B2a was previously associated with Bantu-speaking food-producers and populations in 

contact with them (Berniell-Lee et al. 2009; Batini et al. 2011), with the implication that the presence 

of B2a in foraging communities might indicate gene flow from food producers. Our extensive dataset 

of both Khoisan and Bantu-speaking groups from southern Africa allows us to address the question of 

the origins of B2a in more detail. Haplogroups A2, A3b1 and B2b are significantly higher in 

frequency in the Khoisan populations, as expected (Wood et al. 2005), while haplogroups 

E1b1a+L485 and E1b1a8a are significantly higher in frequency in Bantu speakers (Table 1). In 

contrast, B2a does not differ significantly in frequency between Bantu-speaking populations (14%) 

and Khoisan populations (9%, excluding the Damara, who are genetically distinct from other Khoisan 

groups - Pickrell et al. 2012; Barbieri et al. 2014a). The presence of both Khoisan and Bantu lineages 

in long separated branches suggests an early divergence of the haplogroup in the two populations 

(Figure 2A), and the fact that the highest frequencies of B2a are found in both southern Africa and in 

Cameroon (Figure 2B) – the homeland of the Bantu expansion – also makes it difficult to pinpoint an 

exact origin. 

The network based on STR haplotypes within B2a contrasts strikingly with STR-based networks for 

the the Bantu-associated haplogroups E1b1a8 and E1b1a+L485: in the B2a network individuals from 

major geographic areas tend to cluster separately, whereas the E1b1a networks show a strong signal of 

recent expansion and no clear geographic or population structure (see Supplemental Figures in de 

Filippo et al. 2011). In sum, we find no convincing evidence that B2a was brought to southern Africa 

solely via the expansion of Bantu-speaking peoples, in agreement with previous studies that expressed 

some doubt about this association (Batini et al. 2011; Scozzari et al. 2014). Instead, the strong signal 

of geographic structure, older coalescence time, and high differentiation of B2a lineages in Khoisan 

groups all support an old presence of this haplogroup in sub-Saharan Africa. B2a might have been 

geographically widespread long before the expansion of speakers of Bantu languages and could thus 

represent an indigenous component in the Khoisan populations. Therefore, the presence of B2a in 

southern Africa probably represents a mix of autochthonous lineages and lineages brought by the 

Bantu expansion. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2015. ; https://doi.org/10.1101/034983doi: bioRxiv preprint 

https://doi.org/10.1101/034983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   11	  

 

TMRCA estimates and branch length heterogeneity 

One of the most notable findings of our study is that all the estimated dates from the southern African 

data are older than the dates estimated in previous studies: at least 38 kyrs older when counting the 

number of mutations to the root, and 60 kyrs older when estimated with BEAST. For example, in the 

southern African data the mean TMRCA for the A2-T node is 178 kyrs by counting mutations and 206 

kyrs using the BEAST tree and a relaxed clock model, while Poznik et al. (2013) estimated an age of 

138 kyrs for the same node and using the same mutation rate. One concern with the older ages we 

estimate is that they might simply reflect errors introduced by imputation. However, our results 

indicate that whereas estimates based on relaxed clock models and imputed data should indeed be 

viewed with caution (Supplemental Figure S12), the TMRCA based on mutation counts is not affected 

(see Supplemental Figure S13). It therefore seems that the finding in the present study of an older age 

for the A2-T node is not an artifact caused by imputation.  

A further striking result is the branch length heterogeneity that is visible both in the MP tree (Figure 1) 

and in the distribution of the number of mutations from each tip to the A2-T node across different 

haplogroups (Figure 4). This is consistent with previous observations of branch length variation in the 

Y chromosome tree (Scozzari et al. 2014; Hallast et al. 2015). To try to elucidate the cause(s) of this 

strong branch length variation effect in the southern African data, we first investigated the potential 

impact of imputation with a simulated dataset, as discussed above. The results of these simulations 

indicate that imputation can indeed introduce rate heterogeneity, primarily by losing singletons 

(Supplemental Figure S3), resulting in an increasing variation of the clock rate across branches 

(Supplemental Figure S14). However, the simulation results also indicate that given the amount of 

imputation carried out on the southern African data (on average 10% missing data per individual 

before imputation, Supplemental Figure S15), the effect on subsequent analyses should be negligible 

(see Supplemental Figures S3, S12-14). Moreover, the observed branch length heterogeneity is 

strongly associated with particular haplogroups (Figure 4B), but there are no significant differences in 

the number of imputed sites across haplogroups (Supplemental Figure S16). 

Branch rate variation over a phylogenetic tree can also have natural causes; in particular, population 

growth can cause an increase in the number of neutral mutations per chromosome (Gazave et al. 

2013), and it is possible that imputation might lead to a similar signal, i.e. a tendency to a higher 

branch rate variation close to the tips. However, as shown in the simulated dataset, while the 

discrepancies in mutation rate indeed increase with increasing levels of imputation, they are 

distributed all over the tree. This demonstrates that imputation does not lead to the branch rate 

variation signal expected for an expanding population. Thus, the observed rate heterogeneity cannot be 

attributed to imputation. 
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The shortest branches in the Y chromosome phylogeny are for haplogroups A and B (Figure 1, Figure 

4), and there are technical biases that could account for this. First, the array is designed with probes 

matching the reference genome, which is almost entirely from a haplogroup R1b individual (Xue et al. 

2009); the capture could therefore favor sequences that are more similar to the reference genome. 

Second, the variant calling procedure in GATK is prone to accept a SNP when it is already reported as 

a variant in the reference genome and in a reference dataset (DePristo et al. 2011); this reference 

dataset is compiled from publicly available sources, in which A and B sequences are under-

represented. Third, during imputation our dataset is compared to the data from the HGDP-CEPH panel 

analyzed previously (Lippold et al. 2014), in which A and B sequences are similarly under-

represented. Therefore, there is less chance of imputing a variant allele at a missing position in the A 

and B sequences. All the biases listed above might decrease the recovery of SNPs in A and B 

sequences and hence contribute toward the observed branch shortening for these haplogroups.  

However, these potential technical biases cannot account for all of the observed rate heterogeneity. In 

particular, we note that all lineages within haplogroup E are equally related to the reference genome 

and to non-African haplogroups, and therefore should be equally influenced by any technical bias. 

Nonetheless, there is marked rate heterogeneity within haplogroup E: E1b1a lineages have 

significantly longer branches than E1b1b or E2 lineages (W=15904, p<0.001, Figure1, Figure 4). 

Sequencing coverage and/or sequence errors cannot explain the differences in branch length within 

haplogroup E; when removing all samples from haplogroup E that have an average coverage <10x, the 

branch length heterogeneity between E1b1a lineages and E1b1b and E2 lineages (Supplemental Figure 

S17A) is maintained (Supplemental Figure S17C, S17D). Moreover, more stringent filtering of SNPs 

does not eliminate the differences in branch length either (Supplemental Figure S17B, S17D). 

Notably, the E1b1a lineages are all associated with Bantu-speaking populations, whereas the E1b1b 

and E2 lineages are not, which suggests that demographic factors associated with the Bantu expansion 

might be contributing to the observed rate heterogeneity. One possibility is the effect of a population 

expansion on the number of mutations per lineage (Gazave et al. 2013), and indeed the BSPs for the 

E1b1a subhaplogroups do show somewhat larger population expansions than those inferred for the 

other haplogroups, especially A and B (Supplemental Figure S11). Another possibility is differences 

in average paternal age, as suggested previously (Hallast et al. 2015), as a higher mutation rate is 

associated with older paternal age (Thomas 1996; Sun et al. 2012; Kong et al. 2012). For the Ju|’hoan 

North (known as the Dobe !Kung in previous literature), the average age of paternity is 35.8 years and 

the oldest documented age at last reproduction for men is 54 years (Howell 1979). In contrast, the 

average paternal age among agropastoralist Sub-Saharan Africans ranges from 42 years in the Herero 

to 46 in rural Gambians and 46.6 in Cameroon (Cochran and Harpending 2013), with the oldest age at 

last male reproduction in rural Gambians being 78 years (Vinicius et al. 2014). These differences in 

male reproductive patterns are correlated with polygyny, with the forager populations showing both 
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the shortest span of male reproduction and the lowest levels of polygyny, whereas the longest span of 

male reproduction occurs in populations with the highest levels of polygyny (Vinicius et al. 2014). 

Mutations increase linearly with paternal age, and a 15-year increase of paternal age results in a 50% 

increase in mutations (Kong et al. 2012). Societal differences in average age at paternity and length of 

reproductive span might therefore have a considerable impact on the Y-chromosomal mutation rate 

over a long period (Cochran and Harpending 2013), and this might contribute to the accelerated rate of 

mutation we find in the Bantu-associated haplogroups, as well as the rate variation detected in other 

studies of human Y-chromosome variation (Hallast et al. 2015; Scozzari et al. 2014).  

In conclusion, the large number of sequences from haplogroups A and B in the southern African 

dataset reveal new variation in these basal haplogroups and refine our understanding of the 

distribution of haplogroup B2a in Africa. Another important outcome is the older dates of the A2-T 

basal node and of individual A and B haplogroups than those published previously. In addition, we 

find significant rate heterogeneity in the Y chromosome phylogeny, with an accelerated rate of 

mutation in the Bantu-associated haplogroups. To some extent this might be attributable to the biases 

in SNP calling intrinsic to the method, but demographic factors, such as older average age of paternity 

and/or a larger population expansion in the polygynous Bantu-speaking agropastoralists, must also 

have contributed to the rate heterogeneity. 

METHODS 

Sample 

Individuals from Khoisan and Bantu speaking populations were sampled in Botswana, Namibia and 

Zambia (Pickrell et al. 2012; Barbieri et al. 2014b; Supplemental Figure S1) with the approval of the 

Ethics Committee of the University of Leipzig, the Research Ethics Committee of the University of 

Zambia, the Ministry of Youth Sport and Culture of Botswana (Research permit CYSC 1/17/2 IV (8)), 

and the Ministry of Health and Social Services of Namibia (Research permit Ref-Nr. 17/3/3). Each 

voluntary participant gave his formal consent after being told about the purpose of the study with the 

help of a local translator. Samples from individuals whose father and paternal grandfather belonged to 

the same ethnolinguistic group were selected for the study, and details on the individual samples are 

included in Supplemental Table S2. DNA was extracted and processed with a modified salting-out 

method (Quinque et al. 2006). The Damara speak a Khoisan language, but were not grouped with the 

other Khoisan because of their distinctive genetic background (Pickrell et al. 2012). 

Sequencing 

Bar-coded Illumina sequencing libraries prepared previously (Barbieri et al. 2013, 2014a) were 

enriched for ~500 kb of target NRY sequence using the Agilent Array and methods described 

previously (Lippold et al. 2014). Reads were generated from 7.5 lanes of the Illumina GAII (Solexa) 
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sequencer and were mapped to hg19 with BWA (v 0.5.10 customized in-house following the 

guidelines in	   https://github.com/udo-stenzel/network-aware-bwa). In total, we generated 95,622,812 

reads that passed the quality check and duplication removal and mapped to the Non-recombinant 

portion of the Y chromosome (NRY) region. 

SNPs were called both in the target region of ~500 kb reported previously (Lippold et al. 2014) as well 

as in the flanking 500bp of each target region covered by the reads, giving a total of 964,809 callable 

sites. To improve SNP calling, the reads were merged with the available HGDP-CEPH data (Lippold 

et al. 2014). SNP calling and quality filtering were performed with GATK with the following settings: 

QD <2.0, MQ<40.0, FS>60, Haplotypescore>13.0, MQrankSum<-12.5, ReadPositionRankSum<-8, 

MQ0>3 and 10*MQ0>DP (as recommended by 

http://gatkforums.broadinstitute.org/discussion/2806/howto-apply-hard-filters-to-a-call-set). Average 

coverage for all samples was 15.3X, with a minimum of 1X and a maximum of 41X. The results were 

stored in a VCF file containing information for each callable site of the target region; from this, a 

second VCF file was created that contained only the variable positions. Of the total of 622 sequences 

generated in the laboratory, we obtained enough data for 547 individuals so that they could be 

assembled and aligned before imputing the missing sites. The SNP L419, which resolves the split of 

haplogroups A2 and A3, was included in our callable regions but was removed by quality filters due to 

too much missing data. This SNP was nevertheless added to our SNP dataset to be able to properly 

resolve the deep-rooting structure of the phylogeny. 

Haplogroup assignment was performed with an in-house script that matched our SNPs with the 

classification provided in ISOGG (http://www.isogg.org/tree/index.html). The haplogroup assignment 

was manually verified by network reconstructions and by comparing our sequence data with the 

sequence data for HGDP-CEPH individuals (Lippold et al. 2014) that had previously been typed for 

diagnostic SNPs (de Filippo et al. 2011; Shi et al. 2010). For the branches for which we did not have 

any SNPs that overlapped with those listed by ISOGG, a set of diagnostic positions were additionally 

typed by sequencing. Details concerning these SNPs and primers are available in Supplemental Table 

S6. The diagnostic SNPs typed in the laboratory were included only in the network reconstructions, 

and were excluded from the final alignment used for the remaining analyses. 

When testing for the impact of read depth on branch rate heterogeneity (Supplemental Figure S17), all 

SNPs for which the alternative allele was not covered by at least 3 bases in at least one sample were 

removed. Additionally, samples whose average read depth in the target region was < 10x were also 

removed for this analysis. 

Imputation  
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In order to minimize the impact of missing data, an imputation procedure was performed on the total 

dataset after assessing the accuracy of the method with a resampling procedure (Supplemental Figure 

S2). The imputation method applied here, modified from Lippold et al. (2014), replaces the missing 

SNP allele in each sequence by comparison to the three nearest sequences (based on pairwise 

distances over all sites). When all three nearest sequences have the same allele, the missing site is 

replaced by this allele, otherwise an N is kept. In order to test the overall performance of the new 

method, as well as the performance with increasing amounts of missing data, we constructed two 

datasets that lacked missing data: dataset A consists of 116 samples and 361 SNPs from the present 

study; dataset B consists of dataset A together with an additional 42 samples from the HGDP (a total 

of 158 samples and 361 SNPs). We then randomly masked 0%, 5%, 10%, 15%, 20%, 30%, 40% and 

50% of site calls and performed imputation, repeating the procedure five times for each case, and 

calculated the fraction of N’s remaining after imputation as well as the error rate introduced by 

imputation. The new method outperformed the old method, and moreover the results obtained using 

dataset B were always better than those obtained using dataset A (Supplemental Figure S2).  

The imputation was therefore applied to a dataset which included both the southern African sequences 

as well as the raw data for the CEPH-HGDP individuals sequenced previously (Lippold et al. 2014), 

which are characterized by a higher average coverage. In total, 547 sequences with an average of 293 

missing sites (range 0-1775, Supplemental Figure S15) from our dataset plus 624 sequences with an 

average of 282 missing sites (range 0-1284) from Lippold et al. (2014) were included in the 

imputation procedure. After imputation, there were 2837 SNPs in the southern African sequences, of 

which 387 contained at least one N (average number of Ns per sequence = 1.5, range = 0 – 15). These 

387 sites were removed from phylogenetic reconstruction in the network analysis. 

 

STR typing  

In order to compare the B2a lineages found in our southern African dataset with previously published 

data (Batini et al. 2011), we typed a set of 23 Y chromosome STR loci in the 55 samples belonging to 

haplogroup B2a using the PowerPlex® Y23 System (Promega, Mannheim, Germany) with 30 

amplification cycles and a final volume of 10 µl. PCR products were separated and detected with the 

Genetic Analyzer 3130xl (Life Technologies, Darmstadt, Germany). One microliter of the amplified 

sample was added to 10 µl of Hi-Di Formamide (Life Technologies, Darmstadt, Germany) which 

includes the CC5 ILS 500 Y23 internal length standard (Promega, Mannheim, Germany). The 

following electrophoresis conditions applied: polymer POP-4, 10 sec injection time, 3 kV injection 

voltage, 15 kV run voltage, 60°C, 1800 sec run time, Dye Set G5 (FL, JOE, TMR-ET, CXR-ET, 

CC5). Raw data were analyzed with the GeneMapper® ID-X1.1.1. (Life Technologies, Darmstadt, 

Germany).  
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Phylogenetic reconstructions 

A Maximum Parsimony (MP) tree (Figure 1) was generated using the Parsimony Ratchet algorithm 

(Nixon 1999) as implemented in the R package phangorn (Schliep 2011). The Parsimony ratchet was 

set up with 10 random starting trees and the most parsimonious tree was kept. The tree included an 

A00 sequence – the most divergent human Y-chromosomal lineage found to date (Mendez et al. 2013) 

– as an outgroup. The data for A00 stems from the individuals from Cameroon sequenced at high 

coverage for the complete NRY as reported previously (Karmin et al. 2015). Since only the sites that 

overlapped with our set of callable sites were retained in the alignment, these sequences were not 

distinct anymore; the alignment was thereby increased by 227 SNPs private to A00. The nomenclature 

used here follows that of Karafet et al. (Karafet et al. 2008); other nomenclatures and defining 

mutations are provided in Supplemental Table S1.  

Network analysis was carried out to analyze the relationships among sequences and to aid in counting 

the number of mutations from each tip to the A2-T node. Median joining networks were calculated 

with Network 4.6.1.3 (Fluxus Technology, www.fluxus-engineering.com) and plotted with Network 

Publisher.  

Network analysis was also applied to visualize relationships between the STR haplotypes determined 

for haplogroup B2a and including data for 16 STRs from Batini et al. (2011). In this case weights that 

were inversely proportional to the variance observed in our dataset (Bosch et al. 1999) were assigned 

to each individual STR locus. Individuals from the published dataset who had missing values for one 

or more loci were excluded from the analysis. 

Dating divergence time and choice of mutation rates 

The TMRCA of our southern African dataset was first estimated by multiplying the number of 

mutations from the A2-T node to each tip by the mutation rate (expressed as number of mutations per 

year), which is equivalent to the rho statistic (Jobling et al. 2013). As there is uncertainty concerning 

the Y chromosome mutation rate, four rates were used that are representative of the range proposed in 

the literature. These are: 1x10-9 mutations/bp/year, based on a single deep-rooting pedigree (Xue et al. 

2009); 0.82x10-9 mutations/bp/year, based on the divergence between two lineages belonging to 

haplogroup Q and calibrated with archaeological dates for the entry into the Americas (Poznik et al. 

2013); 0.74x10-9 mutations/bp/year, based on an internal calibration with two aDNA sequences 

(Karmin et al. 2015); and 0.62x10-9 mutations/bp/year, based on a conversion from the autosomal rate 

(Mendez et al. 2013). The four rates were adjusted for the proportion of callable sites and for the loss 

of polymorphic sites that contained Ns to estimate the TMRCA from the mutation counts extracted 

from the network in Figure S4. This resulted in one mutation every 1933 years for the rate of Xue et 

al., one every 2357 years for the rate of Poznik et al., one every 2612 years for the rate of Karmin et 
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al., and one every 3118 years for the rate of Mendez et al. The rate from Poznik et al. (2013), which is 

in good agreement with a recent estimate from Icelandic pedigrees (Helgason et al. 2015), was chosen 

for displaying the main results.  

BEAST analysis and settings 

BEAST v1.8.0 (Drummond et al. 2012) was used to reconstruct the tree topology and date various 

nodes. The best-fitting substitution model, as chosen by jModelTest v.2.1.7 (Darriba et al. 2012), was 

General Time Reversible (GTR). The tree model was set to Coalescent: Bayesian Skyline (Drummond 

et al. 2005) with a piecewise-linear skyline model. The analysis was performed using both a strict 

clock and an Uncorrelated Exponential Relaxed (UER) clock and a given constant rate. To ensure a 

proper placing of the root, the A00 sequence was forced as an outgroup. An invariant site correction 

was applied to adjust for the removal of all invariant sites from the alignment. Multiple runs were 

performed independently (strict clock: 2 runs; UER clock: 13 runs). The chain length was set to 100 

million steps and parameters were logged every 5,000 steps. The resulting log and tree files were 

combined using BEAST’s logCombiner. A burn-in was removed (strict clock: 10%; UER clock: 30%) 

and the files resampled (only UER clock: every 28,000 steps). The quality of the combined runs was 

manually checked in Tracer v1.5 (Rambaut and Drummond 2009). The ESS value of the parameter 

treeModel.rootHeight, which is important for dating the nodes, was above 100 for all runs. Maximum 

clade credibility (MCC) trees were annotated using BEAST’s TreeAnnotator for each combination of 

mutation rate and clock model. The mean, median, and 95% HPD intervals of the node heights were 

extracted from the MCC trees and used for dating. In order to determine which clock model (strict vs. 

UER) was best supported by the entire dataset, marginal likelihood estimation (MLE) as implemented 

in BEAST (Baele et al. 2012, 2013) was executed (MLE chain length: 100,000 steps; path steps: 100). 

Path-sampling was performed and Bayes factors were calculated by comparing the marginal 

likelihood estimates of the UER clock to those of the strict clock. The marginal likelihood estimation 

decisively favored the UER clock over the strict clock for all four mutation rates (Bayes factors: 

log10BF > 50; decisive support following Kass and Raftery 1995).  

For the analyses of single haplogroups, a simple HKY mutation model was chosen, applying the rate 

of Poznik et al. (2013), and a relaxed exponential model with chains of 50 million steps (70 million 

steps for E1b1a8a and E1b1a+L458, which have the largest number of individuals). ESS values were 

above 100 for all runs. An outgroup sequence was included in the runs to ensure the correct placement 

of the root.  

Simulated dataset 

To assess the impact of imputation on our results, a bi-allelic haploid dataset containing 100 

individuals and 2,000 segregating sites was simulated following Sayres et al. (2014) using ms (Hudson 
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2002). A single tree was picked and the binary sequence data converted into a nucleotide alignment 

using the JC69 substitution model (Jukes and Cantor 1969). Missing sites (Ns) were randomly 

introduced into the sequence of each sample. Five upper boundaries for the maximum number of Ns 

were used: 5%, 10%, 20%, 30% and 50% of the number of segregating sites. The number of Ns for 

each sample was determined by drawing a number from either an exponential distribution or a uniform 

distribution (mean of the distribution: 50% of the upper boundary) and the missing bases were 

uniformly introduced over the sequence length. The exponential distribution mimics the situation 

where a majority of samples are of high quality, i.e. with a small number of missing bases, while a 

small number of samples are of low quality and have a large number of missing bases. In contrast, the 

uniform distribution mimics the situation where missing bases are distributed at random across 

sequences. The introduction of Ns was repeated 10 times for each upper boundary. Subsequently, 

imputation was carried out as described before, and the resulting alignments were compared to the 

original alignments to assess the number of wrongly assigned genotypes and shifts in the minor allele 

frequency distribution. These two measures represent the loss of observed genetic diversity per sample 

and per site, respectively. Wrongly assigned genotypes were defined as genotypes for which the 

consensus genotype of the three genetically closest neighbors was different from the original genotype 

before an N was introduced. In order to quantitatively measure the shift in the minor allele frequency, 

the number of singletons, doubletons, and tripletons were identified in the simulated dataset. Since the 

number of wrongly assigned genotypes and lost “n-tons” did not differ significantly between the 

exponential vs. uniform distribution of missing sites (Mann-Whitney U test: p-value 0.83 and 0.63, 

respectively), only the dataset constructed with a uniform sampling distribution of Ns was considered 

for subsequent analysis. 

The impact of imputation on the phylogenetic analyses (TMRCA and rate variation) was investigated 

using the simulated data by comparing the differences between trees generated from imputed 

alignments with trees generated from an alignment with no imputed bases. Trees and TMRCAs for the 

simulated dataset were calculated with BEAST v1.8.0 (Drummond et al. 2012) as described above. 

The substitution model was set to JC69, the tree model to Coalescent: Constant Size to avoid potential 

biases of more complex models, and the clock rate was set to 1. Both a strict clock and an 

Uncorrelated Lognormal Relaxed (ULN) clock were tested, as the simulated dataset didn’t support the 

Uncorrelated Exponential Relaxed (UER) clock that was used for the Y-chromosomal dataset (ESS 

values < 20). For a subset of the runs the topology was fixed using a starting tree reconstructed with 

the non-imputed alignment in BEAST. This allowed a comparison of TMRCA and rate variation 

without having to adjust for different tree topologies. A correction for invariant sites was performed as 

described before. The chain length was 30 million steps and the burn-in was set to 30% to obtain ESS 

values ≥ 100. One MCC tree per run was annotated using BEAST’s TreeAnnotator and the tree files 

were analyzed using the R package Phyloch (Heibl; R Core Team 2014), with a focus on the variables 
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node height and clock rate. MCC trees of alignments in which Ns were introduced and subsequently 

imputed were compared to the MCC tree of the simulated alignment without imputation. First, the 

total deviation of the node heights in a tree was quantified by summing up the squared deviation of 

each node height in the imputed tree from the corresponding node height in the tree without 

imputation (the expected tree), divided by the node height for the expected tree. Second, we tested if 

imputation affects our height estimates for nodes close to the root by analyzing the deviation of the 

root node height for the same data sets. 

In order to verify the results of the simulations in the southern African dataset, we analyzed the 

performance of a subset of the total data, consisting of 253 samples that had less than 5% missing data 

before imputation. We compared this low-imputation subset (the 253L dataset) to the entire dataset 

and to 10 random subsets of 253 sequences (the 253H datasets) from the entire dataset, in order to 

control for any sample size effect. All datasets were processed as described above for the total dataset, 

and the mutation rate was set to 0.82x10-9 mutations/bp/year. The recovered TMRCAs from the 

BEAST analyses were compared to an independent estimate of TMRCA calculated from the count of 

mutations from the A2-T node.  

Finally, we investigated the effect of imputation on the clock rate inferred in the BEAST analysis with 

the same simulated dataset. The non-imputed simulated data did not support a relaxed clock model 

over a strict clock model (see Supplemental Table S7; log10(BF) > 0). Only with increasing amounts 

of imputation did the data support a relaxed clock model (log10(BF) < 0). As done in the previous 

analysis of the node heights, the deviation (χ2) of the observed clock rates of the imputed datasets from 

the expected values of the non-imputed dataset was calculated and the corresponding 95% confidence 

interval was plotted (Supplemental Figure S14A).  

Furthermore, the χ2 values of the clock rate were plotted over the node height to investigate whether 

imputation could also lead to a tendency to a higher branch rate variation close to the tips 

(Supplemental Figure S14B). 

 

DATA ACCESS 

A .vcf file with the variants found in each sample prior to imputation, a .bed file with the callable 

regions, and a .fasta alignment with the imputed dataset used in the analysis, including variants private 

to A00 are available upon request.  

 

ACKNOWLEDGMENTS 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2015. ; https://doi.org/10.1101/034983doi: bioRxiv preprint 

https://doi.org/10.1101/034983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   20	  

We thank Udo Stenzel for assistance with the raw sequence data processing, Mario Vicente for 

assistance with the BEAST analysis, Monica Karmin and Toomas Kivisild for providing the A00 SNP 

data, and Gabriel Renaud, Greg Cochran, Henry Harpending, and Monty Slatkin for helpful 

discussion. This work was supported by a general grant from the Leakey Foundation and a Post-PhD 

grant (Nr. 8501) from the Wenner Gren Foundation (to BP), as well as by the Max Planck Society. 

Sample collection was partly funded by the Deutsche Forschungsgemeinschaft (as part of the 

European Science Foundation EUROCORES Programme EuroBABEL). BP is furthermore grateful to 

the LABEX ASLAN (ANR-10-LABX-0081) of Université de Lyon for its financial support within the 

program "Investissements d'Avenir" (ANR-11-IDEX-0007) of the French government operated by the 

National Research Agency (ANR).  

  

DISCLOSURE DECLARATION 

The authors declare no conflict of interest. 

 

REFERENCES 

Baele G, Lemey P, Bedford T, Rambaut A, Suchard M a, Alekseyenko A V. 2012. Improving the 
accuracy of demographic and molecular clock model comparison while accommodating 
phylogenetic uncertainty. Mol Biol Evol 29: 2157–2167. 

Baele G, Li WLS, Drummond AJ, Suchard M a, Lemey P. 2013. Accurate model selection of relaxed 
molecular clocks in bayesian phylogenetics. Mol Biol Evol 30: 239–243. 

Barbieri C, Güldemann T, Naumann C, Gerlach L, Berthold F, Nakagawa H, Mpoloka SW, Stoneking 
M, Pakendorf B. 2014a. Unraveling the complex maternal history of Southern African Khoisan 
populations. Am J Phys Anthropol 153: 435–448. 

Barbieri C, Vicente M, Oliveira S, Bostoen K, Rocha J, Stoneking M, Pakendorf B. 2014b. Migration 
and interaction in a contact zone: mtDNA variation among Bantu-speakers in southern Africa. 
PLoS One 9: e99117. 

Barbieri C, Vicente M, Rocha J, Mpoloka SW, Stoneking M, Pakendorf B. 2013. Ancient substructure 
in early mtDNA lineages of southern Africa. Am J Hum Genet 92: 285–292. 

Barnard ACN. 1992. Hunters and herders of southern Africa: a comparative ethnography of the 
Khoisan peoples. Cambridge University Press, Cambridge  ; New York. 

Batini C, Ferri G, Destro-Bisol G, Brisighelli F, Luiselli D, Sánchez-Diz P, Rocha J, Simonson T, 
Brehm A, Montano V, et al. 2011. Signatures of the preagricultural peopling processes in sub-
Saharan Africa as revealed by the phylogeography of early Y chromosome lineages. Mol Biol 
Evol 28: 2603–2613. 

Berniell-Lee G, Calafell F, Bosch E, Heyer E, Sica L, Mouguiama-Daouda P, Van Der Veen L, 
Hombert JM, Quintana-Murci L, Comas D. 2009. Genetic and demographic implications of the 
bantu expansion: Insights from human paternal lineages. Mol Biol Evol 26: 1581–1589. 

Bosch E, Calafell F, Santos FR, Pérez-Lezaun A, Comas D, Benchemsi N, Tyler-Smith C, Bertranpetit 
J. 1999. Variation in short tandem repeats is deeply structured by genetic background on the 
human Y chromosome. Am J Hum Genet 65: 1623–1638. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2015. ; https://doi.org/10.1101/034983doi: bioRxiv preprint 

https://doi.org/10.1101/034983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   21	  

Cochran G, Harpending H. 2013. Paternal Age and Genetic Load. Hum Biol 85: 515–528. 

Cruciani F, Trombetta B, Massaia A, Destro-Bisol G, Sellitto D, Scozzari R. 2011. A revised root for 
the human y chromosomal phylogenetic tree: The origin of patrilineal diversity in Africa. Am J 
Hum Genet 88: 814–818. 

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and 
parallel computing. Nat Methods 9: 772. 

de Filippo C, Barbieri C, Whitten M, Mpoloka SW, Gunnarsdóttir ED, Bostoen K, Nyambe T, Beyer 
K, Schreiber H, de Knijff P, et al. 2011. Y-chromosomal variation in sub-Saharan Africa: 
insights into the history of Niger-Congo groups. Mol Biol Evol 28: 1255–1269. 

DePristo MA, Banks E, Poplin R, Garimella K V, Maguire JR, Hartl C, Philippakis AA, del Angel G, 
Rivas MA, Hanna M, et al. 2011. A framework for variation discovery and genotyping using 
next-generation DNA sequencing data. Nat Genet 43: 491–8. 

Drummond AJ, Rambaut A, Shapiro B, Pybus OG. 2005. Bayesian coalescent inference of past 
population dynamics from molecular sequences. Mol Biol Evol 22: 1185–1192. 

Drummond AJ, Suchard M a, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the 
BEAST 1.7. Mol Biol Evol 29: 1969–73. 

Francalacci P, Morelli L, Angius A, Berutti R, Reinier F, Atzeni R, Pilu R, Busonero F, Maschio A, 
Zara I, et al. 2013. Low-pass DNA sequencing of 1200 Sardinians reconstructs European Y-
chromosome phylogeny. Science 341: 565–9. 

Gazave E, Chang D, Clark AG, Keinan A. 2013. Population growth inflates the per-individual number 
of deleterious mutations and reduces their mean effect. Genetics 195: 969–978. 

Güldemann T. 2014. “Khoisan” linguistic classification today. In Beyond “Khoisan”. Historical 
relations in the Kalahari Basin (eds. T. Güldemann and F. Anne-Maria), John Benjamins 
Publishing Company. 

Hallast P, Batini C, Zadik D, Maisano Delser P, Wetton JH, Arroyo-Pardo E, Cavalleri GL, de Knijff 
P, Destro Bisol G, Dupuy BM, et al. 2015. The Y-chromosome tree bursts into leaf: 13,000 high-
confidence SNPs covering the majority of known clades. Mol Biol Evol 32: 661–73. 

Heibl C. PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software 
packages. http://www.christophheibl.de/Rpackages.html. 

Helgason A, Einarsson AW, Guðmundsdóttir VB, Sigurðsson Á, Gunnarsdóttir ED, Jagadeesan A, 
Ebenesersdóttir SS, Kong A, Stefánsson K. 2015. The Y-chromosome point mutation rate in 
humans. Nat Genet 47: 453–457. 

Henn BM, Gignoux CR, Jobin M, Granka JM, Macpherson JM, Kidd JM, Rodríguez-Botigué L, 
Ramachandran S, Hon L, Brisbin A, et al. 2011. Hunter-gatherer genomic diversity suggests a 
southern African origin for modern humans. Proc Natl Acad Sci U S A 108: 5154–5162. 

Howell N. 1979. Demography of the Dobe! kung. New York: Academic. 

Hudson RR. 2002. Generating samples under a Wright-Fisher neutral model of genetic variation. 
Bioinformatics 18: 337–338. 

Jobling MA, Hurles M, Tyler-Smith C. 2013. Human evolutionary genetics: origins, peoples & 
disease. Garland Science. 

Jukes TH, Cantor CR. 1969. Evolution of protein molecules. Mamm protein Metab 3: 21–132. 

Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF. 2008. New binary 
polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. 
Genome Res 18: 830–838. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2015. ; https://doi.org/10.1101/034983doi: bioRxiv preprint 

https://doi.org/10.1101/034983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   22	  

Karmin M, Saag L, Vicente M, Sayres MAW, Järve M, Talas UG, Rootsi S, Ilumäe A-M, Mägi R, 
Mitt M, et al. 2015. A recent bottleneck of Y chromosome diversity coincides with a global 
change in culture. Genome Res 25: 459–466. 

Kass RE, Raftery AE. 1995. Bayes Factors. J Am Stat Assoc 90: 773–795. 

Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson 
A, Jonasdottir A, Jonasdottir A, et al. 2012. Rate of de novo mutations and the importance of 
father’s age to disease risk. Nature 488: 471–475. 

Lippold S, Xu H, Ko A, Li M, Renaud G, Butthof A, Schröder R, Stoneking M. 2014. Human paternal 
and maternal demographic histories: insights from high-resolution Y chromosome and mtDNA 
sequences. Investig Genet 5: 13. 

Mendez FL, Krahn T, Schrack B, Krahn AM, Veeramah KR, Woerner AE, Fomine FLM, Bradman N, 
Thomas MG, Karafet TM, et al. 2013. An African American paternal lineage adds an extremely 
ancient root to the human y chromosome phylogenetic tree. Am J Hum Genet 92: 454–459. 

Nixon K. 1999. The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis. Cladistics 15: 
407–414. 

Pickrell JK, Patterson N, Barbieri C, Berthold F, Gerlach L, Güldemann T, Kure B, Mpoloka SW, 
Nakagawa H, Naumann C, et al. 2012. The genetic prehistory of southern Africa. Nat Commun 
3: 1143. 

Poznik GD, Henn BM, Yee M-C, Sliwerska E, Euskirchen GM, Lin A a, Snyder M, Quintana-Murci 
L, Kidd JM, Underhill P a, et al. 2013. Sequencing Y chromosomes resolves discrepancy in time 
to common ancestor of males versus females. Science 341: 562–565. 

Quinque D, Kittler R, Kayser M, Stoneking M, Nasidze I. 2006. Evaluation of saliva as a source of 
human DNA for population and association studies. Anal Biochem 353: 272–277. 

R Core Team. 2014. R: A Language and Environment for Statistical Computing. 

Rambaut A, Drummond AJ. 2009. Tracer V1.5. Available from http//beast.bio.ed.ac.uk/Tracer. 

Schlebusch CM, Lombard M, Soodyall H. 2013. MtDNA control region variation affirms diversity 
and deep sub-structure in populations from southern Africa. BMC Evol Biol 13: 1–21. 

Schliep KP. 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27: 592–593. 

Scozzari R, Massaia A, D’Atanasio E, Myres NM, Perego UA, Trombetta B, Cruciani F. 2012. 
Molecular Dissection of the Basal Clades in the Human Y Chromosome Phylogenetic Tree. 
PLoS One 7. 

Scozzari R, Massaia A, Trombetta B, Bellusci G, Myres NM, Novelletto A, Cruciani F. 2014. An 
unbiased resource of novel SNP markers provides a new chronology for the human y 
chromosome and reveals a deep phylogenetic structure in Africa. Genome Res 24: 535–544. 

Shi W, Ayub Q, Vermeulen M, Shao RG, Zuniga S, Van Der Gaag K, De Knijff P, Kayser M, Xue Y, 
Tyler-Smith C. 2010. A worldwide survey of human male demographic history based on Y-SNP 
and Y-STR data from the HGDP-CEPH populations. Mol Biol Evol 27: 385–393. 

Soodyall H, Makkan H, Haycock P, Naidoo T. 2008. The genetic prehistory of the Khoe and San. 
South African Humanit 20: 37–48. 

Sun JX, Helgason A, Masson G, Ebenesersdóttir SS, Li H, Mallick S, Gnerre S, Patterson N, Kong A, 
Reich D, et al. 2012. A direct characterization of human mutation based on microsatellites. Nat 
Genet 44: 1161–1165. 

Thomas GH. 1996. High male:female ratio of germ-line mutations: an alternative explanation for 
postulated gestational lethality in males in X-linked dominant disorders. Am J Hum Genet 58: 
1364–1368. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2015. ; https://doi.org/10.1101/034983doi: bioRxiv preprint 

https://doi.org/10.1101/034983
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   23	  

Underhill PA, Shen P, Lin AA, Jin L, Passarino G, Yang WH, Kauffman E, Bonné-Tamir B, 
Bertranpetit J, Francalacci P, et al. 2000. Y chromosome sequence variation and the history of 
human populations. Nat Genet 26: 358–361. 

Van Oven M, Van Geystelen A, Kayser M, Decorte R, Larmuseau MH. 2014. Seeing the wood for the 
trees: A minimal reference phylogeny for the human Y chromosome. Hum Mutat 35: 187–191. 

Vinicius L, Mace R, Migliano A. 2014. Variation in male reproductive longevity across traditional 
societies. PLoS One 9: e112236. 

Wei W, Ayub Q, Chen Y, McCarthy S, Hou Y, Carbone I, Xue Y, Tyler-Smith C. 2013. A calibrated 
human Y-chromosomal phylogeny based on resequencing. Genome Res 23: 388–95. 

Williamson K, Blench R. 2000. Niger-Congo. In African languages: An introduction. (eds. B. Heine 
and D. Nurse), pp. 11–42, Cambridge University Press, Cambridge, UK. 

Wilson Sayres M a., Lohmueller KE, Nielsen R. 2014. Natural Selection Reduced Diversity on 
Human Y Chromosomes ed. B.A. Payseur. PLoS Genet 10: e1004064. 

Wood ET, Stover DA, Ehret C, Destro-Bisol G, Spedini G, McLeod H, Louie L, Bamshad M, 
Strassmann BI, Soodyall H, et al. 2005. Contrasting patterns of Y chromosome and mtDNA 
variation in Africa: evidence for sex-biased demographic processes. Eur J Hum Genet 13: 867–
876. 

Xue Y, Wang Q, Long Q, Ng BL, Swerdlow H, Burton J, Skuce C, Taylor R, Abdellah Z, Zhao Y, et 
al. 2009. Human Y Chromosome Base-Substitution Mutation Rate Measured by Direct 
Sequencing in a Deep-Rooting Pedigree. Curr Biol 19: 1453–1457. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 20, 2015. ; https://doi.org/10.1101/034983doi: bioRxiv preprint 

https://doi.org/10.1101/034983
http://creativecommons.org/licenses/by-nc-nd/4.0/

