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Abstract	
	
BACKGROUND:		Highly	multiplexed	assays	for	quantitation	of	RNA	transcripts	are	being	used	in	
many	areas	of	biology	and	medicine.		Using	data	generated	by	these	transcriptomic	assays	
requires	measurement	assurance	with	appropriate	controls.	Methods	to	prototype	and	
evaluate	multiple	RNA	controls	were	developed	as	part	of	the	External	RNA	Controls	
Consortium	(ERCC)	assessment	process.		These	approaches	included	a	modified	Latin	square	
design	to	provide	a	broad	dynamic	range	of	relative	abundance	with	known	differences	
between	four	complex	pools	of	ERCC	RNA	transcripts	spiked	into	a	human	liver	total	RNA	
background.	
	
RESULTS:		ERCC	pools	were	analyzed	on	four	different	microarray	platforms:	Agilent	1-	and	2-
color,	Illumina	bead,	and	NIAID	lab-made	spotted	microarrays;	and	two	different	second-
generation	sequencing	platforms:	the	Life	Technologies	5500xl	and	the	Illumina	HiSeq	2500.		
Individual	ERCCs	were	assessed	for	reproducible	performance	in	signal	response	to	
concentration	among	the	platforms.		Most	demonstrated	linear	behavior	if	they	were	not	
located	near	one	of	the	extremes	of	the	dynamic	range.		Performance	issues	with	any	individual	
ERCC	transcript	could	be	attributed	to	detection	limitations,	platform-specific	target	probe	
issues,	or	potential	mixing	errors.		Collectively,	these	pools	of	spike-in	RNA	controls	were	
evaluated	for	suitability	as	surrogates	for	endogenous	transcripts	to	interrogate	the	
performance	of	the	RNA	measurement	process	of	each	platform.		The	controls	were	useful	for	
establishing	the	dynamic	range	of	the	assay,	as	well	as	delineating	the	useable	region	of	that	
range	where	differential	expression	measurements,	expressed	as	ratios,	would	be	expected	to	
be	accurate.			
	
CONCLUSIONS:		The	modified	Latin	square	design	presented	here	uses	a	composite	testing	
scheme	for	the	evaluation	of	multiple	performance	characteristics:	linear	performance	of	
individual	controls,	signal	response	within	dynamic	range	pools	of	controls,	and	ratio	detection	
between	pairs	of	dynamic	range	pools.		This	compact	design	provides	an	economical	sample	
format	for	the	evaluation	of	multiple	external	RNA	controls	within	a	single	experiment	per	
platform.		These	results	indicate	that	well-designed	pools	of	RNA	controls,	spiked-into	samples,	
provide	measurement	assurance	for	endogenous	gene	expression	experiments.	
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Background	
	
In	2003,	the	National	Institute	of	Standards	and	Technology	(NIST)	hosted	a	meeting	to	discuss	
the	need	for	a	universal	RNA	reference	material,	which	could	be	used	for	gene	expression	
profiling	assays	[1].		As	a	result	of	this	effort,	the	External	RNA	Controls	Consortium	(ERCC)	was	
formed,	of	which	NIST	is	a	founding	member	and	host.		The	ERCC	assembled	a	sequence	library	
of	176	DNA	sequences	that	could	be	transcribed	into	RNA	to	serve	as	controls	in	systems	used	
to	measure	gene	expression	[2,	3].		These	controls	were	cataloged	as	ERCC-00001	through	
ERCC-00176,	and	are	collectively	referred	to	as	ERCCs	in	this	manuscript.		These	were	evaluated	
and	a	subset	was	selected	for	dissemination	as	a	standard.		A	set	of	96	controls	are	now	
available	as	a	set	of	sequence-certified	DNA	plasmids,	NIST	Standard	Reference	Material	(SRM)	
2374	[4].	
	
In	the	final	phase	of	evaluation,	an	experimental	design	for	assessing	the	combined	
performance	of	ERCCs	prepared	as	complex	RNA	pools	was	used.		Each	ERCC	subpool	was	
designed	to	have	a	220	dynamic	range	of	abundance	of	controls,	and	particular	controls	in	the	
different	pools	were	present	in	different	abundances	according	to	a	modified	Latin	square	
design.		This	design	provides	known	relative	differences	between	the	pools	across	a	large	
dynamic	range	of	abundance	(Figure	1).		With	this	design,	individual	ERCCs	were	assessed	for	
their	signal	response	to	1.5-,	2.5-,	and	4-fold	increases	in	concentration.		Pairwise	comparisons	
of	these	pools	also	provides	for	an	assessment	of	ratio-based	performance	as	a	function	of	
dynamic	range.		Initially	assessed	with	three	different	microarray	platforms,	these	same	pools	
were	subsequently	measured	by	RNA	sequencing	(RNA-Seq)	with	two	second-generation	(NGS)	
sequencing	platforms.		The	data	from	these	two	sets	of	experiments,	corresponding	to	the	96	
controls	of	the	SRM,	are	presented	here.	
	
	
Methods	
	
Pool	Design	
	
The	ERCCs	were	distributed	into	5	subpools	(A	–	E),	each	containing	a	unique	set	of	controls	
(see	Fig.	1A).		These	subpools	were	prepared	at	AIBioTech	(formerly	CBI	Services,	Richmond,	
VA)	to	ERCC	specifications.		This	design	results	in	the	relative	abundance	within	each	subpool	
covering	a	dynamic	range	of	220.		Subpools	A	–	E	were	then	mixed	by	volume	in	a	modified	Latin	
square	design	to	create	4	different	pools	(see	Fig.	1B	and	Table	1).		Subpools	B	–	E	have	
different	relative	abundances	between	the	four	pools	(in	a	Latin	square	design),	while	subpool	
A	is	held	at	a	constant	proportion	(the	“modification”).	In	addition,	the	ERCCs	in	subpools	B	–	E	
participate	in	6	pairwise	comparisons	between	pools	to	produce	ratios	of	4-,	2.7-,	2.5-,	1.7-,	1.6-
,	and	1.5-to-1	(Fig.	1B	and	Suppl.	Figs.	1	–	4).		The	ERCCs	in	subpool	A	are	always	present	at	10%	
in	any	of	the	pools,	and	create	the	1-to-1	component	in	any	of	the	6	possible	pairwise	
comparisons.		These	pools	were	designated	as	Pools	12,	13,	14,	and	15	in	the	set	of	pools	
developed	for	ERCC	testing	[2].		Each	ERCC	of	these	pools	was	spiked	into	a	common	
“background”	of	human	liver	total	RNA	(Ambion)	to	create	4	corresponding	samples.		Each	
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microarray	test	site	determined	the	relative	amount	of	spike-in	pools	to	add	to	the	background.		
Agilent,	Illumina,	and	NIAID	used	0.144%,	0.25%,	and	0.265%	(wt/wt)	of	ERCC	pool	per	total	
liver	RNA,	respectively.		For	the	sequencing	test	sites	total	RNA	samples	were	spiked	at	NIST	at	
0.3%	(wt/wt)	and	then	sequenced	by	NIST	and	Illumina.	
	
The	ERCC	molecules	used	in	these	pools	were	prepared	by	in	vitro	transcription	of	polymerase	
chain	reaction	(PCR)	products	representing	“candidate”	sequences	prior	to	the	release	of	NIST	
SRM	2374.		The	plasmids	were	designed	to	produce	either	“sense”	or	“antisense”	RNA	controls	
[4].		In	this	study,	seven	of	these	ERCC	transcripts	were	determined	to	be	antisense	using	a	
stranded	RNA-Seq	protocol	(see	Table	1)	and	were	excluded	from	further	data	analysis,	
because	the	microarrays	were	designed	to	detect	“sense”	RNA	controls.	
	
Microarray	measurements	
	
Samples	were	measured	at	each	test	site	using	the	following	methods.	
	
The	NIAID	in-house	spotted	microarrays	contain	long	(70-mer)	oligonucleotides	designed	to	
hybridize	the	ERCC	transcripts	printed	on	epoxy-coated	glass	slides	(Corning)	in	quadruplicate	
using	an	OmniGrid	robot	(Genomic	Solutions)	with	16	SMP3	print	tips	(Telechem).		RNA	was	
reverse	transcribed	using	Oligo	dT	primer	(12-20	mer)	mix	(Invitrogen)	and	Superscript	II	
reverse	transcriptase	(Invitrogen).		Fluorescent	Cy-Dye-dUTP	(GE)	nucleotide	was	incorporated	
into	first-strand	cDNA	during	the	reverse	transcription.		After	degradation	of	the	mRNA	
template	strand,	labeled	single-stranded	cDNA	target	was	purified	using	Vivaspin	500	(10K,	
Millipore).		Hybridization	was	performed	at	45	C°,	for	16	hours	on	a	MAUI	hybridization	station.		
The	arrays	were	washed	twice	in	1X	SSC	and	0.05%	SDS	and	twice	in	0.1X	SSC,	then	air	dried.		
Microarrays	were	scanned	on	GenePix	4000B	(Axon)	at	10	micron	resolution.		GenePix	Pro	
software	was	used	for	image	analysis.		Median	pixel	intensity	(no	background	subtraction)	was	
taken	for	each	of	the	4	replicate	spots,	the	median	of	these	four	values	was	taken	to	represent	
the	data.	
	
The	Agilent	microarrays	(8x60K	Agilent	G3	8-pack	format	with	the	Design	ID	022439)	contain	
60-mer	oligonucleotide	probes	synthesized	in	situ	onto	slides	using	a	proprietary	non-contact	
industrial	inkjet	printing	process.		Labeled	cRNA	for	both	the	one-color	and	two-color	
microarray	experiments	was	prepared	using	the	Agilent	Low	Input	Quick	Amp	Labeling	Kit,	
Two-Color	(5190-2306).		RNA	was	reverse	transcribed	using	AffinityScript	RT,	Oligo(dT)	
Promoter	Primer,	and	T7	RNA	Polymerase.		Fluorescent	Cy-Dye-dCTP	nucleotide	was	
incorporated	during	cRNA	synthesis	and	amplification.		Microarrays	were	hybridized	at	65oC	for	
17	hours.		All	microarrays	were	scanned	in	one	batch	in	random	order	using	default	settings	for	
Agilent	C	Scanner	using	a	single	pass	over	the	scan	area	at	a	resolution	of	3	µm	and	a	20-bit	
scan	type.		Data	was	extracted	with	Agilent	Feature	Extraction	Software	(ver.	10.7.3.1)	using	the	
default	settings	for	either	the	one-color	protocol	or	the	two-color	protocol.	
	
The	Illumina	Human-6	Expression	BeadChips	contain	50-mer	oligonucleotide	probes	with	a	29-
mer	address	sequences	attached	to	beads	held	in	etched	microwells.		RNA	was	reverse	
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transcribed	using	a	T7	Oligo(dT)	primer	containing	a	T7	promoter	sequence.		Biotinylated	cRNA	
was	prepared	using	the	Illumina	TotalPrep	RNA	Amplification	Kit	(Ambion).		BeadChips	were	
hybridized	at	58oC	for	14	–	20	hours,	washed,	and	labeled	with	streptavidin-Cy3.		BeadChips	
were	scanned	with	the	Illumina	iScan	System.		Intensity	values	are	determined	for	every	bead	
and	summarized	for	each	bead	type.		For	more	details	refer	to	the	Whole-Genome	Gene	
Expression	Direct	Hybridization	Assay	Guide	(Illumina,	part	no.	11322355).	
	
RNA	Sequencing	measurements	
	
NIST	prepared	samples	of	spiked	liver	total	RNA	for	sequencing	analysis	with	the	5500xl	at	NIST	
and	the	HiSeq	2500	at	Illumina.		Prior	to	library	preparation	samples	were	depleted	of	
ribosomal	RNA.	The	5500xl	experiment	produced	an	average	of	23,866,495	single-ended	reads	
(75	base)	per	sample	and	the	HiSeq	2500	experiment	yielded	an	average	of	48,168,710	paired-
end	reads	(2	x	75	base).		For	both	platforms	sequence	reads	were	aligned	against	a	reference	
sequence	consisting	of	the	human	genome	(hg19)	and	the	ERCC	transcript	sequences	of	SRM	
2374	(Note:	ERCC-00114	is	not	part	of	the	SRM	and	not	included	as	part	of	the	reference	
transcriptome).		Alignment	and	quantification	of	sequence	reads	to	obtain	per	transcript	counts	
was	performed	with	the	LifeScope	bioinformatic	analysis	suite	(Life	Technologies)	for	5500xl	
data	and	the	Tophat-Cufflinks	suite	was	used	for	HiSeq	2500	data	[5,6].	
	
	
Results	and	Discussion	
	
For	each	of	the	platforms,	if	the	ERCC	spike-in	pools	are	added	to	the	background	RNA	in	the	
proper	proportion,	then	the	220	range	of	relative	abundance	will	cover	the	distribution	of	the	
endogenous	transcript	signals.		In	the	first	set	of	experiments,	each	microarray	platform	
provider	empirically	determined	in	pilot	studies	their	chosen	spike-in	proportion	to	add	to	the	
total	RNA	background	(not	shown).		Agilent	used	0.144%	(wt/wt)	for	both	one-color	and	two-
color	arrays,	and	Illumina	and	NIAID	used	0.25%,	and	0.265%,	respectively.		For	the	RNA-Seq	
experiments,	ERCC	pools	were	added	to	the	background	at	NIST	at	0.3%	and	shared	with	the	
Illumina	site.	The	LifeTech	5500xl	and	Illumina	HiSeq	measurements	were	performed	at	NIST	
and	Illumina,	respectively.	The	distribution	of	ERCC	signals	relative	to	the	endogenous	liver	
background	transcripts	are	shown	for	all	platforms	in	Table	2.			For	all	sites,	the	dynamic	range	
of	the	signals	from	the	controls	matched	the	range	of	signal	expression	from	the	endogenous	
genes	of	the	liver	background.		This	supports	the	use	of	these	signals	to	derive	metrics	useful	
for	characterizing	each	measurement	system.	
	
Dose-response	and	Outlier	Detection		
	
For	each	platform,	we	can	determine	whether	the	analytical	signal	(fluorescence	intensity	in	
microarrays	or	length	normalized	counts	in	sequencing)	changes	with	the	concentration	of	an	
analyte	(the	ERCC	being	measured).		For	each	control,	the	signal	from	each	pool	can	be	plotted	
against	the	corresponding	relative	abundance	(Table	1),	producing	a	collection	of	dose-
response	curves	representing	each	individual	ERCC	in	the	study	(Figures	2	–	7,	panel	A).		ERCCs	
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that	were	missing	data	for	one	or	more	concentrations	in	the	RNA-Seq	experiments	were	
flagged	as	partially	detected	or	undetected,	and	excluded	from	further	analysis	(Figures	6	and	
7,	panel	A).		The	mid-point	of	each	ERCC	dose-response	curve	(average	signal	versus	average	
relative	abundance	from	the	Latin	square)	was	used	to	assess	whether	any	particular	ERCC	was	
an	outlier	relative	to	the	entire	set	of	controls.		The	data	were	fit	to	an	appropriate	model	for	
each	platform	(Figures	2	–	7,	panel	B).	
	
For	the	microarray	experiments,	a	model	using	the	Langmuir	isotherm	and	was	used	[7,	8].		The	
dissociation	constant,	Kd,	was	determined	by	fitting	the	data	as	follows:	
	

	 	 	! = !!"#!
!!!!

+ !"		 	 	 (1)	

	
Where	the	maximal	intensity	of	a	feature	at	saturation,	Imax,	and	the	background,	bg,	are	
experimentally	derived	from	the	average	of	the	most	abundant	ERCC	in	each	of	the	4	pools	and	
ERCC-00073,	a	component	omitted	from	the	pools,	respectively.		For	the	RNA-Seq	experiments,	
a	linear	fit	with	a	slope	of	1	and	fitted	y-intercept	was	used	as	the	model.		For	either	model,	
ERCCs	outside	the	99%	confidence	interval	(CI)	were	flagged	as	outliers	(Figs	2	–	7,	panel	B)	and	
compared	across	platforms	to	identify	any	ERCC-specific	anomalies	(Table	3).			
	
With	the	exception	of	the	ERCCs	in	the	1-to-1	subpool,	the	signal	for	each	control	should	follow	
a	strictly	increasing	monotonic	function	determined	by	the	pool	fraction	of	the	Latin	square	
design,	10%	<	15%	<	25%	<	40%,	(see	Fig.	1B).	This	monotonicity	was	assessed	with	Spearman’s	
rho,	ρ,	where	ERCCs	with	ρ	<	1	were	identified	for	comparison	across	platforms.	
In	addition,	the	slope	of	each	individual	ERCC	dose-response	curve	can	be	calculated	and	
plotted	as	a	function	of	the	relative	abundance,	where	the	slope	(m	=	1)	corresponds	to	an	ideal	
dose-response.		For	the	microarray	data,	the	first	derivative	of	the	Langmuir	function	also	
provides	us	with	a	model	of	the	expected	slope	and	the	inflection	points	allow	us	to	demarcate	
a	region	of	the	dynamic	range	where	we	should	expect	a	linear	response	(Figs	2	–	5,	panel	C)	
[9].		Non-monotonic	ERCCs	that	fall	within	that	portion	of	the	dynamic	range	were	also	
identified	as	outliers.			For	the	RNA-Seq	data,	all	non-monotonic	ERCCs	are	flagged	as	outliers	
(Figs	6	and	7,	panel	C).	One	control,	ERCC-00113,	was	an	outlier	on	all	platforms,	with	ρ	=	-0.2	
for	each.		Closer	inspection	of	the	monotonic	trend	indicated	that	the	least	abundant	target	
feature	produced	the	highest	signal	in	each	case.		This	ERCC	was	more	consistent	with	
membership	in	subpool	C,	indicating	a	likely	error	in	the	preparation	of	the	subpools.		
Therefore,	Figures	2	–	7	include	this	ERCC	plotted	as	a	component	of	subpool	C.	
	
Table	3	includes	all	ERCC	identified	as	outliers	by	the	two	criteria	above	and	highlighted	in	
Figures	2	–	7	and	specific	controls	discussed	below	are	indicated	with	an	asterisk	(*).		The	
majority	of	non-monotonic	ERCCs	in	the	microarray	experiments	occurred	below	the	lower	
inflection	point	on	the	slope	plots	and	those	flagged	for	non-detection	in	the	RNA-Seq	
experiments	also	appear	in	the	lower	range	of	the	signal	response	curves.		For	these	ERCCs,	it	is	
difficult	to	assess	performance	beyond	their	utility	for	defining	the	lower	limits	of	the	linear	
range,	so	these	are	not	included	in	the	outlier	table.	
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There	were	nine	controls	that	were	outliers	on	at	least	one	platform	for	each	criteria.		Six	of	
those	were	outliers	for	both	criteria	on	the	same	platform:	ERCC-00156	on	LifeTech;	ERCC-
00131,	ERCC-00134	and	ERCC-00143	on	AGL-1;	ERCC-00148	on	AGL-1	and	ILM	HiSeq;	and	ERCC-
00168	on	AGL-2	and	ILM	HiSeq.		All	of	these	controls	performed	well	on	the	majority	of	
platforms.	
	
Fifteen	ERCCs	were	non-monotonic	only.		ERCC-00046	and	ERCC-00062	were	the	most	highly	
abundant	outliers	in	this	class.		In	both	cases,	the	two	lowest	concentrations	for	each	control	
produced	nearly	identical	values	where	the	lowest	concentration	is	slightly	higher.		With	the	
exception	of	ERCC-00138,	all	of	these	controls	performed	well	on	the	majority	of	platforms.	
	
There	are	26	ERCCs	that	appear	to	be	outliers	with	respect	to	the	overall	dose-response	model	
that	are	still	monotonic.		For	example,	ERCC-00058	was	the	only	control	to	be	determined	a	
response	curve	outlier	on	all	microarray	platforms	and	one	RNA-Seq	platform,	however	the	
observed	slope	on	all	platforms	tested	was	greater	than	0.9.		ERCC-00170	was	also	flagged	on	
every	platform	except	the	NIAID	microarray,	but	was	not	evaluated	for	montonicity	because	it	
is	in	the	1-to-1	subpool.	
	
Some	of	these	results	may	be	attributable	to	difficulties	with	accurately	preparing	large	
dynamic	range	pools	with	multiple	controls,	so	that	the	actual	concentration	is	different	than	
the	nominal	abundance.		The	linear	signal	responses	indicate	the	proper	combinations	of	the	
subpools	A	–	E	were	achieved	for	the	Latin	square	design.		Some	of	these	outliers	might	also	be	
the	result	of	an	RNA	processing	bias	that	may	be	analyte	specific	and	proportional	to	
abundance,	for	example	poly-A	enrichment	[10].	
	
Intensity-dependent	differential	expression		
	
For	microarray	data,	an	intensity-dependent	bias	is	often	visualized	using	an	MA-plot;	where	M	
is	the	log2	transformation	of	the	ratio	of	red	and	green	fluorescence	intensities	in	2-channel	
data,	and	A	is	the	log2	transformation	of	the	average	of	the	two	[11].		This	view	has	also	been	
applied	to	two-condition	single	channel	data,	where	M	becomes	the	ratio	of	two	different	
conditions,	which	is	also	referred	to	as	a	ratio-intensity	plot	(RI-plot)	[12].		These	comparative	
visualizations	have	been	extended	to	sequencing	data	in	the	form	of	RA-plots,	where	the	ratios	
and	averages	of	integer	count	data	form	a	characteristic	pattern	at	the	lower	end	of	the	signal	
range	[13].		Each	of	these	visualizations	is	a	variation	of	a	Bland-Altman	plot	(or	difference	plot),	
which	is	used	here	to	visualize	the	ability	to	detect	the	nominal	differences	between	two	
measurements	[14].		A	Bland-Altman	plot	of	the	ERCC	components	can	be	generated	for	any	
pairwise	combination	of	Pools	12	–	15.		One	possible	pairwise	comparison,	which	produces	
fold-changes	of	2.5	and	2.7	in	both	“up”	and	“down”	directions	(see	Fig	1B)	is	shown	in	Figures	
2	–	7,	panel	D.		Additional	pairwise	comparisons	are	shown	in	Supplemental	Figures	1	–	6.	
	
For	the	microarray	platforms,	the	discrimination	between	the	target	ratios	is	optimal	near	the	
middle	of	their	dynamic	range,	and	the	ratios	are	“compressed”	at	both	the	lower	and	upper	
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extremes.		This	constraint	upon	log2	ratios	has	been	previously	described	[15].		The	ratios	
converge	towards	unity	at	lower	end	due	to	background	noise,	which	is	additive,	and	
contributes	to	both	samples	being	compared.			A	similar	compression	is	seen	at	high	signal,	
where	saturation	dominates.		We	can	also	use	Equation	1	to	derive	the	expected	intensity	
ratios	and	average	intensities	for	any	fold-change	of	relative	abundance.		These	fitted	curves	
are	also	shown	in	Figures	2	–	5,	panel	D.	
	
Signals	in	RNA-Seq	are	not	subject	to	saturation	(though	high	abundance	transcripts	can	
dominate	the	counting,	and	“crowd	out”	signals	from	lower	abundance	controls).	As	a	
consequence,	the	ratios	do	not	compress	at	the	upper	end	of	the	dynamic	range.		The	RNA-Seq	
signals	in	this	dataset	are	derived	from	counting	technical	replicates,	where	the	variation	can	be	
characterized	by	a	Poisson	distribution	[16].		In	this	case,	“shot	noise”	dominates	the	signal	at	
the	low	end,	where	counts	might	be	added	to	either	sample,	and	the	ratios	may	deviate	from	
target	values	in	either	direction	(Figs	6	and	7,	panel	D).		
	
Conclusions	
	
The	modified	Latin	square	design	provided	for	simultaneous	evaluation	of	multiple	controls	
with	a	minimal	number	of	samples.		While	each	individual	ERCC	was	only	tested	over	a	small	
range	of	relative	abundance,	up	to	4-fold	for	the	ERCCs	tested	at	multiple	ratios	and	a	single	
relative	abundance	value	for	the	1-to-1	components,	in	aggregate,	they	describe	the	overall	
measurement	behavior	of	a	platform.	
	
The	spread	of	the	data	indicates	that	differences	in	signals	observed	between	different	RNA	
species	within	the	same	sample	may	not	accurately	reflect	the	relative	abundance	between	
different	RNA	components	of	the	same	sample.		Some	of	this	dispersion	may	be	due	to	the	
complexity	of	the	pools	used	in	these	experiments	where	the	distribution	of	target	abundances	
described	in	Fig.	1A	may	not	have	been	attained.		For	microarrays,	probe	designs	for	each	ERCC	
target	may	also	introduce	some	variability	in	signal	between	different	ERCCs	at	the	same	
relative	abundance.		For	RNA-Seq,	a	non-uniform	distribution	of	reads	along	different	control	
sequences	may	also	contribute	to	the	variability	[17].	
	
The	ERCCs	did	demonstrate	that	there	is	a	linear	region	of	the	dynamic	range	of	each	platform	
where	changes	in	abundance	of	a	particular	RNA	transcript	can	produce	a	proportional	change	
in	signal.		In	this	region,	the	ratios	obtained	with	each	platform	approach	the	target	ratios	of	
the	modified	Latin	square	design.		As	a	consequence,	comparisons	between	samples	for	any	
particular	RNA	species	can	be	expected	to	be	accurate	with	respect	to	ratio-based	
measurements	if	they	fall	within	this	region.		A	pair	of	complex	mixtures	of	RNA	controls	
derived	from	NIST	SRM	2374	designed	to	provide	a	set	of	ratios	across	a	similar	dynamic	range	
is	commercially	available	(Ambion™	ERCC	ExFold	RNA	Spike-In	Mixes).		NIST	has	developed	an	
R-based	tool,	the	erccdashboard,	to	provide	metrics	and	visualizations	for	these	controls	[18].		
	
The	ERCC	RNA	controls	demonstrated	utility	in	four	different	gene	expression	microarray	
platforms	and	two	RNA-Seq	platforms.		Performance	issues	with	any	individual	ERCC	could	be	
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attributed	to	detection	limitations	or	a	target	probe	issue	for	particular	platforms.		The	spike-in	
RNA	controls	were	useful	for	establishing	the	dynamic	range	of	relative	abundance	for	a	
platform	as	well	as	delineating	a	reliable	region	where	ratios	can	be	measured	accurately.	
	
The	composite	testing	scheme	used	in	this	study	demonstrated	that	using	well-designed	pools	
of	RNA	controls	provides	measurement	assurance	for	endogenous	gene	expression	
experiments.		Pools	of	RNA	controls	from	this	study	have	been	used	as	spike-ins	for	RNA-Seq	
experiments	[19],	and	commercially	available	versions	of	these	controls	have	been	used	for	
their	intended	purpose	as	quality	controls	[20–23].		These	controls	have	also	proven	useful	in	
product	and	method	development	due	to	their	certified	sequences	and	known	concentrations	
[24–32].		Recently,	they	have	become	important	in	comparing	transcriptomes	between	cell	
types	in	immunology	[20,	32,	33],	agriculture	[34,	35],	and	other	biology	studies	[21,	36–38],	as	
well	as	key	to	understanding	and	accounting	for	the	technical	noise	in	single-cell	sequencing	
experiments	[39–42].	 	
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Figure	Legends	
	
Figure	1.		Latin	square	plus	pool	design.		Panel	A	shows	a	schematic	design	of	the	relative	
abundance	of	95	unique	ERCC	distributed	into	5	subpools.		Panel	B	shows	the	proportion	of	
each	subpool	within	each	pool.		Subpools	B	–	E	are	mixed	using	a	Latin	square	of	proportions	
40,	25,	15,	and	10	percent,	plus	subpool	A	as	an	additional	10	percent	component	of	each.		
Subpools	A,	B,	C,	D,	and	E	are	shaded,	black,	white,	light	grey,	medium	grey,	and	dark	grey,	
respectively.		Refer	to	Table	1	for	the	target	relative	abundance	of	an	ERCC	used	in	the	design	
of	each	pool.	
	
Figure	2.		ERCC	signal	response	as	a	function	of	relative	abundance	in	each	of	the	four	pools	on	
the	Illumina	microarray	platform.		In	Panel	A,	each	line	represents	an	individual	ERCC,	where	
grey	=	titrated,	black	=	1-to-1,	red	=	outlier,	and	dashed-line	=	background	(average	ERCC-
00073).		In	Panel	B,	the	centroid	of	each	ERCC	is	plotted,	where	the	red	line	corresponds	to	the	
fitted	Langmuir	model,	open	circles	=	within	99%	CI,	red	circles	=	outliers,	and	dashed-line	=	
background.		In	Panel	C,	the	slope	of	each	ERCC	is	plotted,	where	the	red	line	corresponds	to	
expected	slope	(first	derivative	of	the	Langmuir	model),	the	vertical	dotted	lines	correspond	to	
the	margins	of	the	linear	region	(inflection	points	of	the	first	derivative	of	the	Langmuir	model),	
the	open	circles	=	monotonic	ERCCs	(ρ	=	1),	grey	squares	=	non-monotonic,	and	red	=	outliers.		
Numbers	in	Panels	B	and	C	correspond	to	the	last	three	digits	of	the	Control	ID	in	Table	3.			In	
Panel	D,	each	ERCC	is	represented	on	the	Bland-Altman	plot	of	Mix	1	vs	Mix	3,	where	the	red	
line	corresponds	to	the	ratio	versus	average	intensity	derived	from	the	fitted	Langmuir	model,	
with	outliers	coded	as	in	Panels	B	and	C	above.	
	
Figure	3.		ERCC	signal	response	as	a	function	of	relative	abundance	in	each	of	the	four	pools	on	
the	NIAID	microarray	platform.		See	Figure	2	legend.	
	
Figure	4.		ERCC	signal	response	as	a	function	of	relative	abundance	in	each	of	the	four	pools	on	
the	Agilent	1-color	microarray	platform.		See	Figure	2	legend.	
	
Figure	5.		ERCC	signal	response	as	a	function	of	relative	abundance	in	each	of	the	four	pools	on	
the	Agilent	2-color	microarray	platform.		See	Figure	2	legend.	
	
Figure	6.		ERCC	signal	response	as	a	function	of	relative	abundance	in	each	of	the	four	pools	on	
the	LifeTech	NGS	platform.		In	Panel	A,	each	line	represents	an	individual	ERCC,	where	grey	=	
titrated,	black	=	1-to-1,	and	red	=	outlier.		Partially	detected	and	undetected	ERCCs	are	included	
at	the	bottom	to	indicate	their	targeted	relative	abundance.		In	Panel	B,	the	centroid	of	each	
ERCC	is	plotted,	where	the	red	line	corresponds	to	the	linear	fitted	model,	open	circles	=	within	
99%	CI,	and	red	circles	=	outliers.		In	Panel	C,	the	slope	of	each	ERCC	is	plotted,	where	the	open	
circles	=	monotonic	ERCCs	(ρ	=	1),	grey	squares	=	non-monotonic,	and	red	=	outliers.		Numbers	
in	Panels	B	and	C	correspond	to	the	last	three	digits	of	the	Control	ID	in	Table	3.			In	Panel	D,	
each	ERCC	is	represented	on	the	Bland-Altman	plot	of	Mix	1	vs	Mix	3,	with	outliers	coded	as	in	
Panels	B	and	C	above.	
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Figure	7.		ERCC	signal	response	as	a	function	of	relative	abundance	in	each	of	the	four	pools	on	
the	Illumina	NGS	platform.		See	Figure	6	legend.	
	
Supplemental	Figure	1.		Bland-Altman	plot	of	each	pair-wise	pool	comparison	using	the	Illumina	
microarray	platform.		Symbols	correspond	to	pools	A	–	E	(see	Fig.	1).	Filled	circles	=	A,	open	
circles	=	B,	open	diamonds	=	C,	open	triangles	=	D,	and	open	squares	=	E.		The	red	line	
corresponds	to	the	ratio	versus	average	intensity	derived	from	the	fitted	Langmuir	model.	
	
Supplemental	Figure	2.		Bland-Altman	plot	of	each	pair-wise	pool	comparison	using	the	NIAID	
microarray	platform.		See	Supplemental	Figure	1	legend.	
	
Supplemental	Figure	3.		Bland-Altman	plot	of	each	pair-wise	pool	comparison	using	the	Agilent	
1-color	microarray	platform.		See	Supplemental	Figure	1	legend.	
	
Supplemental	Figure	4.		Bland-Altman	plot	of	each	pair-wise	pool	comparison	using	the	Agilent	
2-color	microarray	platform.		See	Supplemental	Figure	1	legend.	
	
Supplemental	Figure	5.		Bland-Altman	plot	of	each	pair-wise	pool	comparison	using	the	LifeTech	
NGS	platform.		Symbols	correspond	to	subpools	A	–	E	(see	Fig.	1).		Filled	circles	=	A,	open	circles	
=	B,	open	diamonds	=	C,	open	triangles	=	D,	and	open	squares	=	E.	
	
Supplemental	Figure	6.		Bland-Altman	plot	of	each	pair-wise	pool	comparison	using	the	LifeTech	
NGS	platform.		See	Supplemental	Figure	5	legend.	
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Table	1.		Distribution	of	ERCCs	among	pools	and	mixtures.

Control	ID Subpool Pool	12 Pool	13 Pool	14 Pool	15 Note

ERCC-00073 N/A 0 0 0 0 Omitted

ERCC-00162 A 1 1 1 1
ERCC-00154 A 2 2 2 2
ERCC-00144 A 4 4 4 4
ERCC-00136 A 8 8 8 8
ERCC-00126 A 16 16 16 16
ERCC-00114 A 32 32 32 32 Non-SRM
ERCC-00108 A 64 64 64 64 Antisense
ERCC-00096 A 128 128 128 128
ERCC-00053 A 256 256 256 256
ERCC-00077 A 512 512 512 512
ERCC-00071 A 1024 1024 1024 1024
ERCC-00060 A 2048 2048 2048 2048
ERCC-00084 A 4096 4096 4096 4096
ERCC-00043 A 8192 8192 8192 8192
ERCC-00035 A 16384 16384 16384 16384
ERCC-00025 A 32768 32768 32768 32768
ERCC-00079 A 65536 65536 65536 65536
ERCC-00170 A 131072 131072 131072 131072
ERCC-00003 A 262,144 262,144 262,144 262,144
ERCC-00012 A 1,048,576 1,048,576 1,048,576 1,048,576

ERCC-00163 B 1 1.5 2.5 4
ERCC-00156 B 2 3 5 8
ERCC-00145 B 4 6 10 16
ERCC-00137 B 8 12 20 32
ERCC-00128 B 16 24 40 64
ERCC-00116 B 32 48 80 128 Antisense
ERCC-00109 B 64 96 160 256
ERCC-00097 B 128 192 320 512
ERCC-00085 B 256 384 640 1,024
ERCC-00078 B 512 768 1,280 2,048
ERCC-00171 B 1,024 1,536 2,560 4,096
ERCC-00054 B 2,048 3,072 5,120 8,192
ERCC-00044 B 4,096 6,144 10,240 16,384
ERCC-00039 B 8,192 12,288 20,480 32,768
ERCC-00028 B 16,384 24,576 40,960 65,536
ERCC-00019 B 32,768 49,152 81,920 131,072
ERCC-00061 B 65,536 98,304 163,840 262,144
ERCC-00013 B 262,144 393,216 655,360 1,048,576
ERCC-00002 B 1,048,576 1,572,864 2,621,440 4,194,304

ERCC-00164 C 1.5 2.5 4 1
ERCC-00157 C 3 5 8 2
ERCC-00147 C 6 10 16 4
ERCC-00138 C 12 20 32 8
ERCC-00130 C 24 40 64 16
ERCC-00117 C 48 80 128 32
ERCC-00111 C 96 160 256 64
ERCC-00098 C 192 320 512 128
ERCC-00086 C 384 640 1,024 256
ERCC-00004 C 768 1,280 2,048 512
ERCC-00074 C 1,536 2,560 4,096 1,024
ERCC-00057 C 3,072 5,120 8,192 2,048 Antisense
ERCC-00062 C 6,144 10,240 16,384 4,096
ERCC-00046 C 12,288 20,480 32,768 8,192
ERCC-00040 C 24,576 40,960 65,536 16,384
ERCC-00051 C 49,152 81,920 131,072 32,768
ERCC-00022 C 98,304 163,840 262,144 65,536
ERCC-00014 C 393,216 655,360 1,048,576 262,144 Antisense
ERCC-00018 C 1,572,864 2,621,440 4,194,304 1,048,576

ERCC-00165 D 2.5 4 1 1.5
ERCC-00158 D 5 8 2 3
ERCC-00148 D 10 16 4 6
ERCC-00142 D 20 32 8 12
ERCC-00131 D 40 64 16 24
ERCC-00120 D 80 128 32 48
ERCC-00099 D 160 256 64 96 Antisense
ERCC-00112 D 320 512 128 192
ERCC-00092 D 640 1,024 256 384
ERCC-00081 D 1,280 2,048 512 768
ERCC-00075 D 2,560 4,096 1,024 1,536
ERCC-00058 D 5,120 8,192 2,048 3,072
ERCC-00067 D 10,240 16,384 4,096 6,144
ERCC-00048 D 20,480 32,768 8,192 12,288
ERCC-00041 D 40,960 65,536 16,384 24,576
ERCC-00033 D 81,920 131,072 32,768 49,152
ERCC-00007 D 163,840 262,144 65,536 98,304
ERCC-00023 D 655,360 1,048,576 262,144 393,216
ERCC-00016 D 2,621,440 4,194,304 1,048,576 1,572,864

ERCC-00123 E 4 1 1.5 2.5
ERCC-00160 E 8 2 3 5
ERCC-00150 E 16 4 6 10
ERCC-00143 E 32 8 12 20
ERCC-00134 E 64 16 24 40
ERCC-00113 E 128 32 48 80 Re-assigned	to	Pool	C
ERCC-00168 E 256 64 96 160
ERCC-00104 E 512 128 192 320
ERCC-00095 E 1,024 256 384 640
ERCC-00083 E 2,048 512 768 1,280
ERCC-00076 E 4,096 1,024 1,536 2,560
ERCC-00069 E 8,192 2,048 3,072 5,120
ERCC-00059 E 16,384 4,096 6,144 10,240 Antisense
ERCC-00031 E 32,768 8,192 12,288 20,480
ERCC-00042 E 65,536 16,384 24,576 40,960
ERCC-00034 E 131,072 32,768 49,152 81,920
ERCC-00009 E 262,144 65,536 98,304 163,840 Antisense
ERCC-00017 E 1,048,576 262,144 393,216 655,360
ERCC-00024 E 4,194,304 1,048,576 1,572,864 2,621,440

Target	Relative	Abundance
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Table&3.&&Dynamic&Range&Coverage.

Platform Units Subset

Illumina ERCC 5.81 ± 0.08 5.72 ± 0.07 13.88 ± 0.11 8.16 ± 0.13

Bead BKGD
1

5.35 ± 0.07 14.34 ± 0.08 8.99 ± 0.10

NIAID ERCC 5.53 ± 0.02 5.53 ± 0.03 15.83 ± 0.38 10.30 ± 0.39

In?house BKGD 5.20 ± 0.01 15.26 ± 0.27 10.06 ± 0.27

Agilent ERCC 2.62 ± 0.14 2.57 ± 0.16 20.73 ± 0.18 18.16 ± 0.24

One?color BKGD 2.41 ± 0.10 20.66 ± 0.06 18.25 ± 0.12

Agilent ERCC 2.57 ± 0.06 2.40 ± 0.06 18.37 ± 0.10 15.98 ± 0.12

Two?color BKGD 4.40 ± 0.15 20.00 ± 0.10 15.60 ± 0.19

Illumina ERCC ?4.98 ± 0.67 14.58 ± 0.27 19.56 ± 0.72

HiSeq BKGD ?6.34 ± 0.40 18.27 ± 0.05 24.61 ± 0.40

LifeTech ERCC ?3.26 ± 0.38 16.47 ± 0.34 19.73 ± 0.51

SOLiD BKGD ?6.64 ± 0.00 17.30 ± 0.35 23.94 ± 0.35

1
AllOtranscriptsOmeasuredOinOtheOtotalOhumanOliverORNAObackground.

2
MinimumORPKMOvalueOreportedOisOtruncatedOatO0.01OforOallOreplicates.

log2ORPKM
2

undetected

undetected

log2Osignal

log2Osignal

log2Osignal

log2Osignal

ERCC=00073 Minimum Maximum Range

log2OFPKM

2"
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Table	3.		ERCC	outliers	grouped	by	performance	criteria.	

Log2	Target

Controls Relative	
Abundance

Subpool ILM NIAID LifeTech ILM	HiSeq ILM NIAID LifeTech ILM	HiSeq

ERCC-00156* 1 B ¢ ¢

ERCC-00147 2 C ¢ ¢ ¢

ERCC-00148* 2 D ¢ [1,2] ¢ ¢ [1] ¢ ¢

ERCC-00137 3 B ¢ [2] ¢ [1] ¢

ERCC-00143* 3 E ¢ [1] ¢ [1]

ERCC-00131* 4 D ¢ [1] ¢ ¢ [1,2]

ERCC-00134* 4 E ¢ [1] ¢ [1,2]

ERCC-00168* 6 E ¢ [1,2] ¢ ¢ [2] ¢ ¢

ERCC-00095 8 E ¢ ¢

ERCC-00157 1 C ¢

ERCC-00158 1 D ¢ [1]

ERCC-00160 1 E ¢ [1]

ERCC-00145 2 B ¢ [1]

ERCC-00150 2 E ¢ [1]

ERCC-00138* 3 C ¢ [1,2] ¢ ¢

ERCC-00142 3 D ¢ [2] ¢

ERCC-00128 4 B ¢ [2] ¢

ERCC-00111 6 C ¢

ERCC-00097 7 B ¢

ERCC-00098 7 C ¢ ¢

ERCC-00104 7 E ¢

ERCC-00086 8 C ¢ ¢

ERCC-00062* 12 C ¢

ERCC-00046* 13 C ¢

ERCC-00162 0 A ¢ [1]

ERCC-00126 4 A ¢

ERCC-00113* 5 C ¢ [2] ¢ ¢

ERCC-00117 5 C ¢

ERCC-00120 5 D ¢

ERCC-00109 6 B ¢ ¢ ¢

ERCC-00077 8 A ¢

ERCC-00081 9 D ¢

ERCC-00060 10 A ¢

ERCC-00075 10 D ¢

ERCC-00171 10 B ¢

ERCC-00054 11 B ¢

ERCC-00058* 11 D ¢ [1,2] ¢ ¢ ¢

ERCC-00069 11 E ¢ ¢

ERCC-00044 12 B ¢ ¢

ERCC-00025 14 A ¢

ERCC-00028 14 B ¢

ERCC-00040 14 C ¢

ERCC-00042 14 E ¢ ¢

ERCC-00007 16 D ¢

ERCC-00022 16 C ¢ [1,2]

ERCC-00170* 16 A ¢ [2] ¢ ¢ ¢

ERCC-00023 18 D ¢ [1,2]

ERCC-00002 20 B ¢

ERCC-00012 20 A ¢

ERCC-00024 20 E ¢ [1,2]

1Agilent	1-color	data.
2Agilent	2-color	data.
*Discussed	further	in	main	text.
Note:	The	following	analytes	were	incorrectly	prepared	as	their	antisense	sequence	and	omitted	from	the	data	anlysis:	ERCC-00009,	ERCC-00014,	ERCC-00057,	
ERCC-00059,	ERCC-00099,	ERCC-00108,	and	ERCC-00116.

Response	Curve	Outliers Non-monotonic
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