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Abstract 17 

Genomic tools allow the study of the whole genome and are facilitating the study of 18 

genotype-environment combinations and their relationship with the phenotype. However, most 19 

genomic prediction models developed so far are appropriate for Gaussian phenotypes. For this 20 

reason, appropriate genomic prediction models are needed for count data, since the conventional 21 

regression models used on count data with a large sample size (n) and a small number of 22 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2015. ; https://doi.org/10.1101/034967doi: bioRxiv preprint 

https://doi.org/10.1101/034967
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

parameters (p) cannot be used for genomic-enabled prediction where the number of parameters 1 

(p) is larger than the sample size (n). Here we propose a Bayesian mixed negative binomial 2 

(BMNB) genomic regression model for counts that takes into account genotype by environment 3 

(𝐺 × 𝐸) interaction. We also provide all the full conditional distributions to implement a Gibbs 4 

sampler. We evaluated the proposed model using a simulated data set and a real wheat data set 5 

from the International Maize and Wheat Improvement Center (CIMMYT) and collaborators. 6 

Results indicate that our BMNB model is a viable alternative for analyzing count data. 7 

 8 

Keyword: Bayesian model; Count data; Genome enabled prediction; Gibbs sampler. 9 

 10 

Introduction 11 

A phenotype is the result of genotype (G), environment (E) and the genotype by environment 12 

interactions (𝐺 × 𝐸) in most living organisms. Garrod (1902) observed that the effect of genes 13 

on phenotype could be modified by the environment (E). Similarly, Turesson (1922) 14 

demonstrated that the development of a plant is often influenced by its surroundings. He 15 

postulated the existence of a close relationship between crop plant varieties and their 16 

environment, and stressed that the presence of a particular variety in a given locality is not just a 17 

chance occurrence; rather, there is a genetic component that helps the individual adapt to that 18 

area. 19 

For these reasons, today the consensus is that 𝐺 × 𝐸 is useful for understanding genetic 20 

heterogeneity under different environmental exposures (Kraft et al., 2007; Van Os and Rutten, 21 

2009) and for identifying high-risk or productive subgroups in a population (Murcray et al., 22 
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2009); it also provides insight into the biological mechanisms of complex traits such as disease 1 

resistance and yield (Thomas, 2011), and improves the ability to discover resistance genes that 2 

interact with other factors that have little marginal effects (Thomas, 2011). However, finding 3 

significant 𝐺 × 𝐸 interactions is challenging. Model misspecification, inconsistent definition of 4 

environmental variables, and insufficient sample sizes are just a few of the issues that often lead 5 

to low-power and non-reproducible findings in 𝐺 × 𝐸 studies (Jiao et al., 2013; Winham and 6 

Biernacka, 2013). 7 

Genomics and its breeding applications are developing very quickly with the goal of 8 

predicting yet-to-be observed phenotypes or unobserved genetic values for complex traits and 9 

inferring the underlying genetic architecture utilizing large collections of markers (Goddard  and 10 

Hayes, 2009; Zhang et al., 2014). Also, genomics is useful when dealing with complex traits 11 

that are multi-genic in nature and have major environmental influence (Perez-de-Castro et al., 12 

2012). For these reasons, the use of whole genome prediction models continues to increase. In 13 

genomic prediction, all marker effects are fitted simultaneously on a model and simulation 14 

studies promote the use of this methodology to increase genetic progress in less time. For 15 

continuous phenotypes, models have been developed to regress phenotypes on all available 16 

markers using a linear model (Goddard and Hayes, 2009; de los Campos et al., 2013). However, 17 

in plant breeding, the response variable in many traits is a count (y=0,1,2,…), for example, 18 

number of panicle per plant, number of seed per panicle, weed count per plot, etc. Count data 19 

are discrete, non-negative, integer-valued, and typically have right-skewed distributions 20 

(Yaacob et al., 2010). 21 

Poisson regression and negative binomial regression are often used to deal with count 22 

data. These models have a number of advantages over an ordinary linear regression model, 23 
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including a skewed, discrete distribution (0,1,2,3,…,) and the restriction of predicted values for 1 

phenotypes to non-negative numbers (Yaacob et al., 2010). These models are different from an 2 

ordinary linear regression model. First, they do not assume that counts follow a normal 3 

distribution. Second, rather than modeling 𝑦  as a linear function of the regression coefficients, 4 

they model a function of the response mean as a linear function of the coefficients (Cameron 5 

and Trivedi, 1986). Regression models for counts are usually nonlinear and have to take into 6 

consideration the specific properties of counts, including discreteness and non-negativity, and 7 

are often characterized by overdispersion (variance greater than the mean) (Zhou et al., 2012). 8 

However, in the context of genomic selection, it is still common practice to apply linear 9 

regression models to these data or to transformed data (Montesinos-López et al., 2015a,b). This 10 

does not take into account that: (a) many distributions of count data are positively skewed, many 11 

observations in the data set have a value of 0, and the high number of 0’s in the data set does not 12 

allow a skewed distribution to be transformed into a normal one (Yaacob et al., 2010); and (b) it 13 

is quite likely that the regression model will produce negative predicted values, which are 14 

theoretically impossible (Yaacob et al., 2010; Stroup, 2015). When transformation is used, it is 15 

not always possible to have normally distributed data and many times transformations not only 16 

do not help, they are counterproductive. There is also mounting evidence that transformations 17 

do more harm than good for the models required by the vast majority of contemporary plant and 18 

soil science researchers (Stroup, 2015). To the best of our knowledge, only the paper of 19 

Montesinos-López et al. (2015c) is appropriate for genomic prediction for count data under a 20 

Bayesian framework; however it does not take into account 𝐺 × 𝐸 interaction. 21 

In this paper, we extend the NB regression model for counts proposed by Montesinos-22 

López et al. (2015c) to take into account 𝐺 × 𝐸 by using a data augmentation approach. A 23 
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Gibbs sampler was derived since all full conditional distributions were obtained, which allows 1 

drawing samples from them to estimate the required parameters. In addition, we provide all the 2 

details of the efficient derived Gibbs sampler so it can be easily implemented by most plant and 3 

animal scientists. We illustrate our proposed methods with a simulated data set and a real data 4 

set on wheat Fusarium head blight. We compare our proposed models (NB and Poisson) with 5 

the Normal and Log-Normal models that are commonly implemented for analyzing count data. 6 

We also provide R code for implementing the proposed models. 7 

 8 

Materials and Methods 9 

The data used in this study were taken from a Ph.D. thesis (Falconi-Castillo, 2014) aimed at 10 

identifying sources of resistance to Fusarium head blight (FHB), caused by Fusarium 11 

graminearum and identify genomic regions and molecular markers linked to FHB resistance 12 

through association analysis. 13 

 14 

Experimental data 15 

Phenotypic data 16 

A total of 297 spring wheat lines developed by the International Maize and Wheat Improvement 17 

Center (CIMMYT) was assembled and evaluated for resistance to F. graminearum in México over 18 

two years (2012 and 2014) and Ecuador for one year (2014).  In this paper we used only 182 spring 19 

wheat lines since only for these lines we have complete marker information.  20 

Genotypic data 21 
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DNA samples were genotyped using an Illumina 9K SNP chip with 8,632 SNPs (Cavanagh et al., 1 

2013). SNP markers with unexpected genotype AB (heterozygous) were recoded as either AA or 2 

BB based on the graphical interface visualization tool of the software GenomeStudio® (Illumina). 3 

SNP markers that did not show clear clustering patterns were excluded. In addition, 66 simple 4 

sequence repeats (SSR) markers were screened. After filtering the markers for the minor allele 5 

frequency (MAF) of 0.05 and deleting markers with more than 10% of no calls, the final set of SNPs 6 

was of 1,635 SNP. 7 

 8 

Data and software availability 9 

The phenotypic (FHB) and genotypic (marker) data used in this study as well as basic R codes 10 

(R Core Team, 2015) for fitting the models can be directly downloaded from the repository at 11 

http://hdl.handle.net/11529/10575 12 

 13 

Statistical Models 14 

We used 𝑦𝑖𝑗𝑡 to represent the count response for the 𝑡th replication of the 𝑗th line in the 15 

𝑖th environment with 𝑖 = 1, … , 𝐼;  𝑗 = 1,2, … , 𝐽, 𝑡 = 1,2, … , 𝑛𝑖𝑗 and we propose the following 16 

linear predictor that takes into account 𝐺 × 𝐸: 17 

𝜂𝑖𝑗 = 𝐸𝑖 + 𝑔𝑗 + 𝑔𝐸𝑖𝑗                                  (1) 18 

where 𝐸𝑖 represents the environment i, 𝑔𝑗 is the marker effect of genotype j, and 𝑔𝐸𝑖𝑗 is the 19 

interaction between markers and environment; 𝐼 = 3, since we have three environments (Batan 20 

2012, Batan 2014, and Chunchi 2014), 𝐽 = 182,  since it is the number of lines under study, 21 

and 𝑛𝑖𝑗 represents the number of replicates of each line in each environment (the minimum and 22 

maximum 𝑛𝑖𝑗 found per line were 10 and 20). The number of observations in each environment 23 
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i is 𝑛𝑖 = ∑ 𝑛𝑖𝑗
𝐽
𝑗=1 , while the total number of observations is 𝑛 = ∑ 𝑛𝑖

𝐼
𝑖=1 .  IJ is the product of 1 

the number of environments and number of lines. Four models were implemented using the 2 

linear predictor given in expression (1). 3 

 4 

Model NB 5 

Distributions: 𝑦𝑖𝑗𝑡|𝑔𝑗 , 𝑔𝐸𝑖𝑗~NB(𝜇𝑖𝑗 , 𝑟), with r being the scale parameter, 𝜇𝑖𝑗 = exp(𝜂𝑖𝑗) , 𝒈 =6 

(𝑔1, … , 𝑔𝐽)
𝑻
~𝑁(𝟎,𝑮𝟏𝜎𝑔

2), 𝒈𝑬𝑖 = (𝑔𝐸𝑖1, … , 𝑔𝐸𝑖𝐽)
𝑻
~𝑁(𝟎, 𝑮𝟐𝜎𝑔𝐸

2 ). Note that the NB 7 

distribution has expected value 𝜇𝑖𝑗 and is smaller than the variance 𝜇𝑖𝑗 +
𝜇𝑖𝑗

2

𝑟
. 𝑮𝟏 and 𝑮𝟐 were 8 

assumed known, with 𝑮𝟏 computed from marker 𝑿 data (for k = 1, … , p markers) as 9 

𝑮𝟏 =
𝑿𝑿𝑇

𝑝
; this matrix is called the Genomic Relationship Matrix (GRM) (VanRaden, 2008). 10 

While 𝑮𝟐 is computed as 𝑮𝟐 = 𝑰𝑰 ⊗ 𝑮𝟏 of order IJxIJ and ⊗ denotes the Kronecker product, 11 

𝑰𝑰 means that we assume independence between environments. 12 

 13 

Model Pois 14 

This model is the same as Model NB, except that 𝑦𝑖𝑗𝑡|𝑔𝑗, 𝑔𝐸𝑖𝑗~Poisson(𝜇𝑖𝑗). Since according 15 

to Zhou et al. (2012) and Teerapabolarn and Jaioun (2014) the lim 𝑟→∞ 𝑁𝐵(𝜇𝑖𝑗, 𝑟) =16 

𝑃𝑜𝑖𝑠(𝜇𝑖𝑗), Model Pois was implemented using the same method as Model NB, but fixing 𝑟 to 17 

a large value, depending on the mean count. We used 𝑟 = 1000, which is a good choice when 18 

the mean count is less than 100. 19 

 20 

Model Normal 21 

Model Normal is similar to Model NB, except that 𝑦𝑖𝑗𝑡|𝑔𝑗, 𝑔𝐸𝑖𝑗~N(𝜂𝑖𝑗, 𝜎𝑒
2) with identity link 22 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2015. ; https://doi.org/10.1101/034967doi: bioRxiv preprint 

https://doi.org/10.1101/034967
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

function. 1 

 2 

Model Log-Normal 3 

Model Log-Normal is similar to Model NB, except that log (𝑦𝑖𝑗𝑡 + 1)|𝑔𝑗, 𝑔𝐸𝑖𝑗~N(𝜂𝑖𝑗, 𝜎𝑒
2) with 4 

identity link function. 5 

 6 

When 𝑝 > 𝑛, implementing Models NB and Pois is challenging. For this reason, we propose a 7 

Bayesian method for dealing with situations when 𝑝 > 𝑛.  The Models Normal and Log-8 

Normal were implemented in the package BGLR of de los campos et al.   (2014). 9 

 10 

Bayesian mixed negative binomial regression 11 

Rewriting the linear predictor (1) as 𝜂𝑖𝑗 = 𝒙𝑖
𝑇𝜷 + ∑ 𝑏ℎ𝑖𝑗

2
ℎ=1 , with 𝒙𝑖

𝑇 = [ 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3], 12 

where 𝑥𝑖𝑘 is an indicator variable that takes the value of 1 if it is observed in environment 𝑖 and 13 

0 otherwise, for 𝑘 = 1,2,3; 𝜷𝑇 = [ 𝛽1,𝛽2,, 𝛽3,], since three is the number of environments under 14 

study, 𝑏1𝑖𝑗 = 𝑔𝑗 and 𝑏2𝑖𝑗 = 𝑔𝐸𝑖𝑗 . Note that in a sequence of independent Bernoulli (𝜋𝑖𝑗) trials, 15 

the random variable 𝑦𝑖𝑗𝑡 denotes the number of successes before the rth failure occurs. Then 16 

Pr(𝑌𝑖𝑗𝑡 = 𝑦𝑖𝑗𝑡|𝑔𝑗, 𝑔𝐸𝑖𝑗) = (
𝑦𝑖𝑗𝑡 + 𝑟 − 1

𝑦𝑖𝑗𝑡
) (1 −

𝜇𝑖𝑗

𝑟+𝜇𝑖𝑗
)𝑟 (

𝜇𝑖𝑗

𝑟+𝜇𝑖𝑗
)

𝑦𝑖𝑗𝑡

  for 𝑦𝑖𝑗𝑡 = 0,1,2, …        17 

=
Γ(𝑦𝑖𝑗𝑡+𝑟)

𝑦𝑖𝑗𝑡!Γ(𝑟)

[exp (𝜂𝑖𝑗
∗ )]

𝑦𝑖𝑗𝑡

[1+exp (𝜂𝑖𝑗
∗ )]

𝑦𝑖𝑗𝑡+𝑟,   𝑦𝑖𝑗𝑡 = 0,1,2, …                                               (2) 18 

Since 𝜋𝑖𝑗 =
𝜇𝑖𝑗

𝑟+𝜇𝑖𝑗
=

𝑟𝜇𝑖𝑗

1+𝑟𝜇𝑖𝑗
=

𝑟exp(𝜂𝑖𝑗)

1+𝑟exp(𝜂𝑖𝑗)
=

exp (𝜂𝑖𝑗
∗ )

1+exp (𝜂𝑖𝑗
∗ )

, where 𝜂𝑖𝑗
∗ = 𝒙𝑖

𝑇 𝜷∗ + ∑ 𝑏ℎ𝑖𝑗
2
ℎ=1 ,  𝜷∗ =19 

[ 𝛽1
∗, 𝛽2

∗, 𝛽3
∗], with 𝛽𝑖

∗ = 𝛽𝑖 − log (𝑟) since 𝒙𝑖
𝑇 is composed of  three indicator variables. We 20 

can rewrite (Eq 2) as: 21 
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Pr(𝑌𝑖𝑗𝑡 = 𝑦𝑖𝑗𝑡|𝑔𝑗, 𝑔𝐸𝑖𝑗)     =
Γ(𝑦𝑖𝑗𝑡+𝑟)

𝑦𝑖𝑗𝑡!Γ(𝑟)
2−𝑦𝑖𝑗𝑡−𝑟exp (

𝑦𝑖𝑗𝑡−𝑟

2
𝜂𝑖𝑗

∗ ) ∫ exp [−
𝜔𝑖𝑗𝑡(𝜂𝑖𝑗

∗ )
2

2
] 𝑓(𝜔𝑖𝑗𝑡 , 𝑦𝑖𝑗𝑡 +

∞

0
1 

𝑟, 0)𝑑𝜔𝑖𝑗𝑡      (3) 2 

Expression (3) was obtained using the equality given by Polson et al. (2013): 
(𝑒𝜓)𝑎

(1+𝑒𝜓)𝑏
=3 

2−𝑏𝑒𝜅𝜓 ∫ 𝑒−
𝜔𝜓2

2 𝑓(𝜔; 𝑏, 0)𝑑𝜔
∞

0
, where 𝜅 = 𝑎 − 𝑏/2 and 𝑓(. , 𝑏, 0) denotes the density of 4 

𝑃𝐺(𝑏, 𝑐 = 0), the 𝑃𝐺 Pólya-Gamma distribution with parameters 𝑏 and 𝑐 = 0 (see Definition 1 5 

in Polson et al., 2013). 6 

From here, conditional on 𝜔𝑖𝑗𝑡 ~𝑃𝐺(𝑦
𝑖𝑗𝑡

+ 𝑟, 𝑐 = 0), 7 

Pr(𝑌𝑖𝑗𝑡 = 𝑦𝑖𝑗𝑡|𝑔𝑗, 𝑔𝐸𝑖𝑗 , 𝜔𝑖𝑗𝑡)     =
Γ(𝑦𝑖𝑗𝑡+𝑟)

𝑦𝑖𝑗𝑡!Γ(𝑟)
2−𝑦𝑖𝑗𝑡−𝑟exp (

𝑦𝑖𝑗𝑡−𝑟

2
𝜂𝑖𝑗

∗ ) exp [−𝜔𝑖𝑗𝑡(𝜂𝑖𝑗
∗ )

2
/2]         (4) 8 

To be able to get the full conditional distributions, we provide the prior distributions, 𝑓(𝜽), for 9 

all the unknown model parameters 𝜽 = (𝜷∗, 𝜎𝛽
2, 𝒃1, 𝜎𝑏1

2 , 𝒃2, 𝜎𝑏2
2 , r). We assume prior 10 

independence between the parameters, that is, 11 

𝑓(𝜽) = 𝑓(𝜷∗)𝑓(𝜎𝛽
2)𝑓( 𝒃1)𝑓(𝜎𝑏1

2 )𝑓( 𝒃2)𝑓(𝜎𝑏2
2 )𝑓(𝑟). 

We assign conditionally conjugate but weakly informative prior distributions to the parameters 12 

because we have no prior information. Prior specification in terms of 𝜷∗ instead of 𝜷 is for 13 

convenience. We adopt proper priors with known hyper-parameters whose values we specify in 14 

model implementation to guarantee proper posteriors. We assume that 𝜷∗|𝜎𝛽
2~𝑁𝑝(𝜷0, ∑ 𝜎𝛽

2
0 ), 15 

𝜎𝛽
2~𝜒−2(𝜈𝛽 , 𝑆𝛽) where 𝜒−2(𝜈𝛽 , 𝑆𝛽)  denotes a scaled inverse chi-square distribution with shape 16 

𝜈𝛽  and scale 𝑆𝛽 parameters, 𝒃1|𝜎𝑏1
2 ~𝑁𝑛𝑏1(𝟎, 𝑮𝟏𝜎𝑏1

2 ), 𝜎𝑏1
2 ~ 𝜒−2(𝜈𝑏1, 𝑆𝑏1), 17 

𝒃2|𝜎𝑏2
2 ~𝑁𝑛𝑏2(𝟎, 𝑮𝟐𝜎𝑏2

2 ), 𝜎𝑏2
2 ~ 𝜒−2(𝜈𝑏2, 𝑆𝑏2) and 𝑟~𝐺(𝑎0, 1/𝑏0). Next we combine (Eq 4) 18 
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using all data with priors to get the full conditional distribution for parameters 𝜷∗, 𝜎𝛽
2, 𝒃1, 𝜎𝑏1

2 , 1 

𝒃2, 𝜎𝑏2
2  and r. 2 

 3 

Full conditional distributions 4 

The full conditional distribution of  𝜷∗ is given as: 5 

 𝑓(𝜷∗|𝒚, 𝐸𝐿𝑆𝐸)~𝑁(𝜷̃0, 𝚺̃0)                                                     (5) 6 

where 𝚺̃0 = (𝚺0
−1𝜎𝛽

−2 + 𝑿𝑇𝑫𝝎𝑿)−1, 𝜷̃0 = 𝚺̃0(𝚺0
−1𝜎𝛽

−2𝜷0 − 𝑿𝑇𝑫𝜔 ∑ 𝒁ℎ𝒃ℎ
2
ℎ=1 + 𝑿𝑇𝜿), 7 

 𝒚𝑖𝑗 = [𝑦𝑖𝑗1, … , 𝑦𝑖𝑗𝑛𝑖𝑗
]
𝑇

,  𝒚𝑖 = [𝒚𝑖1
𝑇 , … , 𝒚𝑖𝐽

𝑇 ]
𝑇
, 𝒚 = [𝒚1

𝑇 , … , 𝒚𝐼
𝑇]𝑇 ,  𝜿𝑖𝑗 =

1

2
[𝑦𝑖𝑗1 − 𝑟,… , 𝑦𝑖𝑗𝑛𝑖𝑗

−8 

𝑟]
𝑇

,  𝜿𝑖 = [𝜿𝑖1
𝑇 , … , 𝜿𝑖𝐽

𝑇 ]
𝑇
, 𝜿 = [𝜿1

𝑇 , … , 𝜿𝐼
𝑇]𝑇,  𝑿𝑖𝑗 = [𝟏𝑛𝑖𝑗

𝑇 ⊗ 𝒙𝑖]
𝑇,  𝑿𝑖 = [𝑿𝑖1

𝑇 , … , 𝑿𝑖𝐽
𝑇 ]𝑇, 𝑿 =9 

[𝑿1
𝑇 , … , 𝑿𝐼

𝑇]𝑇, 𝑫𝜔𝑖𝑗 = diag (𝜔𝑖𝑗1, … , 𝜔𝑖𝑗𝑛𝑖𝑗
), 𝑫𝜔𝑖 = diag(𝑫𝜔𝑖1, … , 𝑫𝜔𝑖𝐽), 10 

𝑫𝜔 = diag(𝑫𝜔1, … , 𝑫𝜔𝐼), 𝒃ℎ𝑖 = [𝑏ℎ𝑖1, … , 𝑏ℎ𝑖𝐽]
𝑇, 𝒃ℎ = [𝒃ℎ1

𝑇 , … , 𝒃ℎ𝐼
𝑇 ]𝑇, 11 

𝒁1𝑖 =

[
 
 
 
 
𝟏𝑛1𝑖1

𝟎

𝟎 𝟏𝑛1𝑖2

⋯
⋯

𝟎
𝟎

⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝟏𝑛1𝑖𝐽]

 
 
 
 

, 𝒁1 = [𝒁11
𝑇 , … , 𝒁1𝐼

𝑇 ]𝑇 and 𝒁2 = 𝒁1 ∗ ~𝑿, where ∗ ~ indicates 12 

the horizontal Kronecker product between 𝒁1 and 𝑿. The horizontal Kronecker product 13 

performs a Kronecker product of 𝒁1 and 𝑿 and creates a new matrix by stacking these row 14 

vectors into a matrix. 𝒁1 and 𝑿 must have the same number of rows, which is also the same 15 

number of rows in the result matrix. The number of columns in the result matrix is equal to the 16 

product of the number of columns in 𝒁1 and 𝑿. When the prior for  𝜷∗ ∝ constant, the posterior 17 

distribution of  𝜷∗ is also normally distributed, 𝑁(𝜷̃0, 𝚺̃0), but we set the term 𝚺0
−1𝜎𝛽

−2 to zero in 18 

both 𝚺̃0 and 𝜷̃. 19 
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The fully conditional distribution of 𝜔𝑖𝑗𝑡 is 1 

                     𝑓(𝜔𝑖𝑗𝑡|𝒚, 𝐸𝐿𝑆𝐸) ~ 𝑃𝐺(𝑦𝑖𝑗𝑡 + 𝑟, 𝒙𝑖
𝑇 𝜷∗ + ∑ 𝑏ℎ𝑖𝑗

2
ℎ=1 )                             (6) 2 

Defining 𝜼ℎ = 𝑿 𝜷∗ + 𝒁ℎ𝒃ℎ, with ℎ = 1,2, the conditional distribution of 𝒃ℎ is given as 3 

𝑓(𝒃ℎ|𝒚, 𝐸𝐿𝑆𝐸)~𝑁(𝒃̃ℎ,  𝑭𝒉)                                         (7)                                         4 

If 𝜼1 = 𝑿 𝜷∗ + 𝒁2𝒃2, then  𝑭𝟏 = (𝜎𝑏1

−2𝑮1
−1 + 𝒁1

𝑇𝑫𝜔𝒁1)
−1

,  𝒃̃1 =  𝑭𝟏(𝒁1
𝑇𝜿 − 𝒁1

𝑇𝑫𝜔𝜼1) and 5 

then 𝒃1|𝒚, 𝐸𝐿𝑆𝐸~𝑁(𝒃̃1,  𝑭𝟏). Similarly, by defining 𝜼2 = 𝑿 𝜷∗ + 𝒁1𝒃1, we arrive at the full 6 

conditional of 𝒃2 as 𝒃2|𝒚, 𝐸𝐿𝑆𝐸~𝑁(𝒃̃2,  𝑭𝟐), where  𝑭𝟐 = (𝜎𝑏2

−2𝑮2
−1 + 𝒁2

𝑇𝐷𝜔𝒁2)
−1

,  𝒃̃2 =7 

 𝑭𝟐(𝒁2
𝑇𝜿 − 𝒁2

𝑇𝑫𝜔𝜼2). 8 

The fully conditional distribution of 𝜎𝑏ℎ

2 , for ℎ = 1,2, is 9 

            𝑓(𝜎𝑏ℎ

2 |𝒚, 𝐸𝐿𝑆𝐸)~𝜒−2(𝜈𝑏 = 𝜈𝑏ℎ
+ 𝑛𝑏ℎ

, 𝑆̃𝑏 = (𝒃ℎ
𝑇𝑮ℎ

−1𝒃ℎ + 𝜈𝑏ℎ
𝑆𝑏ℎ

)/𝜈𝑏ℎ
+ 𝑛𝑏ℎ

)      (8) 10 

with 𝑛𝑏1
=J and 𝑛𝑏2

=IJ. 11 

The conditional distribution of 𝜎𝛽∗
2  is  12 

𝑓(𝜎𝛽∗
2 |𝒚,𝐸𝐿𝑆𝐸)~𝜒−2(𝜈𝛽∗ = 𝜈𝛽∗ + 𝐼, 𝑆̃𝛽 = [( 𝜷∗ − 𝜷0)

𝑇𝚺0
−1( 𝜷∗ − 𝜷0) + 𝜈𝛽∗𝑆𝛽∗]/𝜈𝛽∗ + 𝐼)         (9) 13 

Taking advantage of the fact that the NB distribution can also be generated using a 14 

Poisson representation (Quenouille, 1949) as 𝑌 = ∑ 𝑢𝑙 , where 𝑢𝑙~𝐿𝑜𝑔(𝜋),𝐿
𝑙=1  𝜋 =

𝜇

𝑟+𝜇
 and is 15 

independent of 𝐿~ 𝑃𝑜𝑖𝑠(−𝑟 log(1 − 𝜋)), where 𝐿𝑜𝑔 and 𝑃𝑜𝑖𝑠 denote logarithmic and Poisson 16 

distributions, respectively. Then we infer a latent count 𝐿 for each 𝑌 ∼  𝑁𝐵(𝜇, 𝑟) conditional on 17 

𝑌 and 𝑟. Therefore, following Zhou et al. (2012), we obtain the full conditional of 𝑟 by 18 

alternating 19 
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 𝑓(𝑟|𝒚, 𝐸𝐿𝑆𝐸)~𝐺(𝑎0 − ∑ ∑ ∑ log(1 − 𝜋𝑖𝑗𝑡)
𝑛𝑖𝑗

𝑡=1
𝐽
𝑗=1

𝐼
𝑖=1 ,

1

𝑏0+∑ ∑ ∑ 𝐿𝑖𝑗𝑡

𝑛𝑖𝑗
𝑡=1

𝐽
𝑗=1

𝐼
𝑖=1

)                    (10) 1 

𝑓(𝐿𝑖𝑗𝑡|𝒚, 𝐸𝐿𝑆𝐸)~ 𝐶𝑅𝑇(𝑦𝑖𝑗𝑡, 𝑟)                                                                   (11) 2 

where 𝐶𝑅𝑇(𝑦𝑖𝑗𝑡 , 𝑟) denotes a Chinese restaurant table (CRT) count random variable that can be 3 

generated as 𝐿𝑖𝑗𝑡 = 𝛴𝑙=1

𝑦𝑖𝑗𝑡𝑑𝑙, where  𝑑𝑙~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
𝑟

𝑙−1+𝑟
). For details of the CRT random 4 

variable derivation, see Zhou and Carin (2012, 2015). 5 

 6 

Gibbs sampler 7 

The Gibbs sampler for the latent parameters of the NB with 𝐺 × 𝐸  can be implemented by 8 

sampling repeatedly from the following loop: 9 

1. Sample 𝜔𝑖𝑗𝑡 values from the Pólya-Gamma distribution in (6). 10 

2. Sample 𝐿𝑖𝑗𝑡~𝐶𝑅𝑇(𝑦𝑖𝑗𝑡, 𝑟) from (11). 11 

3. Sample the scale parameter (𝑟) from the gamma distribution in (10).  12 

4. Sample the location effects ( 𝜷∗) from the normal distribution in (5). 13 

5. Sample the random effects (𝒃ℎ) with ℎ = 1,2, from the normal distribution in (7). 14 

6. Sample the variance effects (𝜎𝑏ℎ

2 ) with ℎ = 1,2, from the scaled inverted 𝜒2 distribution in 15 

(8). 16 

7. Sample the variance effect (𝜎𝛽∗
2 ) from the scaled inverted 𝜒2 distribution in (9). 17 

8. Return to step 1 or terminate when chain length is adequate to meet convergence 18 

diagnostics. 19 

 20 
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Model implementation 1 

The Gibbs sampler described above for the BMNB model was implemented in R-Core 2 

Team (2015). Implementation was done under a Bayesian approach using Markov Chain Monte 3 

Carlo (MCMC) through the Gibbs sampler algorithm, which samples sequentially from the full 4 

conditional distribution until it reaches a stationary process, converging with the joint posterior 5 

distribution (Gelfand and Smith, 1990). To decrease the potential impact of MCMC errors on 6 

prediction accuracy, we performed a total of 60,000 iterations with a burn-in of 30,000, so that 7 

30,000 samples were used for inference. We did not apply thinning of the chains following the 8 

suggestions of Geyer (1992), MacEachern and Berliner (1994) and Link and Eaton (2012), who 9 

provide justification of the ban on subsampling MCMC output for approximating simple 10 

features of the target distribution (e.g., means, variances, and percentiles). We implemented the 11 

prior specification given in the section Bayesian mixed negative binomial regression with 12 

 𝜷∗|𝜎𝛽
2~𝑁𝑝(𝜷0 = 𝟎3

𝑇 , 𝑰3 × 10,000), 𝒃1|𝜎𝑏1
2 ~𝑁𝑛𝑏1(𝟎𝑛𝑏1

𝑇 , 𝑮1𝜎𝑏1
2 ), where 𝑮1 is the GRM, that is, 13 

the covariance matrix of the random effects, 𝜎𝑏1
2 ~ 𝜒−2(𝜈𝑏1 = 3, 𝑆𝑏1 = 0.001), 14 

𝒃2|𝜎𝑏2
2 ~𝑁𝑛𝑏2(𝟎𝑛𝑏2

𝑇 , 𝑮2𝜎𝑏2
2 ), 𝑮2 is the covariance matrix of the random effects that belong to the 15 

𝐺 × 𝐸 term, 𝜎𝑏2
2  ~ 𝜒−2(𝜈𝑏2 = 3, 𝑆𝑏2 = 0.001), and 𝑟~𝐺(𝑎0 = 0.01,1/(𝑏0 = 0.01)). All these 16 

hyper-parameters were chosen to lead weakly informative priors. The convergence of the 17 

MCMC chains was monitored using trace plots and autocorrelation functions. We also 18 

conducted a sensitivity analysis on the use of the inverse gamma priors for the variance 19 

components and we observed that the results are robust under different choices of priors. 20 

 21 

Assessing prediction accuracy 22 

We used cross-validation to compare the prediction accuracy of the proposed models 23 
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for count phenotypes. We implemented a 10-fold cross validation, that is, the data set was 1 

divided into 10 mutually exclusive subsets; each time we used 9 subsets for the training set and 2 

the remaining one for validation set. The training set was used to fit the model and the 3 

validation set was used to evaluate the prediction accuracy of the proposed models. To compare 4 

the prediction accuracy of the proposed models, we calculated the Spearman correlation (Cor) 5 

and the mean square error of prediction (MSEP), both calculated using the observed and 6 

predicted response variables of the validation set. Models with large absolute values of Cor 7 

indicate better prediction accuracy, while small MSEP indicate better prediction performance. 8 

The predicted observations, 𝑦̂𝑖𝑗, were calculated with 𝑀 collected Gibbs samples after 9 

discarding those of the burn-in period. For Models NB and Pois the predicted values were 10 

calculated as 𝑦̂𝑖𝑗 =
∑ exp (𝑥𝑖1𝛽1

∗(𝑠)
+𝑥𝑖1𝛽2

∗(𝑠)
+𝑥𝑖1𝛽3

∗(𝑠)
+log(𝑟̂(𝑠))+𝑔̂𝑗

(𝑠)𝑀
𝑠=1 +𝑔𝐸̂𝑖𝑗

(𝑠)
)

𝑆
, where 𝑟̂(𝑠), 𝛽1

∗(𝑠), 𝛽2
∗(𝑠), 11 

𝛽3
∗(𝑠)

 and 𝑔̂𝑗
(𝑠) and 𝑔𝐸̂𝑖𝑗

(𝑠)
 are estimates of 𝛽1

∗, 𝛽2
∗, 𝛽3

∗, 𝑟,  𝑔𝑗 and 𝑔𝐸𝑖𝑗, for line j in environment 12 

i obtained in the sth collected sample. For Model Normal as 13 

𝑦̂𝑖𝑗 =
∑  (𝑥𝑖1𝛽̂1

(𝑠)
+𝑥𝑖1𝛽̂2

(𝑠)
+𝑥𝑖1𝛽̂3

(𝑠)
+𝑔̂𝑗

(𝑠)𝑀
𝑠=1 +𝑔𝐸̂𝑖𝑗

(𝑠)
)

𝑆
 and for Model LN the predicted observations were 14 

calculated as 𝑦̂𝑖𝑗 =
∑ exp (𝑥𝑖1𝛽̂1

(𝑠)
+𝑥𝑖1𝛽̂2

(𝑠)
+𝑥𝑖1𝛽̂3

(𝑠)
+𝑔̂𝑗

(𝑠)𝑀
𝑠=1 +𝑔𝐸̂𝑖𝑗

(𝑠)
+

𝜎̂𝑒
2(𝑠)

2
)

𝑆
− 1, using the corresponding 15 

estimates of each model. 16 

 17 

Simulation study 18 

To show the performance of the proposed Gibbs sampler for count phenotypes that takes 19 

into account 𝐺 × 𝐸, we performed a simulation study under model (1) in two scenarios (S1 and 20 

S2). Scenario 1 had three environments (𝐼 = 3), 20 genotypes (𝐽 = 20), 𝑮𝟏 = 𝑰60, 𝑮𝟐 = 𝑰𝑰 ⊗21 

𝑮𝟏 and 𝜎𝑏1

2 = 𝜎𝑏2

2 = 0.5, with four different numbers of replicates of each genotype in each 22 
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environment, 𝑛𝑖𝑗 = 5, 10, 20 and 40. Scenario 2 is equal to scenario 1, except that 𝑮𝟐 =1 

0.7𝑰60 + 0.3𝑱60, where 𝑱60 is a square matrix of ones of order 60 × 60. In this second scenario, 2 

we imitated the correlation between lines of real data available in genomic selection. The priors 3 

used for the simulation study in both scenarios (S1 and S2) were approximately flat for all 4 

parameters: for 𝜷|𝜎𝛽
2~𝑁(𝜷0

𝑇 = [0,0,0], 𝑰3 × 10000), for 𝑟~𝐺(0.001,1/0.001), for 𝜎𝑏1

2  and 5 

𝜎𝑏2

2  a ~ 𝜒−2(0.50002,4.0002), while for 𝒃1|𝜎𝑏1
2 ~𝑁(𝟎, 𝑮𝟏), and for 𝒃2|𝜎𝑏2

2 ~𝑁(𝟎, 𝑮𝟐). We 6 

computed 20,000 MCMC samples; Bayes estimates were computed with 10,000 samples since 7 

the first 10,000 were discarded as burning. We report average estimates obtained by using the 8 

proposed Gibbs sampler along with standard deviations (SD) (Table 1). All the results in Table 9 

1 are based on 50 replications. 10 

 11 

Results 12 

Given in Table 1 are the results of the simulation study in both scenarios (S1 and S2). The 13 

bias when estimating the parameters is a little larger in S1 compared to S2. Also, parameter 𝛽0 14 

is the parameter with larger bias (underestimated). Both variances (𝜎1
2, 𝜎2

2) are overestimated in 15 

scenario 1, but only 𝜎1
2 is overestimated in scenario 2. Also, with a sample size of 𝑛𝑖𝑗 = 5, 16 

parameter 𝑟 had a larger SD; however, for larger sample sizes (𝑛𝑖𝑗 = 20,40), the SD were 17 

considerably reduced. In general, there was not a large reduction in SD when the sample size 18 

increased from 5 to 10, 20 and 40, the exception being the estimation of 𝑟 in both scenarios and 19 

the estimation of 𝛽0 in scenario 1, where there was a large reduction in SD when the sample size 20 

increased. Although estimations do not totally agree with the true values of the parameters, the 21 

proposed Gibbs sampler for count data that takes into account 𝐺 × 𝐸 did a good job of 22 
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estimating the parameters, since the estimates are close to the true values with a SD of 1 

reasonable size. 2 

Using the real data set, we compared four scenarios (given in Table 2) for each model. 3 

Table 2 shows that in the linear predictor, scenarios 1 and 2 do not take into account interaction 4 

effects, only main effects. Also, scenarios 1 and 3 do not use marker information. These four 5 

scenarios were studied to investigate the gain in model fit and prediction ability taking into 6 

account the interaction effects and using the marker information available. 7 

The posterior means (Mean), posterior standard deviation (SD) of the scalar parameters, 8 

and posterior predictive checks for each scenario of the proposed models are given in Table 3. 9 

For the four models, the posterior means of the beta regression coefficients, variance 10 

components, and over-dispersion parameters (𝑟) are similar between scenarios 1 and 2 and 11 

between scenarios 3 and 4. In terms of goodness of fit measured by the loglikelihood posterior 12 

mean (loglink), the scenarios rank as follows: scenario 3, rank 1; scenario 4, rank 2; scenario 1, 13 

rank 3; and scenario 2, rank 4, for the four proposed models, with the exception of Model Pois 14 

where the ranking was scenario 3, rank 1; scenario 4, rank 2; scenario 2, rank 3; and scenario 1, 15 

rank 4. Therefore, there is evidence that with the four proposed models in terms of goodness of 16 

fit, the best scenario is S3. Of the four models under study, Table 3 shows that Model LN 17 

reports the best fit since it has the largest Loglik. 18 

In Table 4 we present the mean and standard deviation of the posterior predictive checks 19 

(Cor and MSEP) for each location (Batan 2012, Batan 2014 and Chunchi 2014) resulting from 20 

the 10-fold cross-validation implemented for the four models and four scenarios. The predictive 21 

checks given in Table 4 were calculated using the testing set. In Model NB, according to the 22 

Spearman Correlation, the ranking of scenarios was as follows: in Batan 2012 and Batan 2014, 23 
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1 for scenario 4, 2 for scenario 3, 3 for scenario 1, and 4 for scenario 2. In Chunchi 2014, the 1 

ranking was 1 for scenario 3, 2 for scenario 2, 3 for scenario 4, and 4 for scenario 4. With the 2 

MSEP, the ranking for Model NB in Batan 2012 was 1 for scenario 3, 2 for scenario 4, 3 for 3 

scenario 1, and 4 for scenario 2. In Batan 2014, the ranking was 1 for scenario 2, 2 for scenario 4 

1, 3 for scenario 3, and 4 for scenario 4. In Chunchi 2014, the ranking in terms of MSEP was 1 5 

for scenario 3, 2 for scenario 2, 3 for scenario 4, and 4 for scenario 1. Under Model Pois, the 6 

ranking of the 4 scenarios in each locality was exactly the same as the ranking reported for 7 

Model NB. For Model Normal in terms of the Spearman correlation, scenario 1 was the best in 8 

prediction accuracy in Batan 2012 and Chunchi 2014, while scenario 4 was the worst in all three 9 

locations. In terms of MSEP, the best scenario was 3 in Batan 2014 and Chunchi 2014, and the 10 

worst was scenario 4 in Batan 2014 and Chunchi 2014. For Model LN in terms of the Spearman 11 

correlation, the best scenarios were scenarios 1 and 2, and the worst was scenario 3 in Batan 12 

2012. In Batan 2014, the best scenario was 1, then scenario 3 and the worst was scenario 4. In 13 

Chunchi 2014, the best scenario was scenario 3, then scenario 2 and the worst was scenario 2. In 14 

terms of MSEP for Batan 2012, the best scenario was 3, then scenario 1 and the worst was 15 

scenario 4. In Batan 2014, the best scenario was 1, then 2 and the worst was scenario 4. Finally, 16 

in Chunchi 2014, the best scenario was 3, then 2 and the worst was scenario 1. 17 

Table 5 gives the average of the ranks of the two posterior predictive checks (Cor and 18 

MSEP) that were used. Since we are comparing four scenarios for each model, the values of the 19 

ranks range from 1 to 4, and the lower the values, the better the scenario. For ties we assigned 20 

the average of the ranges that would have been assigned had there been no ties. Table 5 shows 21 

that the best scenarios were scenarios 3 and 4 under Model NB and Pois in Batan 2012. In 22 

Batan 2014 under Models NB and Pois, the best scenario was 3, while in Chunchi 2014, the 23 
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best scenarios were 3 and 1. Under Model Normal, the best scenario was scenario 3 in Batan 1 

2014 and Chuchi 2014, while in Batan 2012, the best scenarios were 2 and 3. Finally, under 2 

Model LN, the best scenario was 3 in Chunchi 2014, and scenario 1 in Batan 2012 and Batan 3 

2014. 4 

Results in Tables 4 and 5 indicate that the best models in terms of prediction accuracy 5 

are Models NB and Pois, since they had better predictions in the validation set based on both 6 

the posterior predictive checks (Cor and MSEP) implemented, although in terms of goodness of 7 

fit, Model LN was the best. These results are in partial agreement with the findings of 8 

Montesinos-Lopez et al. (2015), who came to the conclusion that Models NB and Pois are good 9 

alternatives for modeling count data, although in this study, the best predictions were produced 10 

by Model LN. However, this model did not take into account the 𝐺 × 𝐸 interaction. 11 

 12 

Discussion 13 

Developing specific methods for count data for genome-enabled prediction can help to 14 

improve the selection of candidate genotypes early in time when the phenotypes are counts. 15 

However, currently in genomic selection, phenotypic data (dependent variable) are not taken 16 

into account before deciding on the modeling approach to be used, mainly due to the lack of 17 

genome-enabled prediction models for non-normal phenotypes. The Bayesian regression models 18 

proposed in this paper aim to fill this lack of genome-enabled prediction models for non-normal 19 

data. 20 

The first advantage of our proposed methods for count data is that they take into account 21 

the nonlinear relationship between responses and consider the specific properties of counts, 22 

including discreteness, non-negativity, and over-dispersion (variance greater than the mean); 23 
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this guarantees that the predictive response will not be negative, which makes no sense for count 1 

data. In addition, our methods take into account 𝐺 × 𝐸, which plays a central role when 2 

selecting candidates genotypes in plant breeding. 3 

Another advantage of our proposed method is that the proposed Gibbs sampler has an 4 

analytical solution since we were able to obtain all the full conditional distributions required 5 

analytically. This was possible because we constructed our Gibbs sampler using the data 6 

augmentation approach proposed by Polson et al., (2013) for count data. For this reason, we 7 

believe it is an attractive alternative for fitting complex multilevel data for counts because, in 8 

addition to its simplicity, it can generate samples from a high dimensional probability 9 

distribution. 10 

Our proposed methods showed superior performance in terms of prediction accuracy 11 

compared to Models Normal and Log-Normal. Also, we observed that in Models NB and Pois 12 

taking into account the 𝐺 × 𝐸 increase considerable the prediction accuracy which is expected 13 

since there is enough scientific evidence that including the 𝐺 × 𝐸 interaction improve prediction 14 

accuracy. Finally, more research is needed to study the proposed methods using real data sets 15 

and to extend the proposed genomic-enabled prediction models to deal with so many zeros in 16 

count response variables and for modeling multiple traits. 17 
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Appendix A 1 

Derivation of full conditional distribution for all parameters. 2 

Full conditional for  β∗ 3 

f( 𝛃∗|𝐲, ELSE) =  ∏∏∏Pr(Yijt = yijt|𝐱i
T, r, ωijt, b1i, b2ij)

nij

t=1

J

j=1

f( 𝛃∗)

I

i=1

 

∝ exp(𝛋T𝐗 𝛃∗ + 𝛋T ∑ 𝐙h𝐛h

2

h=1

−
1

2
(𝐗 𝛃∗ + ∑ 𝐙h𝐛h

2

h=1

)

T

𝐃ω (𝐗 𝛃∗ + ∑ 𝐙h𝐛h

2

h=1

)

−
1

2
( 𝛃∗ − 𝛃0)

T𝚺0
−1σβ

−2( 𝛃∗ − 𝛃0)) 

∝ exp(−
1

2
[𝛃∗T(𝚺0

−1σβ
−2 + 𝐗T𝐃ω𝐗) 𝛃∗ − 2(𝚺0

−1σβ
−2𝛃0 − 𝐗T𝐃ω ∑ 𝐙h𝐛h

2

h=1

+ 𝐗T𝛋)

T

 𝛃∗]) 

∝ exp (−
1

2
[( 𝛃∗ − 𝛃̃0)

T𝚺̃0
−1( 𝛃∗ − 𝛃̃0)]) ∝ N(𝛃̃0, 𝚺̃0) 

where 𝚺̃0 = (𝚺0
−1σβ

−2 + 𝐗T𝐃𝛚𝐗)−1, 𝛃̃0 = 𝚺̃0(𝚺0
−1σβ

−2𝛃0 − 𝐗T𝐃ω ∑ 𝐙h𝐛h
2
h=1 + 𝐗T𝛋).  4 

Full conditional for ωijt 5 

f(ωijt|𝒚, ELSE) ∝ exp [−
ωijt(𝐱i

T 𝛃∗ + ∑ bhij
2
h=1 )

𝟐

2
] f(ωijt; yijt + r, 0) 

∝ exp [−
ωijt(𝐱i

T 𝛃∗ + ∑ bhij
2
h=1 )

𝟐

2
] f(ωijt; yijt + r, 0)  ∝  PG(yijt + r, 𝐱i

T 𝛃∗ + ∑ bhij

2

h=1

) 

Full conditional for 𝐛1 6 

Defining 𝛈1 = 𝐗 𝛃∗ + 𝐙2𝐛2 the conditional distribution of 𝐛1 is given as 7 
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f(𝐛1|𝒚, ELSE) ∝ exp(𝛋T𝐙1𝐛1 −
1

2
(𝐙1𝐛1 + 𝛈1)T𝐃ω(𝐙1𝐛1 + 𝛈1)) f(𝐛1|σb1

2 ) 

∝ exp {−
1

2
 [𝐛1

T(σb1

−2𝐆1
−1 + 𝐙1

T𝐃ω𝐙1)𝐮 − 2 (𝐙1
T𝛋 − 𝐙1

T𝐃ω𝛈1)T 𝐛1]} 

∝ exp {−
1

2
 (𝐛1 − 𝐛̃1)

T
𝐅1

−1(𝐛1 − 𝐛̃1)} ∝ f(𝐛1|ELSE)~N(𝐛̃1,  𝐅𝟏)   1 

where 𝐅𝟏 = (σb1

−2𝐆1
−1 + 𝐙1

T𝐃ω𝐙1)
−1

 and 𝐛̃1 =  𝐅𝟏(𝐙1
T𝛋 − 𝐙1

T𝐃ω𝛈1) . 2 

Full conditional for σbh

2  3 
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with nb1
=J and nb2

=IJ. 5 

Full conditional for σβ
2  6 

f(σβ∗
2 |𝒚, ELSE) ∝

1
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2
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T𝚺0
−1( 𝛃∗ − 𝛃0) + νβ∗Sβ∗

2σβ∗
2 ) 

∝ χ−2(ν̃β∗ = νβ∗ + I, S̃β = [( 𝛃∗ − 𝛃
0
)
T
𝚺0

−1( 𝛃∗ − 𝛃
0
) + νβ∗S
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 8 

Full conditional for r 9 

To make the inference of r, we first place a gamma prior on it as r~G(a0, 1/b0). Then we infer 10 

a latent count L for each count conditional on Y and r. To derive the full conditional of r, we use 11 

the following parameterization of the NB distribution: Y ∼  NB(π, r) with 𝜋 =
𝜇

𝑟+𝜇
. Since 12 

L~ Pois(−r log(1 − π)), by construction we can use the Gamma-Poisson conjugacy to update 13 

r. Therefore, 14 
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f(r|𝒚, ELSE)  ∝  𝑓(𝑟)∏∏∏𝑓(𝑦𝑖𝑗𝑡|𝐿𝑖𝑗𝑡)𝑓(𝐿𝑖𝑗𝑡)
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𝐼
𝑖=1

)           (A5) 1 

According to Zhou et al. (2012), the conditional posterior distribution of 𝐿𝑖𝑗𝑡 is a Chinese 2 

restaurant table (CRT) count random variable. That is, 𝐿𝑖𝑗𝑡~𝐶𝑅𝑇(𝑦𝑖𝑗𝑡, 𝑟) and we can sample it 3 

as 𝐿𝑖𝑗𝑡 = 𝛴𝑙=1

𝑦𝑖𝑗𝑡𝑑𝑙 , where  𝑑𝑙~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (
𝑟

𝑙−1+𝑟
).   For details of the CRT random variable 4 

derivation, see Zhou and Carin (2012, 2015). 5 

 6 

 7 

 8 

 9 

 10 

 11 
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 13 
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Table 1. Posterior mean (Mean) and posterior standard deviation (SD) of the Bayesian method 1 

with four sample sizes (𝑛𝑖𝑗) for Model NB. S denotes scenario. 2 

      𝑛𝑖𝑗 = 5 𝑛𝑖𝑗 = 10 𝑛𝑖𝑗 = 20 𝑛𝑖𝑗 = 40 

S Parameter True Mean SD Mean SD Mean SD Mean SD 

  𝛽0 1.5 1.484 0.357 1.488 0.269 1.542 0.233 1.549 0.213 

  𝛽1 -1 -0.981 0.256 -0.994 0.247 -1.075 0.250 -1.016 0.190 

 1 𝛽2 1 0.997 0.270 0.985 0.223 0.994 0.268 0.949 0.223 

 

𝑟 5 5.079 0.916 5.078 0.519 5.017 0.471 5.027 0.330 

  𝜎1
2 0.5 0.542 0.196 0.594 0.176 0.582 0.180 0.590 0.216 

  𝜎2
2 0.5 0.503 0.134 0.524 0.136 0.531 0.110 0.512 0.114 

  𝛽0 1.5 1.4808 0.5009 1.4596 0.5041 1.5611 0.6108 1.4723 0.4979 

  𝛽1 -1 -1.0631 0.2348 -0.9975 0.2040 -1.008 0.2226 -1.025 0.1908 

 2 𝛽2 1 0.9504 0.2356 1.0294 0.2167 0.9925 0.1954 0.9685 0.2018 

 

𝑟 5 5.1030 0.8060 4.9901 0.5928 5.0367 0.3485 5.0275 0.2033 

  𝜎1
2 0.5 0.5422 0.1827 0.5650 0.2199 0.5785 0.1872 0.5296 0.1837 

  𝜎2
2 0.5 0.4987 0.1155 0.5084 0.1423 0.5302 0.1301 0.5123 0.1047 

 3 

  4 
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Table 2. Scenarios proposed to fit the real data set with Models NB, Pois, Normal and LN. E 1 

stands for Environment, L for lines, G for lines taking into account markers; EL and EG are 2 

interaction effects of E and L and E and G. 3 

Scenario Main effects Interaction effects 

E L G EL EG 

1 X X    

2 X  X   

3 X X  X  

4 X  X  X 

 4 

  5 
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Table 3. Estimated beta coefficients, variance components, and posterior predictive checks for 1 

the four scenarios (S1, S2, S3, S4) for each proposed model (Model NB, Model Pois, Model 2 

Normal and Model LN). Mean stands for posterior mean and SD for posterior standard 3 

deviation. 4 

      Model NB     

  S1   S2   S3   S4   

Parameter Mean SD Mean SD Mean SD Mean SD 

𝛽1
∗ -0.933 0.600 -1.046 0.611 -2.521 0.711 -2.383 0.992 

𝛽2
∗ -0.826 0.710 -1.158 0.661 -2.273 0.577 -2.725 1.001 

𝛽3
∗ -0.026 0.480 -0.152 0.564 -1.688 0.851 -1.961 0.777 

𝜎1
2 0.425 0.048 1.374 0.167 0.341 0.050 1.033 0.153 

𝜎2
2         0.376 0.031 1.035 0.096 

𝑟 2.802 0.117 2.813 0.116 11.866 1.115 11.549 1.170 

Loglik -1526.649   

-

1526.882   

-

1268.827   -1275.253   

Cor 0.694   0.694   0.899   0.891   

MSEP 2.130   2.116   0.750   0.767   

       Model Pois      

𝛽1
∗ -7.135 0.217 -7.211 0.388 -6.693 0.111 -6.802 0.327 

𝛽2
∗ -7.075 0.132 -7.166 0.108 -7.072 0.161 -7.266 0.185 

𝛽3
∗ -5.969 0.431 -6.463 0.293 -5.879 0.163 -6.658 0.276 

𝜎1
2 0.443 0.049 1.457 0.172 0.348 0.047 1.027 0.144 

𝜎2
2  -  -  - -  0.381 0.031 1.045   

𝑟 1000   1000   1000   1000   

Loglik -1477.634   -1477.52   -1228.73   -1234.973   

Cor 0.662   0.662   0.899   0.891   

MSEP 1.866   1.860   0.743   0.758   

       Model Normal      

𝛽1 -12.3 5.86 7.9 4.36 13.7 3.69 9.22 3.11 

𝛽2 -12.2 5.8 7.93 4.41 13.6 3.73 9.11 3.16 

𝛽3 -10.4 5.87 9.66 4.36 15.5 3.69 10.94 3.1 

𝜎1
2 0.957 0.161 1.42 0.345 0.722 0.175 1.58 0.403 

𝜎2
2  - -   -  - 1.33 0.182 1.13 0.343 

𝑟 2.75 0.136 2.91 0.147 1.67 0.109 2.23 0.172 

Loglik -1918   -1957   -1542   -1747   

Cor 0.595   0.557   0.831   0.705   

MSEP 2.405   2.600   1.073   1.679   

       Model LN      

𝛽1 -3.950 0.505 -6.340 3.330 1.410 0.481 3.320 1.310 

𝛽2 -3.950 0.483 -6.330 3.320 1.410 0.487 3.320 1.290 

𝛽3 -3.510 0.485 -5.850 3.330 1.860 0.494 3.790 1.310 
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𝜎1
2 0.085 0.013 0.146 0.028 0.069 0.013 0.157 0.030 

𝜎2
2  - -  -   - 0.081 0.011 0.053 0.018 

𝑟 0.172 0.009 0.181  0.009  0.107 0.007 0.147 0.011 

Loglik -484   -518   -125   -354   

Cor 0.709   0.679   0.882   0.789   

MSEP 2.500   2.626   1.254   1.974   

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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Table 4. Estimated posterior predictive checks with cross validation for Models NB, Pois, 1 

Normal and LN. () denotes the ranking of the four scenarios for each posterior predictive 2 
check. Each average was obtained as the mean of the rankings of the four posterior predictive 3 
checks for each scenario.  4 

    

Batan 2012 

  

Batan 2014 

  

Chunchi 2014 

  

    Model NB     

Scenario   Cor MSEP Cor MSEP Cor MSEP 

S1 Mean 0.426 (3) 0.977 (3) 0.427 (4) 1.388 (2) 0.182 (3) 11.733 (4) 

  SD 0.331 0.723 0.327 1.351 0.401 9.471 

S2 Mean 0.423 (4) 0.980 (4) 0.432 (3) 1.383 (1) 0.204 (2) 11.222 (2) 

  SD 0.327 0.717 0.325 1.356 0.373 8.614 

S3 Mean 0.539 (2) 0.497 (1) 0.522 (2) 1.480 (3) 0.224 (1) 8.645 (1) 

  SD 0.283 0.376 0.292 2.318 0.386 5.688 

S4 Mean 0.557 (1) 0.607 (2) 0.564 (1) 1.850 (4) 0.122 (4) 11.343 (3) 

  SD 0.243 0.438 0.222 2.684 0.407 8.154 

    Model Pois     

S1 Mean 0.426 (3) 0.977 (3) 0.427 (4) 1.388 (2) 0.182 (3) 11.733 (4) 

  SD 0.331 0.723 0.327 1.351 0.401 9.471 

S2 Mean 0.423 (4) 0.980 (4) 0.432 (3) 1.383 (1) 0.204 (2) 11.222 (2) 

  SD 0.327 0.717 0.325 1.356 0.373 8.614 

S3 Mean 0.539 (2) 0.497 (1) 0.522 (2) 1.480 (3) 0.224 (1) 8.645 (1) 

  SD 0.283 0.376 0.292 2.318 0.386 5.688 

S4 Mean 0.557 (1) 0.607 (2) 0.564 (1) 1.850 (4) 0.122 (4) 11.343 (3) 

  SD 0.243 0.438 0.222 2.684 0.407 8.154 

                   Model Normal     

S1 Mean 0.358 (1) 1.096 (4) 0.367 (2) 1.788 (1) 0.148 (1) 7.425 (2) 

  SD 0.280 0.883 0.397 1.701 0.318 4.151 

S2 Mean 0.344 (2) 0.988 (2) 0.334 (3) 2.010 (3) 0.074 (3) 7.454 (3) 

  SD 0.326 0.652 0.440 2.462 0.330 4.339 

S3 Mean 0.330 (3) 0.806 (1) 0.371 (1) 1.963 (2) 0.146 (2) 7.318 (1) 

  SD 0.300 0.495 0.400 2.986 0.287 4.159 

S4 Mean 0.267 (4) 1.029 (3) 0.237 (4) 2.373 (4) 0.039 (4) 8.482 (4) 

  SD 0.338 0.731 0.445 3.420 0.238 4.326 

    Model LN     

S1 Mean 0.510 (1.5) 0.661 (2) 0.455 (1) 1.601 (1) 0.149 (2) 8.099 (4) 

  SD 0.208 0.419 0.307 2.348 0.379 5.113 

S2 Mean 0.510 (1.5) 0.663 (3) 0.433 (3) 1.778 (2) 0.086 (4) 7.819 (2) 

  SD 0.224 0.392 0.353 2.820 0.459 5.311 

S3 Mean 0.505 (3) 0.639 (1) 0.449 (2) 1.871 (3) 0.153 (1) 7.759 (1) 

  SD 0.208 0.451 0.313 3.162 0.371 5.209 

S4 Mean 0.428 (4) 0.721 (4) 0.427 (4) 1.951 (4) 0.087 (3) 8.038 (3) 

  SD 0.246 0.415 0.327 3.148 0.413 5.187 

 5 
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Table 5. Rank averages for the four scenarios for each model (Models NB, Pois, Normal and 1 

LN) resulting from the 10-fold cross-validation implemented. Each average was obtained as the 2 
mean of the rankings given in Table 4 for the two posterior predictive checks (Cor and MSEP) 3 
in each scenario. 4 

Scenario Batan 2012 Batan 2014 Chunchi 2014 Batan 2012 Batan 2014 Chunchi 2014 

 Model NB Model Normal  

S1 3 3 3.5 2.5 1.5 1.5 

S2 4 2 2 2 3 3 

S3 1.5 2.5 1 2 1.5 1.5 

S4 1.5 2.5 3.5 3.5 4 4 

  Model Pois Model LN  

S1 3 3 3.5 1.75 1 3 

S2 4 2 2 2.25 2.5 3 

S3 1.5 2.5 1 2 2.5 1 

S4 1.5 2.5 3.5 4 4 3 

 5 

 6 

 7 
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