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ABSTRACT 

Gene duplication was proposed by S.Ohno (Ohno, 1970) as a key mechanism of a gene 

function evolution. A pair of gene paralogs, NTNG1 and NTNG2, sharing identical gene 

and protein structures and encoding similar proteins, forms a functional complement 

subfunctionalising (SF) within cognitive domains and forming cognitive 

endophenotypes, as detected by Intellectual Quotient (IQ) tests (Prosselkov et al., 2015). 

Both NTNG paralogs are associated with autism spectrum disorder (ASD), bipolar 

disorder (BD) and schizophrenia (SCZ), with unique non-overlapping segregation 

among the other 15 cognitive disorders (CD), emphasizing an evolutionary gain-

dependent link between advanced cognitive functions and concomitant neurocognitive 

pathologies. Complementary expression and human brain transcriptome composition of 

the paralogs explains the observed phenomena of their functional complementarity. The 

lowest identity among NTNGs is found in a middle of encoded by them proteins 

designated as uknown (Ukd) domain. NTNG1 contains anthropoid-specific constrained 

regions, and both genes contain non-coding conserved sequences underwent accelerated 

evolution in human. NTNG paralogs SF perturbates “structure drives function” concept 

at protein and gene levels. The paralogs function diversification forms a so-called 

“Cognitive Complement (CC)”, a product of gene duplication and subsequent cognitive 

subfunction bifurcation among the NTNG gene duplicates. 
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INTRODUCTION 

Complex behaviors arise from a combination of simpler genetic modules that either have 

evolved separately or co-evolved. Many genes and proteins they encode have been found to 

be involved in cognitive information processing with a single variant or a single gene 

generally accounting for only a partial phenotypic variation of a complex trait. Cognitive 

processing as a quintessence of brain functioning can be viewed as a product of intricately 

interlinked networks generated by deeply embedded into it players with specific or partially 

overlapping functions. The robustness of the cognitive processing towards its single elements 

genetic eliminations (to study their function) and its simultaneous fragility expressed in the 

multiple forms of neurological disorders manifest the existence of cognitive domains 

interlocked but SF within a unit of cognition formed upon these domains interaction. 

Previously, we have described a function of a pair of gene paralogs, NTNG1 and NTNG2, 

involved in human IQ tests performance, and underwent hominin-specific evolutionary 

changes (Prosselkov et al., 2015). Hereby, we report on these gene paralogs features 

focusing on underlying mechanisms of their function segregation and complementation 

within the cognitive domains. 
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RESULTS 

 The previously observed phenomena of functional complementation among the 

NTNG paralogs within cognitive domains (Prosselkov et al., 2015) is also manifested in 

NTNG-associated human pathologies diagnosed in most cases (if only not in all) by a 

cognitive decline (Figure 1A-1 and A-2). Both genes are associated with BD and SCZ – 

devastating disorders sharing similar etiology (Lee et al., 2013) with genetic correlation by 

multivariate analysis of 0.590 (Maier et al., 2015), linked to human creativity (Power et al., 

2015), and characterized by impulsiveness as a common diagnostic feature (Reddy et al., 

2014). Recently found associations of both paralogs with ASD (Sanders et al., 2015) 

supports the reported genetic correlation of 0.194 ASD/SCZ pair (Maier et al., 2015) and 

shared module eigengenes detected by PC1 among these two disorders (Parikshak et al., 

2015). 12 NTNG1-linked CDs, ranging from AD to TS, span a broad spectrum of clinical 

features frequently involving reduced processing speed (PS) and verbal comprehension (VC, 

Figure 1A-1). As for NTNG2, working memory (WM) deficit and inability “to bind” events 

(perceptual organization, PO) are the most prominent diagnostic traits for the SLE and TLE 

patients (Figure 1A-2), with PN also characterised by indolent behavior in 90% of the cases 

(Cavard et al., 2009). Interestingly to note that association of the synapse-expressed NTNG2 

with both SCZ and autoimmune pathology (SLE) correlates with a recent finding that human 

complement component C4 is involved in the synapse elimination and SCZ development 

(Sekar et al., 2016). Thus, both NTNG paralogs are associated with a variety of CDs and 

mostly in a non-overlapping manner, except for ASD, BD and SCZ characterized by shared 

and wide spectrum of cognitive abnormalities. The clinical etiology of the aforementioned 

diseases supports the IQ-deduced functional complementation among the NTNG paralogs 

(Prosselkov et al., 2015) with (VC/PS) and (WM/PO) deficits being also uniquely 

segregated among the associated cognitive pathologies. 
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 Since both genes are expected to have identical gene exon/intron compositions but 

different in their intron lengths (Yin et al., 2002) we have reconstructed the paralogs 

transcriptomes by re-processing the publicly available RNA-seq dataset (Wu et al., 2012) 

from healthy and SCZ human subjects superior temporal gyrus (STG) post-mortem brain 

tissue (Supplementary Table 1a=ST1a). A difference is noted instantly at the total expression 

levels (genes, exons, individual RNA transcripts) when two gene paralogs are compared 

(Figure 1B-1 and B-2). NTNG2 amount (as a whole gene) is 5 times larger comparing to 

NTNG1; exons (2-5) are 3 times, exons (8-9) are 18 times and exon 10 is 4 times higher 

expressed for NTNG2 than for NTNG1. The only two exons outlaying the prevailing amount 

rule for the NTNG2 mRNAs are exons 6 and 7, expressed nearly at the same absolute level as 

for the NTNG1 exon paralogs, making them highly underrepresented within the whole 

NTNG2 transcriptome. Next, distinct non-alternating splicing modules are formed by exons 

(2-5) for NTNG1 (Figure 1B-1), while exons (4-5) and exons (8-9) for NTNG2 (Figure 1B-

2). Two structurally identical RNA transcript paralogs (NTNG1a = G1a and NTNG2a = G2a) 

have been found to exist in both NTNG transcriptomes with G2a being expressed at 8-9 times 

higher level than G1a. NTNG1 is uniformly presented across the all analysed 16 human 

samples by 2 more protein coding RNAs (G1c and G1d, detected previously in mice brain, 

Nakashiba et al., 2000) and by 2 non-coding intron (9-10) derived transcripts (Figure 1B-1).  

At the same time, NTNG2 transcriptome is comprised of one extra potentially coding RNA 

(G2a-like with exon 2 spliced out but in-frame coding preserved) and 2 assumed to be non-

coding RNAs with exons 6 and 7 retained along with preceding and following them introns. 

Quite interesting that these two latter transcripts are the only RNA species with NTNG2 exon 

6 and 7 retained (Figure 1B-2). Two more coding (G1f and G1n) and 4 more non-coding for 

NTNG1 and 9 extra non-coding for NTNG2 RNA species have been also assembled from the 

available reads but due to inconsistency in their appearance across all 16 STG samples they 
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are not presented on the figure but summarized in the table (Figure 1C, for details refer to 

ST1d). Summarising this, quantitative and qualitative complementary differences is a 

prominent feature characterising the brain RNA transcriptome of human NTNG paralogs.  

However, no significant changes at the transcription level of neither whole genes, nor 

individual exons, nor reconstructed RNA transcripts have been found for SCZ and healthy 

subjects. 

 Upon calling the presence of IQ-affecting SNPs (Prosselkov et al., 2015) across all 

STG samples (ST1c) it has been revealed that 15 out of 16 subjects were positive for the T-

allele of rs2149171 (exon 4-nested), shown above to attenuate the WM score in SCZ patients, 

making a comparison among the allele carrier vs non-carrier impossible. Four healthy and 

three SCZ samples carry a T-allele of rs3824574 (exon 3-nested, non-affecting IQ), and 1 

healthy and 1 SCZ sample each contains a C-allele of rs4915045 (exon10, non-coding part-

nested, and non-affecting IQ). Thus, among the eleven cognitive endophenotype-associated 

SNPs  only 3 were possible to call out of the available NTNG transcriptome. 

 Distinctly complementary nature of the NTNG paralogs segregation within 

neurological disorders and RNA transcriptome usage in STG (Figure 1) has prompted us to 

analyse both genes expression across the entire human brain. We have reconstructed both 

genes expression profiles in the human brain areas over the life span from conception (pcw = 

post-conception week) to mature age (30-40 yrs old) using the RNA-seq data from BrainSpan 

(www.brainspan.org). Similarities and differences are easily noted when the age-dependent 

phases of NTNG1 and NTNG2 expression profiles are matched (Figure 2). Based on the 

visual inputs three distinct classifiers have been elaborated: 1. predominantly synchronous 

(Figure 2A(1-4)), characteristic mostly for the cortical areas; 2. predominantly mixed and 

asynchronous (Figure 2B), characteristic for the cerebellar cortex and subcortical formations; 

and 3. anti-phasic (complementary, Figure 2C), characteristic for the MD of thalamus and 
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hippocampus. All analysed brain areas demonstrated an elevated level of NTNG2 expression 

in comparison to NTNG1 except for thalamus (Figure 2C) with the largest difference 

observed is at the time of birth (35-37 pcw) or soon after (4 mo) for the synchronous 

classifiers (Figure 2A), oscillating increment values across the life span for the mixed 

(Figure 2B) and anti-phasic (Figure 2C) classifiers. It is quite intriguing to note that 

essentially all brain areas show a trend towards the expression difference being negated 

between the paralogs by reaching the mature age of 30-40 yrs old (nearly or above the mean 

age used for the IQ testing), except MD where the expression discrepancy is increased. Thus, 

the observed functional complementation among the NTNG paralogs is supported by the 

anatomical distribution of the genes in human brain and their expression pattern modality 

over the human subjects lifetime. 

 A direct comparison of the NTNG paralogs shows not only identical intron-exon gene 

structure (Figure 1B-1, 2B-2) but also closely matched exon sizes (Figure 3A). There are 

three exons of identical sizes (exons 4, 8 and 9), another three exons differed by one encoded 

aa (exons 3, 5 and 6) and there are exons of different sizes (exons 2, 7 and 10). In terms of 

size the largest difference among the genes is visually presented by the introns: intron (9-10) 

of NTNG1 is 52.7 times larger its NTNG2 paralogous intron with intron (6-7) of NTNG1 

being only 1.43-times larger pointing towards non-equilibria process of non-coding elements 

elaborations as the process of gene paralogs SF proceeded. Nevertheless, it can be 

generalised that in average all NTNG1 introns are several times larger their NTNG2 analogs 

(Figure 3A). We have shown previously that exons 6 and 7 are differentially used within the 

brain NTNG transcriptome (Figure 1B-1 and B-2) and to explore their potential contribution 

into the paralogs SF we have built identity matrices with these exons excluded and included 

(but still producing in-frame existing transcripts, Figure 3B-1 left and right panels, 

respectively). Exclusion of both exons from the full-lengths transcripts (thus converting 
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NTNG1m to NTNG1a and NTNG2b to NTNG2a, respectively) increases the identity of DNA 

on 2% (a relatively large effect since both exons together represent only 7.22 and 9.69% of 

the total coding part of the full-length RNA transcripts, NTNG1m and NTNG2b, respectively). 

This effect becomes even stronger when the encoded by these transcripts proteins are also 

compared (Figure 3B-2). The spliced out Ukd protein domains (encoded by the exons 6 and 

7) increases the proteins identity on 3.8% thus making the middle of both genes (and encoded 

proteins) substantially more different among the both gene paralogs. To corroborate this 

observation and to explore the importance of other protein parts we have directly compared 

the sequences encoded by the full-length transcripts and producing Netrin-G1m and Netrin-

G2b (Figure 3C). Similarly to what has been shown on Figure 3B-1 and 3B-2, the lowest 

identity (17.5%) is represented by the Ukd domain (encoded by the exons 6 and 7) and by the 

preceding it exon 5 (a 3’-part of the LE1 domain). Two other areas also show a substantially 

low identity, namely the N-terminus (it includes the protein secretory signal indicated by an 

arrow) and the outmost C-terminus responsible for the unique feature of Netrin-Gs – the GPI 

attachment. Thus, based on the percent identity comparisons among the Netrin-G paralogs it 

can be predicted that there are several potential protein parts contributing to the paralogs SF. 

As it has been reported by Seiradake et al. (2011), identical gene and protein domain 

compositions result in the identical structural motif with differences only in the spatial 

arrangement of the loops facing the post-synaptic Netrin-G’s interacting partners, NGL-1 and 

NGL-2, respectively (Figure 3D). Loop I binding surfaces alignment (Figure 3C, blue color) 

shows a high level of conservation (with at least 5 amino acids 100% conserved) among the 

Netrin-G paralogs, indicating that it is unlikely to be responsible for the cognate ligand 

binding specificity. Neither Loop II (Figure 5C, yellow color) nor Loop III (Figure 5C, 

orange color) display a single conserved amino acid shared among the paralogous binding 

interfaces (as it originally has been described in Seiradake et al., 2011). Thus the 
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complementary pattern of the pre-postsynaptic interactions mediated via specific Netrin-

G/NGL pairs is reflected in the reciprocally different sizes of the loops binding interfaces 

representing another element of the NTNG-encoded protein paralogs SF. 
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DISCUSSION 

Complementary contribution of NTNG paralogs into human cognitive pathologies.  

Involvement of the pre-synaptically expressed axon-localised NTNGs in SCZ diagnosis 

supports the established view of SCZ as a result of distorted trans-synaptic signaling (Lips et 

al., 2012), with a recent study proving that axonal connectivity-associated genes form a 

functional network visualisable by fMRI (Richiardi et al., 2015), and that brain connectivity 

predicts the level of fluid intelligence (Finn et al., 2015; Pamplona et al., 2015). Both 

NTNGs have been found to participate in the brain functional connectivity by the parcellated 

connectome reconstruction (Hawrylycs et al., 2015). Most of the reported disease 

associations link NTNG1 to SCZ with a variety of other neurologic pathologies (15 in total, 

Figure 1A-1), while NTNG2 pathologic associations (6 in total, Figure 1A-2) are quite 

limited to those affecting WM or PO. Among them is SLE frequently characterized by WM 

deficit (Shucard et al., 2011) and also known to represent schizoid-type abnormalities 

characteristic for autoimmune pathologies (Guilloux et al., 2010; Eaton et al., 2006). 

Immune activation is known to lead to altered pre-pulse inhibition (a key diagnostic trait for 

SCZ) reversed by antipsychotics (Romero et al., 2007). The three diseases associated with 

both paralogs (ASD, BD and SCZ) are also a primary focus of the recently initiated 

PsychENCODE project (PsychENCODE et al., 2015). It is also worth to mention the 

resemblance of the reported disease associations with the behavioral phenotypes of Ntng1 

and Ntng2 gene knockout mice (Zhang et al., 2016). 

 A gene content associated with attenuated IQ score often relates to numerous diseases, 

such as SCZ, ASD, depression, and others (see Zhao et al., 2014 for ref.; Johnson et al., 

2016). Several genes associated with SCZ have undergone positive selection following the 

human brain evolution (Xu et al., 2015). Despite the global network properties of the brain 

transcriptome are highly conserved among the species there are robust human-specific 
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disease-associated modules (Miller et al., 2010) and human accelerated regions (HARs) - 

highly conserved parts of genome that underwent accelerated evolution in humans (Pollard 

et al., 2006). HARs can serve as genomic markers for human-specific traits underlying a 

recent acquisition of modern human cognitive abilities by brain (Boyd et al., 2015) but that 

also “might have led to an increase in structural instability… resulted in a higher risk for 

neurodegeneration in the aging brain” (Zhou et al., 2015), rendering our intellectual abilities 

genetically fragile (Crabtree, 2013) and resulting in a variety of CDs. The role genomic 

context, epistasis (Hemani et al., 2014), plays in the evolution and pathology is manifested 

by frequently found disease-causing alleles present in animals without obvious pathological 

symptoms for the host (Jordan et al., 2015). Any CD is characterized by general intellectual 

disability (GID) plus psychiatric symptoms. A genetic perturbation-exerted behavioral 

cognitive deficit (BCD) in an animal model organism is a poor match to a human CD per se 

due to very poor contextual resemblance between the human GID and animal BCD together 

with the absence of interpretable psychiatric symptoms. Usefulness of animals as psychiatric 

models is also compromised by the fact that transcriptome differences within species tissues 

is smaller than among the homologous tissues of different species (Barbosa-Morais et al., 

2012; Lin et al., 2014). No wonder that the compounds that “cure” mice models consistently 

fail in human trials (discussed in Hyman, 2014). 

NTNG paralogs brain transcriptome intrinsic complementarity and possible mechanism 

for the IQ-affecting mutation alleles effect. There is no global change at the mRNA level 

between healthy subjects and SCZ patients (Figure 1B). This conclusion is supported by 

previously published works stating that globally altered mRNA expression of NTNG1 or 

NTNG2 is unlikely to confer disease susceptibility, at least in the temporal lobe (Eastwood 

and Harrison, 2008), and Brodmann’s area (Aoki-Suzuki et al., 2005). However, the 

original paper-source of the STG samples RNA-seq along with many other genes (>1,000) 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 7, 2016. ; https://doi.org/10.1101/034645doi: bioRxiv preprint 

https://doi.org/10.1101/034645
http://creativecommons.org/licenses/by/4.0/


	   11	  

found that NTNG1 (but not NTNG2) falls under the group of genes with significant 

alternative promoter usage (Wu et al., 2012: ST6, p<9.05E-10 at FDR <0.5) and NTNG2 

(but not NTNG1) clusters with genes (>700) with significant alternative splicing change (Wu 

et al., 2012: ST7, p<6.15E-12 at FDR<0.5) when SCZ and controls are compared. Such 

GWAS observation adds an extra layer of complementary regulation to both NTNG paralogs 

on a top of the described in the results section complementary usage rule for the exons, 

formed unspliced splicing modules, resulting transcripts and their comprising exons (Figure 

1B). Based on the available RNA-seq dataset it was almost impossible to detect RNA with 

the matched position of NTNG SNPs used for the IQ testing (ST2c) except for two coding 

exons located (rs2149171 and rs3824574) and exon 10 non-coding area located but 

transcribed rs4915045 (in 2 out of 16 samples). This fact points towards indirect effect of the 

IQ-affecting mutation alleles potentially associated with shorter (secretable) isoforms 

generation (Prosselkov et al., unpublished) lacking two of the most prominent NTNG 

features: GPI-link and the Ukd domain through an aberrant splicing factor binding. The GPI-

link is a hallmark of Netrin-G family members (Nakashiba et al., 2000, 2002) and without it 

the aberrant Netrin-G isoforms are likely to mimic the action of their releasable ancestry 

molecules - netrins, still being able to bind to their cognate postsynaptic ligand – NGL but 

without forming an axonal-postsynaptic contact. The Ukd domain of Netrin-G1, despite its 

so-far unknown function, is involved in lateral binding to the pre-synaptically localised LAR 

modulating the binding strength between NGL-1 and Netrin-G1 (Song et al., 2013). Work is 

currently underway in search for a similar lateral interaction partner for the Netrin-G2 Ukd 

domain (Kim E, personal communications). The inclusion of Ukd encoding exons 6 and 7 

is regulated by the Nova splicing factor (Ule et al., 2005) affecting the cortex Netrin-G1 exon 

7 but not exon 6, and, simultaneously, Netrin-G2 paralog exons exhibiting an opposite 

pattern. In general, it is tempting to speculate that deregulation of NTNG transcripts 
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processing may have a role in the brain-controlled cognitive abilities and associated CDs. 

Supporting such notion, a decreased level of Netrin-G1c mRNA (exons 6-9 excluded, Figure 

1B-1) has been reported for BD and SCZ (Eastwood and Harrison, 2008) with Netrin-G1d 

(exons 6 and 7 included but 8-9 excluded, Figure 1B-1) and Netrin-G1f (a secretable short 

isoform consisted of domain VI only and lacking the Ukd and GPI-link) being increased in 

BD, but not in SCZ, in anterior cingulated cortex (Eastwood and Harrison, 2010). Higher 

Netrin-G1d mRNA expression in fetal brain but low for the Netrin-G1c isoform in the human 

adult (Eastwood and Harrison, 2008) indicates different functionality of these two splice 

variants joggling with the Ukd domain inclusion. And, according to our other data, if Netrin-

G1 Ukd-containing isoforms are the dominant isoforms in adult mouse brain, Netrin-G2 Ukd-

containing isoforms are present only at the trace level (Prosselkov et al., forthcoming), 

resembling a similar transcriptome pattern for the human STG samples (Figure 1B-1 and B-

2). A similar “dynamic microexon regulation” associated with the protein interactome 

misregulation has been reported to be linked to ASD (Irimia et al., 2014). 

Synchronous and complementary expression of NTNG paralogs in the human brain 

supports the IQ-associated cognitive endophenotypes. Influential parieto-frontal 

integration theory (P-FIT, Jung and Haier, 2007) states that general intelligence (“g”) is 

dependent on multiple brain cortical areas such as dlPFC, Broca's and Wernicke's areas, 

somatosensory and visual cortices (Colom et al., 2009). Despite “g” is widely accepted as the 

only correlate of the intelligence, its unitary nature was challenged by (Hampshire et al., 

2012) claiming had indentified two independent brain networks (for memory and for 

reasoning) responsible for the task performance, the idea later criticised for the employed 

data processing approach (Haier et al., 2014). Higher IQ scores (a composite surrogate of 

“g”) have been reportedly associated with the fronto-parietal network (FPN) connectivity 

(Song et al., 2008; Glascher et al., 2009). High level of NTNG paralogs expression within 
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the cognition intensively loaded areas of the brain and the distinct patterns of expression 

profiles (synchronous, asynchronous/mixed, and complementary, Figure 2A) support 

associations of NTNG1 and NTNG2 with the recorded cognitive endophenotypes (Prosselkov 

et al., 2015). Based on the expression patterning over the human life-span, among the total 16 

analysed brain areas we found two falling under the same “anti-phasic (complementary)” 

classifier (Figure 2C): HIP and MD.  Adding more to that, MD is the only brain area (out of 

the 16 presented) where NTNG1 expression level exceeds that of NTNG2 making it a 

promising candidate for the phenomena of NTNGs SF explanation. Two other brain areas 

classified by a synchronous paralogs expression deserve a special attention, dlPFC and mPFC 

(Figure 2A-4). PFC circuitry has been known as a “hub of the brain’s WM system” (Kim et 

al., 2013; Markowitz et al., 2015), which acts through direct HIP afferents (Spellman et al., 

2015) and has many connections with other cortical and subcortical areas (Riga et al., 2014). 

mPFC may function as an intelligence-control switchboard and lPFC, part of the FPN global 

connectivity, predicts the WM performance and fluid intelligence (Cole et al., 2012). 

Interactions of the auditory recognition information fed by the vPFC stream with the 

sequence processing by the dorsal stream are crucial for the human language articulation 

(Skeide and Friederici, 2015; Thothathiri and Rattinger, 2015). The fact that both NTNG 

paralogs are extensively expressed across PFC (Figure 2A-2 and A-4) pinpoints this area as 

a key for future molecular studies of the human-unique symbolic communications. And PFC 

is not only implicated in many psychiatric disorders, including SCZ (Gulsuner and 

McClellan, 2014; see also Riga et al., 2014 for ref.), but is also the only brain structure 

unique to primates without known homologs in the animal kingdom (Wise, 2008). 

Evolution of the protein paralogs encoded by the NTNGs. Forkhead box P2 (FOXP2) – a 

ubiquitously expressed transcription factor that has been reported to be linked to the 

evolution of human language through T303N, N325S substitutions when compared to a 
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primate ortholog (Enard et al., 2002) and is 100% identical to Nea protein (Krause et al., 

2007). FOXP2 regulates expression of multiple genes in human and chimpanzee (Konopka 

et al., 2009), and among them is an M3 gene brain module representative responsible for 

general fluid cognitive abilities (Johnson et al., 2016), LRRC4C, a gene encoding NGL-1 – a 

post-synaptic target of Netrin-G1. Similarly to FOXP2, Netrin-G1 is a 100% conserved 

protein among the hominins with only 1 mutation found in chimpanzee which is absent in 

marmoset (and other primates) and mice proteins (Prosselkov et al., 2015). On the other 

hand, extinct hominins’ Netrin-G2 relatively to modern human contains T346A point 

mutation (as per current version of hg19), also found in primates and mouse and known as 

rs4962173 (dbSNP missense mutation) representing an ancient substitution from Neandethal 

genomes found in modern humans and reflecting a recent acquisition of the novel allele 

around 5,300 yrs BC. Nothing is known regarding the functional significance of this mutation 

but biochemically a substitution of alanine (A) on a polar threonine (T) could bring an extra 

point of regulation, e.g. a phosphorylation or glycosylation (NetPhos2.0 (Blom et al., 1999) 

assigns a low score for the T346 to be phosphorylated but NetOGlyc4.0 (Steentoft et al., 

2013) robustly predicts it to be glycosylated, SM). Another mutation S371A/V reflects a 

selective sweep in Netrin-G2 protein from primates to hominins within a similar to T346A 

functional context when a hydrophobic alanine (in chimpanzee, A)/valine (in marmoset, V) is 

replaced by a polar serine (S) and a strong positive predictions for glycosylation but not 

phosphorylation (SM). This poses a question whether these two human-specific protein 

substitutions associate with advanced cognitive traits as they may represent a hidden layer of 

poorly studied so far protein glycosylation-associated regulatome known to affect the brain 

function and diseases (Baenziger, 2012; Baenziger, 2013). Adding more to this, T346 is 

nested on exon 5 just 20 nu away from the affecting WM score rs2274855 (Prosselkov et al., 

2015), and, together with S371A/V, they are both located within the lowest percent identity 
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area (exons (5-7)) of Netrin-Gs (Figure 3C) and, proposedly, contributing to the NTNG 

duplicates SF. There are at least three more protein parts potentially contributing to the gene 

paralogs specialised function subdivision (based on the low identity scores, Figure 3C): the 

secretory peptide, the GPI-link, and the outmost structurally elaborated unstructured loops (I-

III) responsible for the reciprocal binding of Netrin-Gs to their post-synaptic cognate partners, 

NGL-1 or NGL-2, both containing a C-terminal PDZ-binding domain (Kim et al., 2006). An 

interesting finding was reported in (Arbuckle et al., 2010) found a presence of SH3(PSD95) 

domain binding site (required for the phosphatidylinositol-3-kinase recruitment) in mice 

Netrin-G2 (100% identical to human) but not in Netrin-G1. The detected SH3 binding site 

overlaps with the Netrin-G2-loop III responsible for the binding specificity to NGL-2 

(Seiradake et al., 2011; Soto et al., 2013; DeNardo et al., 2012). A plausible working 

hypothesis would be that while internalised (and being GPI-link naïve/immature) the pre-

synaptic Netrin-G2 is bound to SH3-PSD95 via loop III but as soon as being secreted 

extracellularly (and being attached to the membrane) it is bound to post-synaptic NGL-2. 

Corroborating this, in the absence of Netrin-G2 in the KO mice NGL-2 is unstable on the 

post-synaptic surface and gets quickly internalised (Zhang et al., 2016). We can only 

speculate regarding the potential importance of PSD-95(SH3)-Netrin-G2-NGL-2 scaffolding 

loop interaction/competition but the ability for Netrin-G1 to bind to SH3 has not been 

reported. Following this logic, Netrin-G1 should have a similar binding partner via loop II. 

 The overall identical structural scaffold among the Netrin-G paralogs (Figure 3D) is 

likely to represent an anciently preserved one of the primordial protein (encoded by a single 

gene in the primitive urochordate C.intestinalis) and its contribution to the process of SF 

among the NTNG paralogs goes against the “structure drives function” concept. It looks like 

that it is not the “structure” but rather the “evolution” itself that drives a selection for the best 

structural (or unstructural in our case) fit out of the available frameworks provided by the 
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gene duplicates to fulfill the emerged functional demand in a new ecological niche. The 

intricate variability of phenotype is grounded by the conserved nature of genotype and 

constrained by the “structure-function” limitations of the coding DNA and is only possible 

due to permissive evolutionary continuing elaborations of non-coding areas able to absorb the 

most recently acquired elements (having a potential to become regulatory at some point, e.g. 

like HAR5 (Boyd et al., 2015)) and carried over by neutral drift as proposed by Kimura but 

for proteins (Kimura, 1983). At the same time, the multiple protein substitutions coinciding 

with the SF labor segregation phenomena among the Netrin-G paralogs question their neutral 

nature. Both of them undergo a purifying selection from mice to human through the reduction 

in size of non-coding DNA (introns) and encoded proteins (the mice Netrin-G2 is 2 aa longer 

its human ortholog) further contributing to the host-specific SF. Thus while the non-coding 

sequences are used to explore the evolutionary space in time, the restrictive boundaries of the 

paralogs SF are determined by the protein (unstructured) elements. 

Molecular evolution of the Cognitive Complement (CC). Appearance of the neural crest 

(Abitua et al., 2012), an event that “affected the chordate evolution in the unprecedented 

manner” (Green et al., 2015), multipotent progenitor cells (Stolfi et al., 2015), and 

neurogenic placodes (suggesting a chemosensory and neurosecretory activities, Abitua et al., 

2015) in first primitive urochordates/tunicates coincides with the presence of Ntng precursor 

gene (ENSCING00000024925) later undergoing two rounds of duplication events in lamprey 

and found to affect human cognitive abilities (Prosselkov et al., 2015). NTNG paralogs are 

expressed in the human neural crest-forming cells with NTNG2 10 times stronger than 

NTNG1 (Rada-Iglesias et al., 2012), both are differentially expressed in human comparing to 

chimpanzee and rhesus monkey with NTNG2 expression model showing stronger probability 

than NTNG1 (Iskow et al., 2012), and both are stronger expressed in human telencephalon 

comparing to chimpanzee and macaque (Konopka et al., 2012). NTNG1 has been classified 
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as a brain module hub gene “whose pattern fundamentally shifted between species” 

(Hawrylycs et al., 2015). Belonging to distinct modules of brain expression regulation (Liu 

et al., 2012, Konopka et al., 2012), NTNGs are classified as “genes with human-specific 

expression profiles” (Liu et al., 2012). The nearby gene ~260 kbp upstream of NTNG2 is 

MED27 (mediator of RNA polymerase II) has been proposed to be associated with the 

evolution of human-specific traits (McLean et al., 2011). NTNG1 has also been reported 

among the “adaptive plasticity genes” (Ghalambor et al., 2015) potentiating rapid adaptive 

evolution in guppies (NTNG2 was not found among the input RNA for analysis). 

 Complementarity among the NTNG paralogs and encoded by them proteins has been 

reported previously: brain expression complementary pattern (in almost self-exclusive 

manner) defined by the 5’-UTR-localised cis-regulatory elements (Yaguchi et al., 2014); 

complementary distribution within the hippocampal laminar structures (Nishimura-Akiyoshi 

et al., 2007); axon-dendrite synaptic ending resulting in differential control over the neuronal 

circuit plasticity (Matsukawa et al., 2014); mutually-exclusive binding pattern to post-

synaptic partners, NGL-1 and NGL-2, dictated by the protein unstructural elements 

(Seiradake et al., 2011); alternative promoter usage vs alternative mRNA splicing (Wu et al., 

2012) and increased coefficient of variation (CV, ST1d) for NTNG1 expression but not 

NTNG2 in SCZ patients (similar to Zhang et al., 2015); KO mice behavioral phenotypes and 

subcellular signaling partners complementarity (Zhang et al., 2016); “differential stability” 

brain modules expression (NTNG1 is expressed in the dorsal thalamus (M11) as a hub gene 

(Pearson’s 0.92) while NTNG2 is in neocortex and claustrum module (M6, Pearson’s 0.65)) 

(Hawrylycs et al., 2015); hypocretin neurons-specific expression of NTNG1 (but not 

NTNG2) as a sleep modulator (Yelin-Bekerman et al., 2015); top-down vs bottom-up 

information flows gating in mice and differential responsiveness to neuronal stimuli 

(Prosselkov et al., forthcoming); and human IQ-compiling cognitive domains 
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complementation (Prosselkov et al., 2015). The current study reports the NTNGs 

complementarity association with the CDs (Figure 1A); mRNA splicing pattern 

complementary at the quantitative and qualitative levels via differential use of the middle-

located exons (Figure 1B); brain complementary oscillatory expression over the human life 

span observed in the intensive cognitively loaded brain areas (Figure 2); AE of the paralogs-

segregated unique non-coding elements (Figure 3A); complementary pattern of the protein 

orthologs (mice-to-human) protein sequence evolution. Such multi-level complementation is 

likely to reflect a shared evolutionary origin from a single gene in a primitive vertebrate 

organism 700 mln yrs ago and its subsequent functional segregation among the evolution-

generated gene duplicates in jawless fish, such as lamprey. 

 Occupying independent but intercalating functional niches, NTNG1 and NTNG2 do 

not compensate but complement each other’s function forming a “functional complement” of 

genes. Half a billion yrs ago the doubled gene dosage led to the gradual SF and manifested in 

a function complementation within the cognitive domains, at least in human. We would like 

to coin such gene pair as a Cognitive Complement (CC). 

 

CONCLUSION 

The emerged functional redundancy, as an outcome of gene duplication, leads to function 

subdivision and its bifurcation among the gene paralogs resulting in the paralogs SF. A 

functional compensation is known to exist among the evolutionary unrelated genes but has 

not been reported among the gene paralogs, more frequently characterized by the function 

complementation. Gene paralogs structural identity (at both, gene and protein levels) does not 

provide a substrate for function compensation but rather for complementation, perturbating 

“structure drives function” rule. A gene duplication event of a tunicate NTNG primordial 

gene and the subsequent process of its function specialisation (driven by the new ecological 
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niches appearance and evolution) among the gene duplicates made them to SF into distinct 

cognitive domains in a complementary manner forming a CC. In our forthcoming work we 

are to describe how Ntng mice genes function resembles that of human orthologs (Prosselkov 

et al., forthcoming). 
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MATERIALS AND METHODS 

Human brain NTNG transcriptome reconstruction. Relates to Figure 1B and 1-C. The 

original source of the dataset was produced by (Wu et al., 2012: E-MATB-1030) and the 

downloaded .bam files used for the re-processing are listed in ST1a. All reconstructed 

transcripts are presented in ST1d standalone Excel file. Two samples were excluded from the 

analysis due to failed “per base sequence quality” measure, and zero expression level for 

NTNG1a and NTNG1int(9-10) otherwise consistently expressed throughout other samples 

(ST1b). SAMtools software was used for the SNPs calling from the available RNA-seq 

datasets (ST1c). For details refer to SM. 

Human brain expression profiling for NTNGs across the life span. The original source of 

data was www.brainspan.org. All available samples were initially included into the analysis 

but two of them excluded at a later stage (MD for 12-13 pcw and mPFC for 16-19 pcw) due 

to high deviation (6-7 times) from the mean for other replicas. The mean expression values 

per each brain area as RPKM were plotted against the sampling age. Profiles classification 

was done visually considering the trend over the all plotted points as an average. 

NTNG1 (NTNG1m) and NTNG2 (NTNG2b) full-length mRNA transcripts assembly. 

Relates to Figure 3B. Human NTNG1m brain transcript has been reported previously 

(Meerabux et al., 2005) and we have also confirmed its ortholog presence in the mice brain 

via full-length cloning (Prosselkov et al., unpublished). Since NCBI contains only its partial 

CDS (AY764265), we used the RNA-seq-generated exons (Figure 1B) to reconstruct its full-

length and to generate an ORF of the encoded Netrin-G1m. Similarly, human NTNG2b was 

reconstructed from the RNA-seq dataset and from Ensemble as follows. Exon 5 sequence 

was deduced from ENST00000372179, other exons were from ENST00000467453 (no 

longer available on the current version of Ensemble) except for exon 6 deduced by running 

three independent alignments against the human genomic DNA with the mice 3’-intron (5-6), 
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exon 6, and 5’-intron (6-7) concomitantly confirmed by the generated full-length ORF for 

Netrin-G2b. The reconstructed protein was predicted to encode 587 amino acids, which is in 

a close proximity to the mice netrin-G2b ortholog of 589 residues (Prosselkov et al., forth.). 

Full-lengths gene structures of NTNG paralogs reconstruction. Relates to Figure 3A. 

Both, the obtained above from the STG brain samples RNA-seq and the reconstructed full-

lengths transcripts carrying all stably expressed exons were used to confirm the intron-exon 

junctions positioning for NTNG1 and NTNG2. Due to observed variability in the intron (1-2) 

and exon 10 sizes their boundaries were left unmarked. 

 

SUPPLEMENTARY MATERIALS (SM) 

Contain Supplementary Methods (RNA-seq of STG re-processing and SNPs detection) and 

Supplementary Tables (ST1a-d, ST2) as a single compiled pdf file. Reconstructed RNA-seq 

(.gtf) of the STG is presented as a standalone Excel file (ST1d). Also included: Netrin-G2b 

predicted phosphorylation and O-glycosylation, Netrin-G1 vs Netrin-G2 Ukd alignment 

(McWilliam et al., 2013), predicted secretory peptide cleavage and GPI attachments. 
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Figure 1. NTNG paralogs complementation within neurological disorders and brain transcriptome. (A-1, 
A-2)  Reported cognitive  disorders  associations  for  NTNG1  and NTNG2.  *denotes  rather  an  indirect 
association via a direct interaction with the research target. (B-1, B-2) RNA-seq of the STG of healthy 
(circle) and SCZ (cross) human subjects.  The original  dataset was produced by (Wu et al.,  2012), 
accession number  E-MTAB-1030 on ArrayExpress  (ST1a)  and reprocessed as  described in  SM.  Five 
NTNG1 and four NTNG2 transcripts, consistently expressed across all 16 human samples are shown. 
Two samples (one healthy and one SCZ) have been omitted due to unsatisfactory quality of reads and 
expression profiling (ST1b). For the SNPs calling by SAMtools see ST1c. Data are presented as a mean 
RPKM+SEM. (C) Total number of the assembled transcripts across all samples for both paralogs (see 
ST1d for the completely reconstructed transcriptome). Dash-outlined are co-spliced exon clusters.!
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Figure 2. NTNG paralogs expression dynamics classification (A-C) in 
the human brain across the life span. A (1-4): further subdivision of 
the  classifier.  RNA-seq  data  are  from  the  BrainSpan 
(www.brainspan.org)  presented as a  mean+SEM.  TCx = temporary 
neocortex; OCx = occipital neocortex; PCx = parietal neocortex; LGE 
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dorsal  thalamus;  URL  =  upper  (rostral)  rombic  limb;  pcw =  post-
conception  week.  Two  data  points  (MD,  12-13  pcw,  and  mPFC, 
16-19 pcw) for NTNG1 expression were omitted as they were 6-7 
times different from the mean of other replicas. All processed brain 
samples are listed in ST2.!
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Figure 3. Human NTNG paralogs DNA and protein sequence comparisons and “structure-function” rule incongruency. (A) Identical gene structures with 
different sizes of introns. RNA-seq data from Figure 1B were used to precisely deduce the exon/intron junction boundaries. The sizes of exons 1, 10 and 
introns (1-2) are not indicated due to observed among the splice transcripts lengths variability (see ST1a for details). Arrows indicate location of CNS = 
conserved non-coding sequences underwent accelerated evolution in human compare to mice (mCNS) and chimpanzee (chCNS), as per Prabhakar et al., 
2006; and ASC = anthropoid-specific constrained regions in human compare to marmoset (maASC), as per del Rosario et al., 2014. (B) Identical exonal 
composition of the longest NTNG encoded RNA paralog transcripts and corresponding proteins with relatively high percent of identity among them 
dependent on the included/excluded Ukd domain (B-2) encoded by the exons 6 and 7 (B-1). Notably, the protein sequence represents higher percent of 
the paralogs difference than encoded it DNA. The matrices were obtained by GeneJockey II (Biosoft). (C) Protein alignments for the longest human 
NTNG encoded proteins, Netrin-G1m and Netrin-G2b, with Loops I-III highlighting binding sites for their cognate post-synaptic binding partners NGL-1 
(Lrrc4c) and NGL-2 (Lrrc4), respectively, as determined by Seiradake et al. (2011). Arrow indicates a putative secretory cleavage site location, as 
calculated by SignalIP (Petersen et al., 2011), the blue rectangle delineates the area of the lowest identity (3’-domain LE1+Ukd domain); ω – denotes a 
point of putative GPI-attachment, as predicted by Big-PI (Eisenhaber et al., 2000). PSD-95 interaction site via the SH3-binding domain (Arbuckle et al., 
2010, as determined for mice Netrin-G2) overlaps with the Loop III NGL-2 binding surface. Two stars indicate a modern human (T346A) and a hominin-
specific (S371A/V) amino acid  substitutions (Prosselkov et  al.,  2015).  (D) Identical  structural  motif  of  the Netrin-G1/NGL1 and Netrin-G2/NGL2 
complexes as per Seiradake et al. (2011). The figure’s reproduction is covered by the Creative Commons license.!
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