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Abstract

The thalamus is a key brain element in the processing of sensory information. During the sleep

and awake states, this brain area is characterized by the presence of two distinct dynamical

regimes: in the sleep state activity is dominated by spindle oscillations (7− 15 Hz) weakly

affected by external stimuli, while in the awake state the activity is primarily driven by external

stimuli. Here we develop a simple and computationally efficient model of the thalamus that

exhibits two dynamical regimes with different information-processing capabilities, and study

the transition between them. The network model includes glutamatergic thalamocortical (TC)

relay neurons and gabaergic reticular (RE) neurons described by adaptative integrate-and-fire

models in which spikes are induced by either depolarization or hyperpolarization rebound.

We found a range of connectivity conditions under which the thalamic network composed by

these neurons displays the two aforementioned dynamical regimes. Our results show that

TC-RE loops generate spindle-like oscillations and that a critical value of clustering in the

RE-RE connections is necessary for the coexistence of the two regimes. We also observe that

the transition between the two regimes occurs when the external excitatory input on TC

neurons (mimicking sensory stimulation) is large enough to cause a significant fraction of

them to switch from hyperpolarization-rebound-driven firing to depolarization-driven firing.

Overall, our model gives a novel and clear description of the role that the two types of

neurons and their connectivity play in the dynamical regimes observed in the thalamus, and

in the transition between them. These results pave the way for the development of efficient

models of the transmission of sensory information from periphery to cortex.

Author Summary

The thalamus is known to exhibit two clearly distinct dynamical regimes with different

functionalities. During slow-wave sleep the thalamus is dominated by internal activity and is
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hardly sensitive to external stimuli. In contrast, in the awake state, the thalamus modulates

its activity according to the stimuli coming from the periphery. Here we study the conditions

regulating the transition between these two states. To that end we implement a simple

yet biologically realistic neuronal network model of the thalamus, based on single-neuron

models that reproduce the properties of the two prominent types of thalamic neurons, namely

thalamocortical relay cells and reticular neurons. We found that when reticular neurons are

clustered the network exhibits two distinct dynamical regimes; one dominated by oscillations

and insensitive to external stimuli (like sleep) and one sensitive to them (like wake). Moreover

we found that the transition between the two regimes is due to the increase of the external

excitatory input (corresponding to stronger sensory stimuli).

Introduction

The thalamus is often identified as a relay station between subcortical and cortical areas,

since all sensory pathways of the nervous system pass through it before reaching the cortex.

Indeed, sensory inputs from visual, auditory and somato-sensory receptors reach the cortex

through synapses on thalamocortical relay neurons in a specific region of the thalamus, which

in turn projects into the corresponding area in the primary visual cortex. Along with these

forward projections, there are local inhibitory neurons receiving inputs from feedback fibers

from layer 6 to the corresponding thalamic nuclei [1]. It is thus reasonable to think that

thalamus does not limit its activity to faithfully transmitting information to the cortex, but it

might play a role in gating and modulating the flow of information towards the cortex [2–4],

i.e. in selecting which external information is supposed to reach the cortex and when. In

particular, this view is coherent with the important role found to be played by the thalamus

in sleep/arousal/wake process [5–7], and attention [8–10].

The main kind of excitatory neurons in the thalamus are the above-mentioned thala-

mocortical relay (TC) neurons. In vitro studies [11, 12] have revealed that these neurons

can operate in different firing modes depending on their voltage level. Near the resting

membrane potential, TC neurons can produce trains of spikes with frequency proportional

to the amplitude of the injected current, due to voltage-dependent currents that generate

action potentials [1]. This is usually called tonic mode. Alternatively, when TC neurons are

hyperpolarized they can operate in a bursting mode, characterized by high-frequency bursts

of action potentials (300 Hz) in response to hyperpolarization.

During slow-wave sleep, TC neurons display strong spindle oscillations (7 − 15 Hz)

independently from external stimuli [1, 13]. In contrast, in the awake state TC neurons are

known to vary their activity according to inputs coming from the associated receptor layers,

and to affect in turn the activity of the associated primary sensory cortex. For instance, TC

neurons belonging to the lateral geniculate nucleus (LGN) and the ventral posterior nucleus

(VPN) are modulated by the retina [14] and by the tactile afferents [15], respectively, and

modulate in turn the activity of primary visual and somatosensory cortical areas [4, 16,17].

TC neurons are also key components of the above-mentioned gating role of the thalamus,
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contributing to the selection of salient information during selective attention [10].

As suggested by Crick in his seminal paper [2], the role of modulating the efficacy of

sensory transmission of TC neurons is mainly played by the neurons of the reticular nucleus

of the thalamus (RE neurons). In particular, the activation of RE neurons can strongly

hyperpolarize TC neurons, which consequently undergo inhibitory rebound that gives rise

to an endogenous oscillatory activity [18]. Specifically, spindles can be originated by TC

bursts eliciting firing activity in RE cells. In turn RE bursts hyperpolarize TC cells, which

consequently stop firing. When RE cells, lacking excitatory drive, stop firing too, the

rebound of TC cells from hyperpolarization causes them to emit a burst of spikes and

the cycle starts again. The overall process takes about 100 ms and generates rhythmic

spindle oscillations. Therefore spindle generation is due to an interplay between TC and RE

cells [19, 20]. Coherently with this fact, manipulating the activity of RE neurons was found

to have behavioral consequences in attention tasks [10, 21].

During the awake state, TC cells undergo a transition and alternate this bursting mode

with a tonic mode. As mentioned above, both modes are typical of TC neurons, and they

could provide different frameworks for information processing, since during the bursting

mode action potentials in the TC cell are not linked directly to EPSPs in that cell, whereas

the opposite is true in the tonic mode. Therefore we expect that the bursting mode transmits

information less efficiently than the tonic mode, in which an increase in the extra-thalamic

inputs on TC neurons leads to a direct increase in the response of TC neurons [3]. How the

thalamus exhibits the functional transition between the two regimes is not clear. In fact,

a coherent view accounting for both TC and RE interactions and the resulting functional

behavior of the thalamic network is still missing, due in particular to the relative paucity

of simultaneous neurophysiological recordings of the two neuron types in vivo. In this

context, the role of modeling becomes very relevant, due to its capacity to suggest candidate

mechanisms for the generation of the observed behavior. Modeling of thalamic networks

has been investigated for more than 20 years [22, 23], during which network models have

been developed that capture a wealth of thalamic phenomena [24]. However, almost all

studies to date have adopted neuron models at least as complex as the Hodgkin and Huxley

model [22, 25], probably due to the aforementioned role of rebound currents. We are aware

of only one attempt to model realistically thalamic interactions with integrate-and-fire (IF)

neurons [26].

Here, we decided to focus on a single property of the thalamic network as a whole, namely

its above-mentioned ability to switch between two dynamical regimes that display different

external input sensitivity. We also study the role played in this phenomenon by the network

architecture (connectivity and synaptic strength), ranging from loops of two neurons to

the effect of sensory and cortical input on the whole thalamic network. To that end we

have developed a thalamus TC-RE network model based on a particularly simple spiking

neuron model, namely a different suited version of the adaptive exponential integrate-and-

fire (aeIF) neuron model [27] for each neuron type. In the Results section we build our

network progressively. First, we show how our aeIF neurons reproduce the two activity
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modes of TC and RE neurons: the standard depolarizing regime [12] and the rebound from

hyperpolarization [18]. Then we investigate how spindle oscillations are generated through

TC-RE interaction as a function of their coupling and of the presence of external inputs, and

how heterogeneity can be tamed by the interaction of different TC-RE loops. Analysis of

the complete network leads to our two main results: (i) a critical value of RE-RE clustering

favors the presence of large scale spindle oscillations, and (ii) in the presence of clustering

the network displays two dynamical regimes as the sensory input increases: it is insensitive

to stimuli below a given intensity threshold, while above this threshold TC neurons (but not

RE neurons) modulate their activity as a function of the input. Finally, we test that these

conclusions hold also in the presence of cortical inputs impinging on the reticular neurons.

Results

The presence of two different dynamical regimes in the thalamus has been known for

decades [28–30]. This behaviour can be linked to a specific property of the two main kinds of

neurons in the thalamus, described above, glutamatergic thalamocortical relay (TC) neurons

and gabaergic thalamic reticular (RE) neurons. Both types of neurons can fire either as a

result of depolarizing driving or as a rebound due to hyperpolarizing driving. In the following

we will show how we modified an existing (aeIF) model of thalamic neurons [26] to reproduce

the two types of responses for both kinds of neurons (Fig. 1). We investigated how and when

the connectivity between the neurons displaying these properties induces a regime dominated

by spindle oscillations, or responding to stimuli in a tonic-like mode. The analysis starts

from two-neuron loops and extends up to full networks receiving input from the periphery

and the cortical areas.

Dynamics of single neurons

The first step towards reproducing the two dynamical regimes of the thalamus described

above, and the transition between them, is to choose a single-neuron model able to cap-

ture the peculiar properties of thalamic neurons, and in particular the firing induced by

hyperpolarization-driven rebound. To that end we selected a properly tuned adaptative

exponential integrate-and-fire (aeIF) spiking neuron model [27, 31, 32] (see Materials and

Methods Section) for each of the two thalamic neuron types considered. By tuning the

key parameters of the aeIF model it is possible to adjust the dynamics and the strength of

adaptation (parameters a and b in Eq. 2, respectively, in the Materials and Methods Section)

to reproduce the intrinsic dynamical modes typical of thalamic neurons.

For a = 0.4 µS and b = 0.02 nA, the RE aeIF neuron models (RE neuron from now on)

exhibits regular firing activity in response to depolarizing stimuli (Fig. 1A,B), while they

display bursting activity in response to hyperpolarizing stimuli (Fig. 1C,D), consistently with

experimental findings [33–35]. In particular, in response to a depolarizing stimulus (Fig. 1A),

RE neurons display firing activity with a certain degree of spike-frequency adaptation that
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saturates before the end of the stimulus and stops neuronal firing. For large enough applied

currents, the response extends for the whole duration of the stimulus (Fig. 1B). In response

to a hyperpolarizing stimulus (Fig. 1C,D), and due to the relatively large value of a, the

neuron exhibits rebound bursting activity, also with spike-frequency adaptation, for the same

spike threshold used in the depolarizing case.

TC neurons generally show a more robust bursting activity and a negligible level of spike-

frequency adaptation [11] (see [1] for a review). This is achieved in the model by imposing a

larger value of a = 0.2 µS and b = 0 nA, thus making the adaptation strength negligible. In

particular, in response to a depolarizing stimulus our TC neurons model produce patterns of

firing activity (Fig. 1E) with negligible spike-frequency adaptation (Fig. 1F) (leading thereby

to high firing activity for all the duration of the stimulus). In contrast, a hyperpolarizing

stimulus leads to rebound bursting (Fig. 1G) and moderate spike-frequency adaptation (larger

than in RE neurons) (Fig. 1H). In the case of depolarizing stimuli, characterized by negligible

adaptation and regular firing activity, TC neurons exhibit an effective increase of activity

(Fig. 1F) according to the increasing external input and compatibly with the refractory period,

where neuron is not allowed to fire. Therefore the firing activity increases proportionally

with larger external sensory inputs. This is consistent with the linear input-output relation in

the tonic mode (Fig. 1E,F), in contrast with the bursting mode where there is no direct link

between the EPSP and spike generation, which thus corresponds to a nonlinear input-output

relation [36].

Overall these results show that the aeIF models properly capture the two firing modes

(depolarizing-driven and hyperpolarization-driven) for both TC and RE neurons. In the

following we will show the transition between the two modes for TC neurons due to external

inputs, and how recurrent activity drives a transition at the network level from stimulus-

insensitive to stimulus-sensitive behavior.

Two-neuron loops

Before moving to large, structured networks we carefully analyzed the properties of the mutual

interaction between TC and RE neurons. Specifically, we studied different simple two-neuron

loops formed by TC-RE and RE-RE neurons, and examined how self-sustained oscillatory

patterns originated in these networks are modulated by synaptic strengths regulating the

internal recurrent activity. We also studied the effect of GABA temporal decay dynamics on

the frequency of oscillation, and the input-driven oscillatory pattern of a TC-RE loop. This

analysis is informative towards the building of a full network.

We first built a minimal model of two bidirectionally coupled neurons, a RE neuron and a

TC neuron (Fig. 2A). Activating this RE-TC loop for 50 ms leads to oscillations that persist

stably after the stimulus termination (Fig. 2B). These oscillations are due to the rebound

bursting properties of the TC relay cell, which is mutually connected with the RE neuron:

the TC neuron provides depolarizing input to the RE neuron, which displays bursting activity

that generates strong hyperpolarization, followed by rebound firing activity in TC neurons.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2015. ; https://doi.org/10.1101/034918doi: bioRxiv preprint 

https://doi.org/10.1101/034918
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

✶��� ✶✁�� ✷��� ✷✁��

✥✁�
�

❘✂ ✄☎✆r✝✄

❱
✞
❬✞
❱
♠

✶��� ✶✁�� ✷��� ✷✁��

✁��

✶���

✇
❬♥
❆
♠

✶��� ✶✁�� ✷��� ✷✁��

�
✶���

❚✟✠☎ ✡✠☛☞

■
❬♥
❆
♠

P✌✍✎✏✍✎✑✒✓✔✓✍ ✕✑✍✎✌✖✗✘✒ ✌✙ ✚✛ ✜✢✓✗✌✜

❞✢✣ ✤✦✧✧ ✒✍★

✩✧✧✧ ✩✪✧✧ ✫✧✧✧ ✫✪✧✧

✏✪✧

✧

✚✛ ✜✢✓✗✌✜

❱
✞
❬✞
❱
♠

✩✧✧✧ ✩✪✧✧ ✫✧✧✧ ✫✪✧✧

✏✪✧✧

✧

✇
❬♥
❆
♠

✩✧✧✧ ✩✪✧✧ ✫✧✧✧ ✫✪✧✧

✏✩✧✧✧
✧

✬✑✒✢ ✤✒✍★

■
❬♥
❆
♠

✩✧✧✧ ✩✪✧✧ ✫✧✧✧ ✫✪✧✧

✏✪✧

✧

✬✭ ✜✢✓✗✌✜

❱
✞
❬✞
❱
♠

✩✧✧✧ ✩✪✧✧ ✫✧✧✧ ✫✪✧✧
✧

✪✧✧

✇
❬♥
❆
♠

✩✧✧✧ ✩✪✧✧ ✫✧✧✧ ✫✪✧✧

✧
✩✧✧✧

✬✑✒✢ ✤✒✍★

■
❬♥
❆
♠

✩✧✧✧ ✩✪✧✧ ✫✧✧✧ ✫✪✧✧

✏✪✧
✧

✬✭ ✜✢✓✗✌✜

❱
✞
❬✞
❱
♠

✩✧✧✧ ✩✪✧✧ ✫✧✧✧ ✫✪✧✧

✏✦✧✧

✧

✇
❬♥
❆
♠

✩✧✧✧ ✩✪✧✧ ✫✧✧✧ ✫✪✧✧

✏✩✧✧✧

✧

✬✑✒✢ ✤✒✍★

■
❬♥
❆
♠

P✌✍✎✏✍✎✑✒✓✔✓✍ ✕✑✍✎✌✖✗✘✒ ✌✙ ✚✛ ✜✢✓✗✌✜

✕❤✣ ✤✦✧✧ ✒✍★

P✌✍✎✏✍✎✑✒✓✔✓✍ ✕✑✍✎✌✖✗✘✒ ✌✙ ✬✭ ✜✢✓✗✌✜

❞✢✣ ✤✦✧✧ ✒✍★

P✌✍✎✏✍✎✑✒✓✔✓✍ ✕✑✍✎✌✖✗✘✒ ✌✙ ✬✭ ✜✢✓✗✌✜

✕❤✣ ✤✦✧✧ ✒✍★

✮ ✯ ✩✧✧✧ ✒✰

✮ ✯ ✫✧✧✧ ✒✰

✮ ✯ ✱✧✧✧ ✒✰

✮ ✯ ✦✧✧✧ ✒✰

✮ ✯ ✪✧✧✧ ✒✰

❞✢✣ ✲✓✗✗✢✜✎ ✮

✳

❋

❉

❇

❈

●

❊

❍

Figure 1. Dynamical properties of single RE and TC neurons as a function of
input current. (A) Depolarization activity of a RE neuron. Membrane voltage (top) and
adaptation variable (middle) of a RE neuron in response to a depolarizing current (bottom).
(B) Corresponding post-stimulus time histograms for increasing depolarizing currents. (C)
Hyperpolarization-rebound activity of a RE neuron and (D) corresponding post-stimulus
time histograms for increasing hyperpolarizing currents. Parameters a and b, representing
respectively the dynamics and the strength of adaptation (see equation 2) of RE neurons are
defined in this way: a = 0.4 µS and b = 0.02 nA. (E) Depolarization activity of a TC neuron
and (F) corresponding post-stimulus time histograms for increasing depolarizing currents.
(G) Hyperpolarization-rebound activity of a TC neuron and (H) corresponding post-stimulus
time histograms for increasing hyperpolarizing currents. The values a and b are 0.2 µS and
0 nA. The current intensity in (A,C,E,G) is 1000 mA, while it varies between 1000 mA and
5000 mA in panels (B,D,F,H). VT = −50 mV is the threshold potential for both types of
neurons. Other parameters are defined in the Materials and Methods section.
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Consequently, in this configuration the RE neuron fires in response to depolarizing currents,

while the TC neuron fires only in response to hyperpolarizing inputs.

Next we investigated how these oscillatory patterns vary as a function of the synaptic

strength gTC→RE , keeping gRE→TC to a reference value of 550 µS. By increasing gTC→RE ,

both the TC and RE neurons oscillate with higher frequencies, as can be seen from the

decrease of the inter-spike interval (ISI) in Fig. 2C (bottom). Stronger synaptic strengths

enhance the firing activity of the RE neuron, which fires in advance along the oscillation

cycle and thus leads the TC neuron to spike at an earlier phase. The net effect is an increase

in the oscillation frequency. The RE neuron (Fig. 2C, top) displays bursting activity in

response to depolarizing input above a threshold value of gTC→RE = 29 µS. It oscillates at

around 11 Hz (inter-burst ISI ≈ 90 ms) with two spikes per burst with an intra-burst ISI

≈ 5 ms. By increasing the synaptic strength gTC→RE , the neuron passes a second threshold

gTC→RE = 40 µS and presents three spikes per burst (three ISIs are present), eventually

entering a regime in which the ISI approaches the intrinsic refractory period of the neuron

(2.5 ms, see Material and Methods section).

Subsequently we performed the complementary analysis by fixing gTC→RE to 32 µS (which

led to two-spike bursting in the preceding analysis) and varying gRE→TC . Figure 2D shows

that as gRE→TC is increased, the TC neuron oscillates with a gradually increasing frequency

that stabilizes around 10.5 Hz (Fig. 2D, bottom), while the RE neuron displays bursting

activity with the same inter-burst ISI as the TC neuron and an intra-burst ISI of ≈ 3 ms

(two-spikes-per-second scenario of previous analysis) (Fig. 2D. top). Note that the brief

hyperpolarization induced in the TC cell by the firing of a single RE cell is able to trigger

only one rebound spike, and consequently the number of spikes/burst in the RE cell remains

constant. This is consistent with the results reported in Ref. [1], where spindle activity

required at least a four-neuron network (see next Section).

Next we explored the dynamics of a purely GABAergic reticular RE-RE loop (Fig. 2E)

as a function of the synaptic strength gRE→RE . As Fig. 2F shows, the RE neurons present

a sustained strong and adapting bursting activity (corresponding to a wide range of intra-

burst ISI) and for increasing values of the synaptic strength, the inter-burst ISI decreases.

Importantly, unlike in previous studies, here the decreasing inter-burst ISI does not entail

an increase in oscillation frequency, since here bursts last much longer (with more than 10

spikes per burst). This result shows that RE-RE synapses strengthen the rebound bursting

properties and can be expected to enhance the bursting activity in a larger network.

In the simple TC-RE loop motif, the oscillation frequency can be tuned by the GABA

decay time constant. For instance, by varying τdecay from 5 to 35 ms in the minimal model of

Fig. 2D, the frequency of the two neurons oscillates between ∼ 25 and 6 Hz (Supp. Fig. S1).

This leads to corresponding changes in the ISI distributions (Figs. S2-S3), without qualitative

variations with respect to the behavior shown in Fig. 2.

After investigating the properties of stand-alone RE-TC loops, we moved to analyze an

input-driven loop in which the TC neuron receives an external sensory input modeled as a

Poisson distribution with increasing amplitude (Fig. 2G). We only considered inputs to TC,
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Figure 2. Dynamical properties of two-neuron loops. (A) Scheme of a two-neuron
TC-RE loop. (B) Membrane voltage traces of the TC and RE neurons generated by this
minimal TC-RE loop. (C) Interspike interval (ISI) distribution of the TC-RE loop as a
function of the synaptic strength gTC→RE . The value of gRE→TC is appropriately set to
550 µS in order to support self-sustained activity, while gTC→RE varies between 10 µS and
60 µS. RE and TC ISI distributions are shown in the top and bottom plots, respectively. (D)
ISI distribution of a TC-RE loop as a function of the synaptic strength gRE→TC . The value
of gTC→RE is chosen equal to 32 µS to reproduce the two-spike bursting dynamical regime of
panel B while gRE→TC varies between 200 µS and 800 µS. RE and TC ISI distributions are
shown in the top and bottom plots, respectively. (E) Scheme of a minimal purely reticular
RE-RE loop. (F) ISI distribution of this loop as a function of the synaptic strength gRE→RE .
gRE→RE varies between 200 µS and 800 µS. (G) Scheme of an input-driven two-neuron
TC-RE loop. (H) ISI distribution of this loop as a function of external sensory input
strength. RE and TC ISI distributions are shown in the top and bottom plots, respectively.
The synaptic strengths are respectively: gRE→TC = 550 µS, gTC→RE = 32 µS and
gEXT→TC = 1 µS.
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mimicking the sensory stimuli coming from the retina or the peripheral nervous system. We

set reference values of gTC→RE = 32 µS and gRE→TC = 550 µS and GABA τdecay = 20ms,

for which the spontaneous activity (in the absence of external input) corresponds to low-

frequency bursting with two spikes per burst. The value of GABA τdecay is lower in the full

population model. When we increased the external input rate (Fig. 2H) the ISI distribution

was significantly different from the one observed in the absence of external stimulus (Fig. 2D):

both neurons show a strong variation in the bursting frequency due to the external stimulus,

and the ISI displays a large variance due to the introduction of noise. On the other hand,

and consistently with Fig. 2D, the RE neuron is in bursting mode for all values of external

input, with the ISI approaching the refractory period.

Four-neuron motifs

As a last step before moving to the full network, we investigated several four-neuron motifs,

made of two RE and two TC neurons, to understand what are the structural connectivity

features more suitable to explain large oscillatory synchronization phenomena, namely spindle

oscillations, in the bursting regime, even in presence of heterogeneity between neurons.

Previous work has shown [26] that aeIF models are able to reproduce this self-sustained

oscillatory behavior in the form of periodic bursting, and that the minimal circuit reproducing

phenomen is a circuit of two TC and two RE neurons fully connected with each other, with

the exception of TC-TC connections, which are not present in the thalamus [37]. As in the

case of the two-neuron loop, bursting is mainly due to the rebound bursting properties of

TC cells and RE cells (Fig. 3F) [1], and the oscillation frequency depends on the GABA

temporal decay constant.

We studied different couplings between pairs of two-neuron TC-RE loops (which are equiv-

alent to two bidirectionally coupled oscillators), and analyzed which coupling configuration

leads more readily to oscillatory spindle patterns by examining the power spectrum of TC

neurons and the phase coherence between them. Figure 3 shows the schemes of the different

circuits explored depending on the coupling links being considered: TC-RE connections

(Fig. 3A), RE-TC connections (Fig. 3B), RE-RE connections (Fig. 3C) and all three types of

connections (Fig. 3D). For each circuit, we calculated the power spectral density and phase

coherence between the two loops (see Materials and Methods section) by using the activity

of TC neurons. The phase coherence is calculated by averaging 50 trials each with a different

GABA τdecay drawn from a Gaussian distribution with mean 20 ms and standard deviation

5 ms, which leads to variability in the frequencies of the two TC-RE loops being coupled.

Figure 3E shows the frequency at which the power spectrum of the TC neuron activity

has its maximum, and Fig. 3F the corresponding phase coherence at that frequency. The

horizontal dashed red lines represent the corresponding values in the case of uncoupled

loops. In the uncoupled case, the oscillation frequency is ≈ 10.4Hz and the loops are weakly

synchronized (the phase coherence being ≈ 0.12). The two TC-RE oscillators strongly

synchronize with a zero-lag phase (corresponding time lag is ≈ 0, not shown) with respect
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Figure 3. Four-neuron motifs in the form of coupled pairs of TC-RE loops. The
two TC-RE oscillators are bidirectionally coupled through (A) TC-RE connections, (B)
RE-TC connections, (C) RE-RE connections, and (D) all three connections. (E) Frequency
of the power spectral peak and (F) phase coherence at that frequency for the four different
motifs. The power spectral density and phase coherence were averaged across 50 trials for
random values of the GABA decay time (see text). GABA rise time and AMPA rise and
decay times are set constant (see Materials and Methods section). When the corresponding
connections exist in the motifs, the synaptic strengths are respectively: gRE→TC = 550 µS,
gTC→RE = 32 µS and gRE→RE = 20 µS.
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to the uncoupled case, while the loops are poorly zero-lag synchronized when only RE-RE

connections are present. Therefore this result supports the idea that spindle generation is

mainly due to an interplay between TC and RE cells [19, 20], which is enhanced by RE-RE

connections.

Full thalamic network

We finally extended the size of the network to 500 neurons to capture the dynamics of a

complex thalamic structure. Following experimental indications [38–40], we consider that

each RE projects four connections to TC neurons and to RE neurons themselves, while TC

neurons have only on average one connection with RE neurons only. The GABA decay

time is set to τgaba = 10 ms. The structural connectivity is built according to the small

world algorithm of Strogatz and Watts [41], to reproduce the fact that brain circuits have

local modularity and long-range connectivity [42]. We first investigated to what extent the

oscillations in the spindle frequency range (7-15 Hz) in both TC and RE neurons are robust

to the introduction of a certain degree of inter-clustering between RE-RE neurons. Figure 4A

shows the connectivity matrix of a random network with rewiring probability RP = 1, and

Fig. 4B that of a network with rewiring probability RP = 0.25.

We found that in the random network (Fig. 4A), temporally irregular bursting is dominant

(Fig. 4C). On the other hand, in the presence of RE-RE clustering (Fig. 4B) the network

shows quite regular and synchronized spindle oscillations at 8 Hz (Figure 4D). In order to

characterize and quantify the bursting regular state (or spindle rhythm) and distinguish it

from irregular tonic activity, we studied the inter-burst interval distribution (in particular the

probability of a peak of ISI distribution above 50 ms) as a function of the rewiring probability

RP of the small world architecture (see Methods for details). Our results, shown in Fig. 4E,

reveal that fully regular networks (RP = 0, each neuron projects regularly to a fixed number

of adjacent neurons) cannot support regular bursting activity and are often almost silent

(with a firing rate of around 0.4 spikes/s, results not shown). At the other extreme, fully

random networks (RP = 1) show sustained activity with temporally irregular bursting of TC

and RE neurons. Between these two conditions, there is an optimum rewiring probability

(RP ∼ 0.25) showing a relatively large ISI peak corresponding to frequency ∼ 8.5 Hz. The

fraction of neurons displaying a large inter-burst ISI peak decreases substantially for increasing

rewiring probability, namely when going towards fully random networks. Intuitively, given

that connections between thalamic circuits are local but sparse [38–40], excitatory synapses

are very sparse and they are more effective when they impinge on small clusters of RE-RE

neurons, enhancing and modulating the oscillatory spindle rhythm.

Given the results obtained above, we decided to study a network with the critical degree of

clustering (RP = 0.25), and simulate constant external sensory input of different intensities

impinging on TC neurons. We tested if by increasing the external input on these neurons the

network showed a transition from bursting to tonic mode, which could be associated with

the switch from sleep to awake state [28–30]. Given the nonlinear relation between input

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2015. ; https://doi.org/10.1101/034918doi: bioRxiv preprint 

https://doi.org/10.1101/034918
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

✵ ✶✵✵ ✷✵✵ ✸✵✵ ✹✵✵ ✺✵✵
✵

✶✵✵

✷✵✵

✸✵✵

✹✵✵

✺✵✵

P�✁✂✄☎✆✝✞✟✠ ✡☛☎☎✁✠✞✟☛☎✂

☞
✌
s
✍s
✎
✏
❛
♣
✍✐
❝
❈
✌
✏
✏
❡
❝
✍✐
✌
✏
s

✡✑✒✂✞✁�✁✓ ✔✕✖✔✕ ✠☛☎☎✁✠✞✟✗✟✞✄

✶✘✹ ✶✘✹✷ ✶✘✹✹ ✶✘✹✙ ✶✘✹✚ ✶✘✺

① ✶✵
✹

✖✚✵

✖✙✵

✖✹✵

✖✷✵

✵

❱
✌
❧ ✍
❛
❣
❡
❬♠
❱❪

❚✟✛✁ ✜✛✂✢

✔✕

❚✡

✵ ✶✵✵ ✷✵✵ ✸✵✵ ✹✵✵ ✺✵✵
✵

✶✵✵

✷✵✵

✸✵✵

✹✵✵

✺✵✵

P�✁✂✄☎✆✝✞✟✠ ✡☛☎☎✁✠✞✟☛☎✂

☞
✌
s
✍s
✎
✏
❛
♣
✍✐
❝
❈
✌
✏
✏
❡
❝
✍✐
✌
✏
s

✔✆☎✓☛✛ ✔✕✖✔✕ ✠☛☎☎✁✠✞✟✗✟✞✄

✶✘✹ ✶✘✹✷ ✶✘✹✹ ✶✘✹✙ ✶✘✹✚ ✶✘✺

① ✶✵
✹

✖✚✵

✖✙✵

✖✹✵

✖✷✵

✵

❱
✌
❧ ✍
❛
❣
❡
❬♠
❱❪

❚✟✛✁ ✜✛✂✢

✔✕

❚✡

✔✕

❈
❧✉
s
✍❡
r✐
✏
❣
☞
r✌
❜
❛
❜
✐❧ ✐
✍✎

■✣■ ✜✛✂✢

✚✵ ✶✵✵ ✶✷✵ ✶✹✵ ✶✙✵
✵

✵✘✷

✵✘✹

✵✘✙

✵✘✚

✶

❚✡

■✣■ ✜✛✂✢

✚✵ ✶✵✵ ✶✷✵ ✶✹✵ ✶✙✵
✵

✵✘✷

✵✘✹

✵✘✙

✵✘✚

✶

✵

✵✘✵✵✺

✵✘✵✶

✵✘✵✶✺

✵✘✵✷

❆ ❇

✤ ❉

❊ ❋

✵

✵✘✵✵✺

✵✘✵✶

✵✘✵✶✺

Figure 4. Spindle activity generated by a full network of TC-RE neurons
depending on RE-RE clustering. (A) Connectivity matrix of a random TC-RE network.
The presynaptic neurons are represented in the x axis and the postsynaptic neurons in the y
axis. The network is made of 500 neurons, of which the first 250 are RE neurons and the
remaining ones are TC neurons. (B) Connectivity matrix in the presence of RE-RE
clustering (rewiring probability RP = 0.25) (C) Membrane voltage dynamics of a couple of
arbitrarily chosen TC and RE neurons in the case of random network. (D) Membrane
voltage dynamics of a couple of arbitrarily chosen TC and RE neurons in the presence of
clustering: evidence of typical spindle oscillations. (E) ISI distribution (color-coded) as a
function of the rewiring probability for RE (left) and TC (right) neurons. The synaptic
strengths are respectively: gRE→TC = 300 µS, gTC→RE = 200 µS and gRE→RE = 300 µS.
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and output in the bursting mode [36], we expect to see a change in the firing rate trend

of TC neurons (the neurons that project to the cortex) only when the network goes from

bursting to tonic, through which the firing rate should increase with the input. Figure 5A

shows the firing rate of TC (red) and RE (blue) neurons for increasing external sensory input

on TC neurons. The case of input S = 0 spikes/s corresponds to the self-sustained condition

discussed above. By increasing the input amplitude, the network displays a transition in

the firing rate of TC neurons at around S = 50 spikes/s, after which the response of the

thalamus increases sub-linearly with the external input. We interpret this as an indication of

the switch from a purely bursting mode to a temporally irregular state. Note that the driver

of this transition is the response of the recurrent activity to the external sensory input, since

we did not change the intrinsic parameters of the model.

In order to explore this scenario further, we calculated the ISI distribution of RE and

TC neurons by averaging over 100 trials for each different stimulus S. The RE neurons are

the most insensitive to increasing external input, as can be seen in Fig. 5B. On the other

hand the fraction of TC neurons displaying a large inter-burst ISI decreased as the stimulus

intensity surpasses a critical value (going from region S1 to region S2 in Fig. 5A), and a

corresponding increase of the intra-burst ISI peak approaching the refractory period (2.5 ms,

see Materials and Methods section). We classified this as a further signature of a transition

between a bursting mode and an irregular firing regime.

Next we calculated the information about the stimuli carried by the firing rates of the TC

and RE neurons in the two different regimes. To that end we used the mutual information (see

Methods), which quantifies the reduction of the uncertainty in predicting the applied stimulus

given a single observation of the triggered response. In this case we considered a rate code,

i.e. we selected as response the average firing rate over the whole stimulation [43]. Figure

5C compares I(S1;FR) and I(S2;FR) between the firing rates of TC (red) and RE (blue)

neurons and the set of stimuli S1 and S2, where S1 ranges between 0 and 50 spikes/s, while

S2 varies from 60 to 150 spikes/s, corresponding to the two dynamical regimes of Fig. 5A.

The figure clearly shows that in the bursting mode both the RE and TC neurons carry a

lower information (0.13 bit, p < 0.05: bootstrap test), in comparison with the information

encoded by TC neurons during the tonic mode (≈ 0.7 bit, p < 0.05: bootstrap test). RE

neurons during the tonic mode do not encode significant information, in fact their firing rate

decreases with respect to the bursting regime and after that remains constant for all inputs.

These results show that the information about the stimulus that the thalamus carries (and is

then potentially able to convey to the cortex) is much higher in the tonic mode, since in that

regime spontaneous activity is enhanced and this contributes to keeping an almost linear

relation between input and output and thus to minimizing rectification of the response [36].

In order to further interpret this transition, we examined the nature of each TC and RE

spike by checking the sign of the adaptation variable w at the spiking time of each neuron. A

positive value of w indicates that neuron fires via a depolarizing input (see Fig. 1), while if

negative we classify it is as a rebound spike. Fig. 5E shows that RE neurons spike mostly

due to a rebound in response to hyperpolarizing inputs (coming only from internal RE-RE
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Figure 5. Bursting and tonic modes displayed by a TC-RE network with
RE-RE clustering as a function of external input on TC neurons. (A) Firing rate
of TC (red) and RE (blue) neurons as a function of external driving input impinging on TC
neurons. (B,C) ISI distribution as a function of external driving input on TC neurons of RE
(B) and TC (C) neurons. (D) Mutual Information between the set of increasing external
stimulus (0-150 spikes/s) and the neural response given by the firing rate of TC and RE
neurons. Different external sensory inputs are considered for the two regimes, following
panel A: 0-50 spikes/s for the bursting mode and 60-150 spikes/s for the tonic mode. The
white dashed line in the bar plots refers to significance threshold (p < 0.05, bootstrap test).
The measures are averaged over 100 trials for each external stimulus. (E,F) Adaptation
variable w of RE (E) and TC (F) neurons (color coded) as a function of the external input
on TC neurons, averaged across 100 trials for each external stimulus. (G) Number of
positive w values (depolarizing events) and negative w values (rebound events) of TC
neurons. The synaptic strengths are respectively: gRE→TC = 300 µS, gTC→RE = 200 µS and
gRE→RE = 300 µS.
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clustered connections) for all the range of sensory input over TC neurons. TC neurons, in

turn, also fire mainly in response to incoming hyperpolarizing currents (in this case coming

from RE neurons) during the burst mode (Fig. 5F), and after the transition from bursting to

tonic mode a fraction of the spikes occur in response to depolarizing external inputs. Thus

the transition occurring at around S = 50 spikes/s, shown in figure 5A, underlies a shift in

the spiking mechanism profile. This is confirmed in Fig. 5G, which shows a quantitative

estimation of the effective number of excitatory-driven spikes (blue) and inhibitory-rebound

spikes (red) as the external input increases.

So far we have considered a thalamic network receiving an external sensory input impinging

on TC neurons. We complete the picture including also a corticothalamic input [44] projecting

to RE neurons. Figure 6A shows that the transition dynamics is not altered by the addition

of a constant input from the cortex, which results only on an increase of the firing rate for

both kind of neurons. The appearance and the increase of depolarization spikes occur for

similar levels of inputs (Fig. 6B). The amount of information carried by RE and TC neurons

in the two different regimes is relatively unaltered (Fig. 6C,D), supporting the hypothesis

that the information carried by projecting neurons during the tonic mode is higher than in

the bursting mode. Interestingly, by increasing the amplitude of the cortical input on RE

(from 1000 to 2000 spikes/s), the information encoded by TC neurons is increased for the

tonic mode (from 0.6 to 0.66 bit, p < 0.05, bootstrap test) (Fig. 6D). This result highlights

the role of the intrinsic rebound bursting properties of TC neurons, which are essential in

the generation of the spindle rhythm. They could also reinforce the role of corticothalamic

feedback in information processing, for instance by recruiting TC neurons through inhibition

and thus modulating TC firing rate [44]. To support the importance of rebound bursting

properties of TC neurons, we plotted in Supp. Fig. S4 the firing rate of TC and RE neurons,

the ISI distribution and the w distribution at a fixed rate of external sensory input on TC

neurons (150 spikes/s), for different levels of cortical input.

Discussion

We have presented an adaptive exponential integrate-and-fire (aeIF) network model that is

able to reproduce spindle oscillations and the transition between a stimulus-insensitive and

a stimulus-sensitive state of the thalamus. Coherently to what was shown experimentally

through direct optogenetic stimulation [18], in our model spindle oscillations are generated

by RE activation leading to TC bursts as rebound from inhibition. Our simulations suggest

that (i) these oscillations are stable for a specific range of RE-RE connection clustering, (ii)

for external stimuli below a given threshold the network is in a purely rebound-bursting

state insensitive to external stimuli, while when this threshold is crossed there is a non-zero

contribution of the spikes due to depolarization, and this makes the TC neurons (and not the

RE neurons) of the network sensitive to the stimulus intensity coherently with experimental

observation.
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Figure 6. Bursting and tonic modes displayed by the TC-RE network with
RE-RE clustering as a function of external input on TC neurons for different
corticothalamic inputs. (A) Firing rate of TC (red) and RE (blue) neurons as a function
of the external driving input impinging on TC neurons for different corticothalamic input
amplitudes. (B) Number of positive (depolarizing, red) and negative (rebound, blue) w
values of TC spikes for different corticothalamic inputs. The w values are averaged across
100 trials for each external stimulus. (C,D) Mutual Information carried by the firing rate of
TC (red) and RE (blue) neurons with a cortico-thalamic input of (C) 1000 spikes/s and (D)
2000 spikes/s. I is calculated between the set of increasing sensory stimuli (10− 150 spikes/s)
and the neural response given by the firing rate. The white dashed lines in the bars refer to
the significance threshold (p < 0.05, bootstrap test). Measures are averaged over 100 trials
for each external stimulus. The synaptic strengths are respectively: gRE→TC = 300 µS,
gTC→RE = 200 µS and gRE→RE = 300 µS.
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Advantages and limitations of aeIF models

Choosing a simple model for the single neurons allowed us to focus on capturing the network

effects. This choice also opens a number of interesting perspectives: due to their relative

simplicity, IF models can be tackled analytically [45,46], and facilitate the search for basic

canonical computations [47]. Finally, most primary sensory cortex network models are built

on IF neurons [48, 49], and hence aeIF neurons seem a more coherent choice to build models

of corticothalamic interactions [50]. In our model, the switch from inhibitory-rebound-driven

activity to depolarization-driven firing is proposed to represent a switch from sleep to awake

state [7]. The information analysis shown in Figs. 6-S4 shows the separation between a

stimulus-independent state (sleep) and a stimulus-sensitive state (wakefulness). We did not

directly deal with the role of thalamus, and in particular RE neuronal activity, in attention,

to which a wealth of works have been devoted [9, 10] after the seminal intuition of Crick [2].

To compare our model results with these experimental observations we should (1) contrast

different states inside the awake regime, and (2) take into account the temporal structure of

the TC spike trains rather than their rate alone. This is certainly feasible on the ground of the

results presented here, but is beyond the scope of this paper. We emphasize that our model

is based on single-neuron models that are much simpler than those used previously. Although

this has a number of advantages as discussed above, some features of thalamic behavior that

are captured by more detailed models are not reproduced by our model. For instance, our

spindle oscillations constitute a stable state, both in small and large TC-RE networks, and

do not reproduce the wax-and-wane dynamics that has been observed experimentally [51],

and which has been reproduced by more detailed models that take explicitly into account

the dynamics of hyperpolarization-activated cation currents [52].

TC-RE loop studies

A recent computational paper [25] investigated the role of TC-RE interactions from a

perspective complementary to the one discussed in this paper, using a Hodgkin-Huxley

model much more detailed than the aeIF adopted here, and limiting the investigation only

to minimal loops such as those we described here (Fig. 2). Notwithstanding the higher

realism of their model, the functional properties at the single-neuron level are similar to those

described here (compare the two Figs. 1 of the two works). Moreover, Willis and colleagues

highlighted the fact that open-loops between TC and RE neurons might play a functional

role in the thalamus, and indeed in our full network (Fig. 4 and following) both open and

closed TC-RE loops are taken into account. In a recent paper [21], Brown and collaborators

stimulated optogenetically RE neurons, simultaneously recording from them. They found

that the majority of those neurons (10/17) decreased significantly their firing rate, and only

a minority of them (4/17) displayed a significant increase. At the same time they found that

the activity of the TC neurons was inhibited, with functional consequences on the cortex.

The interpretation of the authors was that a small increase in RE activity was sufficient to

inhibit TC activity. Our model offers a simpler explanation: since most TC neurons fire due
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to hyperpolarization rebound, a decrease in RE activity can be associated to a decrease in

TC firing (see Fig. 6). Indeed, stimulating RE neurons has been shown to alter the temporal

structure of TC neuron firing, without changing their average firing rate [18].

Perspectives

The present work has been focused on the thalamus, where we have taken into account only

stable external inputs from periphery to TC neurons or from the cortex to RE neurons.

Preliminary analysis suggested that an accurate description of thalamocortical inputs and

corticothalamic feedbacks required a separate study. In the future this network will be

integrated in a full corticothalamic model comprising a primary visual cortex network

(inspired by previous works [53,54]). The following step will be to take into account (i) the

layered structure of the cortex [48] and (ii) areas of the thalamus and the cortex associated to

different sensory receptive fields and their interactions. Another interesting continuation of

this work would be to contribute to the open challenge of modeling the Local Field Potential

of the thalamus [55]. We recently showed [56] that an integrate-and-fire model like the

one presented here can be combined with morphological data and transmembrane current

simulation [57] to capture the LFP dynamics in a patch of cortex. Since morphological data are

available for the thalamus, a similar procedure can be applied to the network introduced here,

and would hopefully shed light on the way extracellular signals and neural activity are linked

in this area, thus enhancing the possibility of experimental validations of the thalamic models.

The potential applications of this work include the study of the consequences of deep brain

stimulation (DBS). Thalamic DBS has been shown to contribute to the symptom mitigation

of a variety of neural diseases including Parkinson [58] and Tourette’s syndrome [59]. However,

the precise mechanisms of this mitigation are not completely clear, nor is the procedure to

design specific trains of stimulations suited for different patients/conditions. Neural models

are already exploited to test DBS patterns [60]. We think that a simple yet efficient model

like the one presented here can valuably contribute to this field.

Materials and Methods

Computational model

We have used the adaptive exponential integrate-and-fire (aeIF) model [27], which is an

evolution of a two-variable integrate-and-fire (IF) model proposed by Izhikevich [31], and it

is enriched by an exponential non-linearity around the spike threshold, as in the exponential

IF model of Fourcaud-Trocme et al. [32]. The combination of these two models leads to the

aeIF formulated by Brette and Gerstner [27].
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Single neuron model

According to the aeIF model, the equations describing the evolution of membrane voltage of

neurons in the thalamus are:

Cm
dV

dt
= −gL(V − EL) + gL∆ exp

(
V − VT

∆

)
− w + I (1)

dw

dt
=

1

tw
[a(V − EL)− w]. (2)

The first equation describes the evolution of the membrane voltage: the capacitive current

through the membrane with capacitance Cm = 1 nF equals the ionic currents, the adaptation

current w and the input current I. The ionic currents are the ohmic leak current defined by

the resting leak conductance gL = 0.05 µS and the resting voltage potential EL = −60 mV,

and the exponential term which reproduces the Na+− current that is responsible for the

generation of spikes. With this term we assume that the activation of Na+−channels

is instantaneous (thus neglecting their activation), with ∆ denoting the steepness of the

exponential approach to threshold, taken equal to ∆ = 2.5 mV, and VT = −50 mV is the

threshold potential. The membrane time constant is τm = Cm/gL. When V is pushed over the

threshold, the exponential term provides a positive feedback and a spike is emitted (occurring

ideally at the time when V diverges towards infinity), and the voltage is instantaneously

reset to Vr = −60 mV. After the spike, the neuron cannot spike again during a refractory

period (2.5 ms).

The second equation describes the dynamics of the adaptation variable w, with time

constant τw = 600 ms. The parameter a (in µS) quantifies a conductance that mediates

subthreshold adaptation, while the increment b (in nA) at each spike takes into account

spike-triggering adaptation (it regulates the strength of adaptation). When the input current

I to the neuron at rest reaches a critical value (1000 mA) the resting state is destabilized,

leading to repetitive spiking for large regions of parameter space [61]. Without adaptation

(a = b = 0) the model produces tonic spiking. Neurons in general can show a reduction in

the firing frequency of their spike response if they are stimulated with a square pulse or step,

known as spike frequency adaptation (SFA). With this model, an increase of a or b leads to

SFA, characterized by a gradual increase in the inter-spike interval (IS) until a steady-state

spike frequency is reached. For b = 0, the model generates responses with a negative level of

adaptation similar to the fast-spiking (FS) cells encountered in the cortex, often classified as

inhibitory neurons. The strength of adaptation can be modulated by varying the parameter

b, to get weakly adapting cells [61].

In order to reproduce the peculiar properties of TC and RE when operating in bursting

mode, we adopted specific values of a and b. When they are in their tonic mode, TC and

RE neurons behave similarly to excitatory regular spiking (RS) neurons and inhibitory fast

spiking (FS) neurons found in the cortex. With a = 0.4 µS, b = 0.02 µA, neurons display

bursting activity in response to both depolarizing and hyperpolarizing stimuli typical of RE

neurons. In contrast, with a = 0.2 µS, b = 0.0 µA, neurons display responses with moderate

adaptation and strong rebound bursts, like TC neurons. RE and TC neurons can display

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2015. ; https://doi.org/10.1101/034918doi: bioRxiv preprint 

https://doi.org/10.1101/034918
http://creativecommons.org/licenses/by-nc-nd/4.0/


20

different regimes (beyond bursting and tonic, fast spiking (FS), regular spiking (RS)) by

tuning the parameters a and b [31, 61,62].

Thalamic network model

The network is made of TC and RE cells, endowed with intrinsic properties and topographic

connectivity specific to the thalamus [26]. Here we considered a network of 500 neurons,

half of which are TC neurons and the other half being RE neurons. Given that thalamic

interneurons do not contribute to the development of internal dynamics such as oscillations,

they are neglected. Axonal projections within the thalamic circuitry are local but sparse.

The excitatory projections from TC to RE had a connection probability of 1%, while RE

to TC inhibitory projections were more dense, with a connection probability of 4%. The

same density was assumed from inhibitory connections between RE cells. The structural

connectivity is built according to small world algorithm of Strogatz and Watts [41] in which

neurons are first built in a ring network and then randomly rewired with rewiring probability

RP. In fig. 4 we introduced different degree of clustering (by tuning the rewiring probability

(RP)) and according to the results we adopted RP = 0.25 for the continuation of the analysis.

The network model was constructed based on this aeIF model, according to the following

equations [26]:

Cm
dVi
dt

= −gL(Vi − EL) + gL∆i exp

(
V − VTi

∆i

)
− wi −

∑
j

gij(Vi − Ej) (3)

dwi
dt

=
1

twi
[ai(Vi − EL)− wi], (4)

where Vi is the membrane potential of neuron i, and all parameters are as in Eqs. (1)-(2), but

were indexed to allow variations according to the cell type. The term
∑

j gij(Vi−Ej) accounts

for the synaptic current coming from the neighboring neurons impinging on a neuronal cell,

where gij is the conductance of the synapse from neuron j to neuron i (which can be zero),

and Ej is the reversal potential of the synapse (Ej = 0 mV for excitatory synapses and

−80 mV for inhibitory synapses). Synaptic conductances are described by:

gij(t) =
ĝsyn

τdecay − τrise

[
e
−t−tj
τdecay − e

−t−tj
τrise

]
, (5)

where τdecay and τrise are the decay and rise synaptic time, respectively, and ĝsyn is constant

and depends on the type of synapses and network (see table 1). Once the presynaptic cell

fires, gij exponentially increases up to a certain value, after which gij decays exponentially

with a fixed time constant (5 ms for excitation and 10 ms for inhibition). Different synaptic

strengths are considered (see table 2), depending on the network type. If different values are

considered, they are indicated in the captions of each figure. Synaptic delays are equal to

1 ms.

To initiate activity, during the first 50 ms a number of randomly-chosen neurons were

stimulated by an incoming current (with synaptic strength g= 40 µS), representing an
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AMPA τrise AMPA τdecay GABA τrise GABA τdecay
Network 2 neurons 0.4 ms 5 ms 0.4 ms 20 ms
Network 4 neurons 0.4 ms 5 ms 0.4 ms µ = 20 ms, σ = 5 ms

Network 500 neurons 0.4 ms 5 ms 0.4 ms 10 ms

Table 1. Values of temporal rise and decay constants for RE and TC.

gRE→TC gTC→RE gRE→RE gext→TC gCX→RE
Network 2 neurons 200− 800 µS 10− 60 µS 200− 800 µS 1 µS 1 µS
Network 4 neurons 550 µS 32 µS 20 µS 1 µS 1 µS

Network 500 neurons 300 µS 200 µS 300 µS 5 µS 1 µS

Table 2. Values of synaptic strengths for a network of 500 neurons.

heterogenous Poisson train of excitatory presynaptic potential with an instantaneous event

rate λ(t) that varies following an Ornstein-Uhlenbeck process:

dλ

dt
= −λ(t) + σ(t)

√
2

τ
η(t) (6)

where σ(t) is the standard deviation of the noise and is set to 0.6 spikes/s. τ is set to 16 ms,

leading to a power spectrum for the λ time series that is approximately flat up to a cut-off

frequency f = 1
2πτ =9.9 Hz. η(t) is a Gaussian white noise of mean zero and intensity unity.

In simulations in which we did not take into account external input after 50 ms, no input

was given to the network, and thus the activity states described here are self-sustained with

no external input or added noise. The only source of noise was the random connectivity. In

simulations in which we took into account external sensory inputs, after 5 s of self-sustained

activity we injected for 10 s homogeneous Poisson processes with rate comprised between 10

and 150 spikes/s.

Spectral analysis

We computed the power spectral density of LFPs and MUAs using the Welch method: the

signal is split up into 32768 point segments with 50% overlap. The overlapping segments are

windowed with a Hamming window. The modified periodogram is calculated by computing

the discrete Fourier Transform, and then calculating the square magnitude of the result. The

modified periodograms are then averaged to obtain the PSD estimate, which reduces the

variance of the individual power measurements. Spectral quantities and phase coherence are

averaged over 50 trials.

Phase coherence

Phase coherence is calculated as in [63]:

Cxy(f) =

∣∣∣∣∣ 1

N

N∑
n=1

Sxy(f, n)

|Sxy(f, n)|

∣∣∣∣∣ , (7)
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where x and y denote the two signals, and Sxy(f, n) is the cross-spectrum between them.

Since in each trial the cross spectral density is normalized by its amplitude, each term of the

sum is a unit-length vector representation of the phase relation ∆φ(f, n). In other words,

∆φ(f, n) = φy − φx is the phase lag between the two signals at frequency f in the data

segment n. Hence Cxy(f) quantifies how broad is the distribution of ∆φ(f, n) within the

2π-cycle. Averaging ∆φ(f, n) across all N data segments provides a mean angle ∆φ(f).

Mutual information

We calculate the Mutual Information I(S;FR) between the set of stimuli S given by the

external Poisson inputs with different rates described above and the response FR, firing

rate, as follows. Given that we are interested in how the specific neurons encode and carry

information, in this case we select as response the average firing rate FR over the whole

stimulation (other responses such as the power spectrum can be considered [64]). We consider

as stimuli different inputs with increasing amplitude (from 0 to 150 spikes/s) impinging on

TC neurons. We compute the information between the stimulus S and the response firing

rate as:

I(S;FR) =
∑
s

P (s)
∑
r

P (r|s) log2
P (r|s)
P (r)

, (8)

where P (s) is the probability of having a stimulus s (equal to the inverse of the total number

of different external firing rates, which act as stimuli), P (r) is the probability of observing

a firing rate r across all trials in response to any stimulus, and P (r|s) is the probability of

observing a firing rate r in response to a single stimulus s. I(S;FR) quantifies the reduction

of uncertainty about the stimulus that can be gained from observing a single-trial neural

response, measured in units of bits (1 bit means a reduction of uncertainty of a factor of

two) [43]. This measure allows us to evaluate how well the firing rate r of both type of

neurons encodes the stimulus s.

An important issue to be solved regarding the calculation of the mutual information

is that it requires knowledge of the full stimulus-response probability distributions, and

obviously these probabilities are calculated from a finite number of stimulus-response trials.

This leads to the so-called limited sampling bias, which constitutes a systematic error in

the estimate of information. We used the method described in [65] to estimate the bias of

the information quantity and then we checked for the residual bias by applying a bootstrap

procedure, in which mutual information is calculated when the stimuli and responses are

paired at random. If the information quantity is not zero (as it should be in the case of

non-finite samples), this is an indication of the bias, and the bootstrap estimate of this

error should be removed from the mutual information. After applying these procedures, the

information quantity estimation could be defined as significant. Several toolboxes provide

different bias-correction techniques, which allow accurate estimates of information theoretic

quantities from realistically collectable amounts of data [66, 67]. In order to accomplish

those tasks, we used the Information Breakdown Toolbox (ibTB), a MATLAB toolbox

implementing several information estimates and bias corrections [67].
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Supplementary Figures

Figure S1. Effect of the GABA decay time on the two-neuron TC-RE loop.
Interspike Interval (ISI) distribution of a TC-RE loop as a function of the GABA decay time
τdecay for RE (A) and TC (B) neurons. τdecay varies between 5 and 40 ms. The synaptic
strengths are respectively: gRE→TC = 550 µS, gTC→RE = 32 µS.
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Figure S2. Effect of the synaptic strength on the two-neuron TC-RE loop.
Interspike Interval (ISI) distribution of a TC-RE loop as a function of the synaptic strength
for RE (A,C) and TC (B,D) neurons. As in fig. 2C, in A and B the value of gRE→TC is
appropriately set to 550 µS in order to support self-sustained activity, while gTC→RE varies
between 10 µS and 60 µS. In C and D, the value of gTC→RE is chosen equal to 40 µS to
reproduce the two-spike bursting dynamical regime, while gRE→TC varies between 200 µS
and 800 µS. GABA decay τdecay is set equal to 10 ms in the two cases.
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Figure S3. Effect of the synaptic strengths on the two-neuron RE-RE motif.
Interspike interval (ISI) distribution of a minimal purely reticular RE-RE motif as a function
of the synaptic strength gRE→RE for three different values of the GABA decay time: (A)
5 ms, (B) 10 ms, (C) 20 ms. gRE→RE varies between 300 µS and 800 µS.
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Figure S4. Influence of corticothalamic input on a full TC-RE network. (A)
Firing rate, (B) ISI distribution, and (C) distribution of the adaptation variable w of RE
and TC neurons as a function of corticothalamic input. The external sensory input it set to
150 spikes/s. The synaptic strengths are respectively: gRE→TC = 300 µS, gTC→RE = 200 µS
and gRE→RE = 300 µS. Bars colors in panels (A) and (B) coincide with the lines colors in
the other panels.
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