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ABSTRACT 19	  

Gene duplication was proposed by S.Ohno (Ohno, 1970) as a key mechanism of a gene 20	  

function evolution. A pair of gene paralogs, NTNG1 and NTNG2, sharing identical gene 21	  

and protein structures and encoding similar proteins, forms a functional complement 22	  

subfunctionalising (SF) within cognitive domains and forming cognitive 23	  

endophenotypes, as detected by Intellectual Quotient (IQ) tests (Prosselkov et al., 2015). 24	  

NTNG paralogs are associated with autism spectrum disorder (ASD), bipolar disorder 25	  

(BD) and schizophrenia (SCZ), with unique non-overlapping segregation among the 26	  

other 15 cognitive disorders (CD), emphasizing an evolutionary gain-dependent link 27	  

between advanced cognitive functions and concomitant cognitive pathologies. 28	  

Complementary expression and human brain transcriptome composition of the 29	  

paralogs explains the observed phenomena of their functional complementarity. The 30	  

lowest identity among NTNGs is found in a middle of encoded by them proteins 31	  

designated as uknown (Ukd) domain. NTNG1 contains anthropoid-specific constrained 32	  

regions and both genes contain non-coding conserved sequences underwent accelerated 33	  

evolution in human. NTNG paralogs SF perturbates “structure drives function” concept 34	  

at protein and gene levels. Their function diversification results in a so-called 35	  

“Cognitive Complement (CC)” formation, a product of gene duplication and 36	  

subsequent cognitive subfunction bifurcation among the NTNG gene duplicates. 37	  

38	  
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INTRODUCTION 38	  

Gene duplication was proposed by S.Ohno (Ohno, 1970) as a key mechanism of a gene 39	  

function evolution. Complex behaviors arise from a combination of simpler genetic modules 40	  

that either have evolved separately or co-evolved. Many genes and the proteins they encode 41	  

have been found to be involved in the cognitive information processing with a single variant 42	  

or a single gene generally accounting for only a partial phenotypic variation in a complex 43	  

trait. Cognitive processing as a quintessence of the brain functioning can be viewed as a 44	  

product of intricately interlinked networks generated by deeply embedded into it players with 45	  

specific or partially overlapping functions. The robustness of the cognitive processing 46	  

towards its single elements genetic eliminations (to study their function) and its simultaneous 47	  

fragility expressed in the multiple forms of neurological disorders manifest the existence of 48	  

cognitive domains interlocked but SF within a unit of cognition formed upon these domains 49	  

interaction. Previously, we have described a function of a pair of gene paralogs (NTNG1 and 50	  

NTNG2) involved in human IQ tests performance and underwent hominin-specific 51	  

evolutionary changes (Prosselkov et al., 2015). Hereby, we continue looking at these genes 52	  

paralogs features focusing on underlying mechanisms of their function segregation and 53	  

complementation within the cognitive domains. 54	  

55	  
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RESULTS 55	  

 The previously observed phenomena of functional complementation among the 56	  

NTNG paralogs within cognitive domains (Prosselkov et al., 2015) is also manifested in 57	  

NTNG-associated human pathologies diagnosed in most cases (if only not in all) by a 58	  

cognitive decline (Figure 1A-1 and A-2). Both genes are associated with BD and SCZ – 59	  

devastating disorders sharing similar etiology (Lee et al., 2013) with genetic correlation by 60	  

multivariate analysis of 0.590 (Maier et al., 2015), linked to human creativity (Power et al., 61	  

2015), and characterized by impulsiveness as a common diagnostic feature (Reddy et al., 62	  

2014). Recently found associations of both paralogs with ASD (Sanders et al., 2015) 63	  

supports the reported genetic correlation of 0.194 ASD/SCZ pair (Maier et al., 2015) and 64	  

shared module eigengenes detected by PC1 among these two disorders (Parikshak et al., 65	  

2015). 12 NTNG1-linked CDs, ranging from AD to TS, span a broad spectrum of clinical 66	  

features frequently involving reduced processing speed (PS) and verbal comprehension (VC, 67	  

Figure 1A-1). As for NTNG2, working memory (WM) deficit and inability “to bind” events 68	  

(perceptual organization, PO) are the most prominent diagnostic traits for the SLE and TLE 69	  

patients (Figure 1A-2), with PN characterised by indolent behavior in 90% of the cases 70	  

(Cavard et al., 2009). Thus, both NTNG paralogs are associated with a variety of CDs and 71	  

mostly in a non-overlapping manner, except for ASD, BD and SCZ characterized by shared 72	  

and wide spectrum of cognitive abnormalities. The clinical etiology of the aforementioned 73	  

diseases supports the IQ-deduced functional complementation among the NTNG paralogs 74	  

(Prosselkov et al., 2015) with (VC/PS) and (WM/PO) deficits being also uniquely 75	  

segregated among the associated cognitive pathologies. 76	  

 Since both genes are expected to have identical gene exon/intron compositions but 77	  

different in their intron lengths (Yin et al., 2002) we have reconstructed the paralogs 78	  

transcriptomes by re-processing the publicly available RNA-seq dataset (Wu et al., 2012) 79	  
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from healthy and SCZ human subjects superior temporal gyrus (STG) post-mortem brain 80	  

tissue (Supplementary Table 1a=ST1a). A difference is noted instantly at the total expression 81	  

levels (genes, exons, individual RNA transcripts) when two gene paralogs are compared 82	  

(Figure 1B-1 and B-2). NTNG2 amount (as a whole gene) is 5 times larger comparing to 83	  

NTNG1; exons (2-5) are 3 times, exons (8-9) are 18 times and exon 10 is 4 times higher 84	  

expressed for NTNG2 than for NTNG1. The only two exons outlaying the prevailing amount 85	  

rule for the NTNG2 mRNAs are exons 6 and 7, expressed nearly at the same absolute level as 86	  

for the NTNG1 exon paralogs, making them highly underrepresented within the whole 87	  

NTNG2 transcriptome. Next, distinct non-alternating splicing modules are formed by exons 88	  

(2-5) for NTNG1 (Figure 1B-1), while exons (4-5) and exons (8-9) for NTNG2 (Figure 1B-89	  

2). Two structurally identical RNA transcript paralogs (NTNG1a = G1a and NTNG2a = G2a) 90	  

have been found to exist in both NTNG transcriptomes with G2a being expressed at 8-9 times 91	  

higher level than G1a. NTNG1 is uniformly presented across the all analysed 16 human 92	  

samples by 2 more protein coding RNAs (G1c and G1d, detected previously in mice brain, 93	  

Nakashiba et al., 2000) and by 2 non-coding intron (9-10) derived transcripts (Figure 1B-1).  94	  

At the same time, NTNG2 transcriptome is comprised of one extra potentially coding RNA 95	  

(G2a-like with exon 2 spliced out but in-frame coding preserved) and 2 assumed to be non-96	  

coding RNAs with exons 6 and 7 retained along with preceding and following them introns. 97	  

Quite interesting that these two latter transcripts are the only RNA species with NTNG2 exon 98	  

6 and 7 retained (Figure 1B-2). Two more coding (G1f and G1n) and 4 more non-coding for 99	  

NTNG1 and 9 extra non-coding for NTNG2 RNA species have been also assembled from the 100	  

available reads but due to inconsistency in their appearance across all 16 STG samples they 101	  

are not presented on the figure but summarized in the table (Figure 1C, for details refer to 102	  

ST1d). Summarising above said, it can be concluded that quantitative and qualitative 103	  

complementary differences is a prominent feature characterising the brain RNA 104	  
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transcriptome of human NTNG paralogs.  However, no significant changes at the 105	  

transcription level of neither whole genes, nor individual exons, nor reconstructed RNA 106	  

transcripts have been found for SCZ and healthy subjects. 107	  

 Upon calling the presence of IQ-affecting SNPs (Prosselkov et al., 2015) across all 108	  

STG samples (ST1c) it has been revealed that 15 out of 16 subjects were positive for the T-109	  

allele of rs2149171 (exon 4-nested), shown above to attenuate the WM score in SCZ patients, 110	  

making a comparison among the allele carrier vs non-carrier impossible. Four healthy and 111	  

three SCZ samples carry a T-allele of rs3824574 (exon 3-nested, non-affecting IQ), and 1 112	  

healthy and 1 SCZ sample each contains a C-allele of rs4915045 (exon10, non-coding part-113	  

nested, and non-affecting IQ). Thus, among the eleven cognitive endophenotype-associated 114	  

SNPs  only 3 were possible to call out of the available NTNG transcriptome. 115	  

 Distinctly complementary nature of the NTNG paralogs segregation within 116	  

neurological disorders and RNA transcriptome usage in STG (Figure 1) has prompted us to 117	  

analyse both genes expression across the entire human brain. We have reconstructed both 118	  

genes expression profiles in the human brain areas over the life span from conception (pcw = 119	  

post-conception week) to mature age (30-40 yrs old) using the RNA-seq data from BrainSpan 120	  

(www.brainspan.org). Similarities and differences are easily noted when the age-dependent 121	  

phases of NTNG1 and NTNG2 expression profiles are matched (Figure 2). Based on the 122	  

visual inputs three distinct classifiers have been elaborated: 1. predominantly synchronous 123	  

(Figure 2A(1-4)), characteristic mostly for the cortical areas; 2. predominantly mixed and 124	  

asynchronous (Figure 2B), characteristic for the cerebellar cortex and subcortical formations; 125	  

and 3. anti-phasic (complementary, Figure 2C), characteristic for the MD of thalamus and 126	  

hippocampus. All analysed brain areas demonstrated an elevated level of NTNG2 expression 127	  

in comparison to NTNG1 except for thalamus (Figure 2C) with the largest difference 128	  

observed is at the time of birth (35-37 pcw) or soon after (4 mo) for the synchronous 129	  
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classifiers (Figure 2A), oscillating increment values across the life span for the mixed 130	  

(Figure 2B) and anti-phasic (Figure 2C) classifiers. It is quite intriguing to note that 131	  

essentially all brain areas show a trend towards the expression difference being negated 132	  

between the paralogs by reaching the mature age of 30-40 yrs old (nearly or above the mean 133	  

age used for the IQ testing), except MD where the expression discrepancy is increased. Thus, 134	  

the observed functional complementation among the NTNG paralogs is supported by the 135	  

anatomical distribution of the genes in human brain and their expression pattern modality 136	  

over the human subjects lifetime. 137	  

 A direct comparison of the NTNG paralogs shows not only identical intron-exon gene 138	  

structure (Figure 1B-1, 2B-2) but also closely matched exon sizes (Figure 3A). There are 139	  

three exons of identical sizes (exons 4, 8 and 9), another three exons differed by one encoded 140	  

aa (exons 3, 5 and 6) and there are exons of different sizes (exons 2, 7 and 10). In terms of 141	  

size the largest difference among the genes is visually presented by the introns: intron (9-10) 142	  

of NTNG1 is 52.7 times larger its NTNG2 paralogous intron with intron (6-7) of NTNG1 143	  

being only 1.43-times larger pointing towards non-equilibria process of non-coding elements 144	  

elaborations as the process of gene paralogs SF proceeded. Nevertheless, it can be 145	  

generalised that in average all NTNG1 introns are several times larger their NTNG2 analogs 146	  

(Figure 3A). We have shown previously that exons 6 and 7 are differentially used within the 147	  

brain NTNG transcriptome (Figure 1B-1 and B-2) and to explore their potential contribution 148	  

into the paralogs SF we have built identity matrices with these exons excluded and included 149	  

(but still producing in-frame existing transcripts, Figure 3B-1 left and right panels, 150	  

respectively). Exclusion of both exons from the full-lengths transcripts (thus converting 151	  

NTNG1m to NTNG1a and NTNG2b to NTNG2a, respectively) increases the identity of DNA 152	  

on 2% (a relatively large effect since both exons together represent only 7.22 and 9.69% of 153	  

the total coding part of the full-length RNA transcripts, NTNG1m and NTNG2b, respectively). 154	  
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This effect becomes even stronger when the encoded by these transcripts proteins are also 155	  

compared (Figure 3B-2). The spliced out Ukd protein domains (encoded by the exons 6 and 156	  

7) increases the proteins identity on 3.8% thus making the middle of both genes (and encoded 157	  

proteins) substantially more different among the both gene paralogs. To corroborate this 158	  

observation and to explore the importance of other protein parts we have directly compared 159	  

the sequences encoded by the full-length transcripts and producing Netrin-G1m and Netrin-160	  

G2b (Figure 3C). Similarly to what has been shown on Figure 3B-1 and 3B-2, the lowest 161	  

identity (17.5%) is represented by the Ukd domain (encoded by the exons 6 and 7) and by the 162	  

preceding it exon 5 (a 3’-part of the LE1 domain). Two other areas also show a substantially 163	  

low identity, namely the N-terminus (it includes the protein secretory signal indicated by an 164	  

arrow) and the outmost C-terminus responsible for the unique feature of Netrin-Gs – the GPI 165	  

attachment. Thus, based on the percent identity comparisons among the Netrin-G paralogs it 166	  

can be predicted that there are several potential protein parts contributing to the paralogs SF. 167	  

As it has been reported by Seiradake et al. (2011), identical gene and protein domain 168	  

compositions result in the identical structural motif with differences only in the spatial 169	  

arrangement of the loops facing the post-synaptic Netrin-G’s interacting partners, NGL-1 and 170	  

NGL-2, respectively (Figure 3D). Loop I binding surfaces alignment (Figure 3C, blue color) 171	  

shows a high level of conservation (with at least 5 amino acids 100% conserved) among the 172	  

Netrin-G paralogs, indicating that it is unlikely to be responsible for the cognate ligand 173	  

binding specificity. Neither Loop II (Figure 5C, yellow color) nor Loop III (Figure 5C, 174	  

orange color) display a single conserved amino acid shared among the paralogous binding 175	  

interfaces (as it originally has been described in Seiradake et al., 2011). Thus the 176	  

complementary pattern of the pre-postsynaptic interactions mediated via specific Netrin-177	  

G/NGL pairs is reflected in the reciprocally different sizes of the loops binding interfaces 178	  

representing another element of the NTNG-encoded protein paralogs SF. 179	  

180	  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2015. ; https://doi.org/10.1101/034645doi: bioRxiv preprint 

https://doi.org/10.1101/034645
http://creativecommons.org/licenses/by/4.0/


	   8	  

DISCUSSION 180	  

Complementary contribution of NTNG paralogs into human cognitive pathologies.  181	  

Involvement of the pre-synaptically expressed axon-localised NTNGs in SCZ diagnosis 182	  

supports the established view of SCZ as a result of distorted trans-synaptic signaling (Lips et 183	  

al., 2012), with a recent study proving that axonal connectivity-associated genes form a 184	  

functional network visualisable by fMRI (Richiardi et al., 2015), and that brain connectivity 185	  

predicts the level of fluid intelligence (Finn et al., 2015; Pamplona et al., 2015). Both 186	  

NTNGs have been found to participate in the brain functional connectivity by the parcellated 187	  

connectome reconstruction ((Hawrylycs et al., 2015). Most of the reported disease 188	  

associations link NTNG1 to SCZ with a variety of other neurologic pathologies (15 in total, 189	  

Figure 1A-1), while NTNG2 pathologic associations (6 in total, Figure 1A-2) are quite 190	  

limited to those affecting WM or PO. Among them is SLE frequently characterized by WM 191	  

deficit (Shucard et al., 2011) and also known to represent schizoid-type abnormalities 192	  

characteristic for autoimmune pathologies (Guilloux et al., 2010; Eaton et al., 2006). 193	  

Immune activation is known to lead to altered pre-pulse inhibition (a key diagnostic trait for 194	  

SCZ) reversed by antipsychotics (Romero et al., 2007). The three diseases associated with 195	  

both paralogs (ASD, BD and SCZ) are also a primary focus of the recently initiated 196	  

PsychENCODE project (PsychENCODE et al., 2015). It is also worth to mention the 197	  

resemblance of the reported disease associations with the behavioral phenotypes of Ntng1 198	  

and Ntng2 gene knockout mice (Qi et al., in press). 199	  

 It is a known fact that a gene content associated with IQ score often relates to 200	  

numerous diseases, such as SCZ, ASD, depression, and others (see Zhao et al., 2014 for ref.). 201	  

Several genes associated with SCZ have undergone positive selection following the human 202	  

brain evolution (Xu et al., 2015). Despite the global network properties of the brain 203	  

transcriptome are highly conserved among the species there are robust human-specific 204	  
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disease-associated modules (Miller et al., 2010) and human accelerated regions (HARs) - 205	  

highly conserved parts of genome that underwent accelerated evolution in humans (Pollard 206	  

et al., 2006). HARs can serve as genomic markers for human-specific traits underlying a 207	  

recent acquisition of modern human cognitive abilities by brain (Boyd et al., 2015) but that 208	  

also “might have led to an increase in structural instability… resulted in a higher risk for 209	  

neurodegeneration in the aging brain” (Zhou et al., 2015), rendering our intellectual abilities 210	  

genetically fragile (Crabtree, 2013) and resulting in a variety of CDs. The role genomic 211	  

context, epistasis (Hemani et al., 2014), plays in the evolution and pathology is manifested 212	  

by frequently found disease-causing alleles present in animals without obvious pathological 213	  

symptoms for the host (Jordan et al., 2015). Any CD is characterized by general intellectual 214	  

disability (GID) plus psychiatric symptoms. A genetic perturbation-exerted behavioral 215	  

cognitive deficit (BCD) in an animal model organism is a poor match to a human CD per se 216	  

due to very poor contextual resemblance between the human GID and animal BCD together 217	  

with the absence of interpretable psychiatric symptoms. No wonder that the compounds that 218	  

“cure” mice models consistently fail in human trials (discussed in Hyman, 2014). 219	  

NTNG paralogs brain transcriptome intrinsic complementarity and possible mechanism 220	  

for the IQ-affecting mutation alleles effect. There is no global change at the mRNA level 221	  

between healthy subjects and SCZ patients (Figure 1B). This conclusion is supported by 222	  

previously published works stating that globally altered mRNA expression of NTNG1 or 223	  

NTNG2 is unlikely to confer disease susceptibility, at least in the temporal lobe (Eastwood 224	  

and Harrison, 2008), and Brodmann’s area (Aoki-Suzuki et al., 2005). However, the 225	  

original paper-source of the STG samples RNA-seq along with many other genes (>1,000) 226	  

found that NTNG1 (but not NTNG2) falls under the group of genes with significant 227	  

alternative promoter usage (Wu et al., 2012: ST6, p<9.05E-10 at FDR <0.5) and NTNG2 228	  

(but not NTNG1) clusters with genes (>700) with significant alternative splicing change (Wu 229	  
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et al., 2012: ST7, p<6.15E-12 at FDR<0.5) when SCZ and controls are compared. Such 230	  

GWAS observation adds an extra layer of complementary regulation to both NTNG paralogs 231	  

on a top of the described in the results section complementary usage rule for the exons, 232	  

formed unspliced splicing modules, resulting transcripts and their comprising exons (Figure 233	  

1B). Based on the available RNA-seq dataset it was almost impossible to detect RNA with 234	  

the matched position of NTNG SNPs used for the IQ testing (ST2c) except for two coding 235	  

exons located (rs2149171 and rs3824574) and exon 10 non-coding area located but 236	  

transcribed rs4915045 (in 2 out of 16 samples). This fact points towards indirect effect of the 237	  

IQ-affecting mutation alleles potentially associated with shorter (secretable) isoforms 238	  

generation (Prosselkov et al., unpublished) lacking two of the most prominent NTNG 239	  

features: GPI-link and the Ukd domain through an aberrant splicing factor binding. The GPI-240	  

link is a hallmark of Netrin-G family members (Nakashiba et al., 2000, 2002) and without it 241	  

the aberrant Netrin-G isoforms are likely to mimic the action of their releasable ancestry 242	  

molecules - netrins, still being able to bind to their cognate postsynaptic ligand – NGL but 243	  

without forming an axonal-postsynaptic contact. The Ukd domain of Netrin-G1, despite its 244	  

so-far unknown function, is involved in lateral binding to the pre-synaptically localised LAR 245	  

modulating the binding strength between NGL-1 and Netrin-G1 (Song et al., 2013). Work is 246	  

currently underway in search for a similar lateral interaction partner for the Netrin-G2 Ukd 247	  

domain (Kim E, personal communications, April 2014). The inclusion of Ukd encoding 248	  

exons 6 and 7 is regulated by the Nova splicing factor (Ule et al., 2005) affecting the cortex 249	  

Netrin-G1 exon 7 but not exon 6, and, simultaneously, Netrin-G2 paralog exons exhibiting an 250	  

opposite pattern. In general, it is tempting to speculate that deregulation of NTNG transcripts 251	  

processing may have a role in the brain-controlled cognitive abilities and associated CDs. 252	  

Supporting such notion, a decreased level of Netrin-G1c mRNA (exons 6-9 excluded, Figure 253	  

1B-1) has been reported for BD and SCZ (Eastwood and Harrison, 2008) with Netrin-G1d 254	  
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(exons 6 and 7 included but 8-9 excluded, Figure 1B-1) and Netrin-G1f (a secretable short 255	  

isoform consisted of domain VI only and lacking the Ukd and GPI-link) being increased in 256	  

BD, but not in SCZ, in anterior cingulated cortex (Eastwood and Harrison, 2010). Higher 257	  

Netrin-G1d mRNA expression in fetal brain but low for the Netrin-G1c isoform in the human 258	  

adult (Eastwood and Harrison, 2008) indicates different functionality of these two splice 259	  

variants joggling with the Ukd domain inclusion. And, according to our other data, if Netrin-260	  

G1 Ukd-containing isoforms are the dominant isoforms in adult mouse brain, Netrin-G2 Ukd-261	  

containing isoforms are present only at the trace level (Prosselkov et al., forthcoming), 262	  

resembling a similar transcriptome pattern for the human STG samples (Figure 1B-1 and B-263	  

2). A similar “dynamic microexon regulation” associated with the protein interactome 264	  

misregulation has been reported to be linked to ASD (Irimia et al., 2014). 265	  

Synchronous and complementary expression of NTNG paralogs in the human brain 266	  

supports the IQ-associated cognitive endophenotypes. Influential parieto-frontal 267	  

integration theory (P-FIT, Jung and Haier, 2007) states that general intelligence (“g”) is 268	  

dependent on multiple brain cortical areas such as dlPFC, Broca's and Wernicke's areas, 269	  

somatosensory and visual cortices (Colom et al., 2009). Despite “g” is widely accepted as the 270	  

only correlate of the intelligence, its unitary nature was challenged by (Hampshire et al., 271	  

2012) claiming had indentified two independent brain networks (for memory and for 272	  

reasoning) responsible for the task performance, the idea later criticised for the employed 273	  

data processing approach (Haier et al., 2014). Higher IQ scores (a composite surrogate of 274	  

“g”) have been reportedly associated with the fronto-parietal network (FPN) connectivity 275	  

(Song et al., 2008; Glascher et al., 2009). High level of NTNG paralogs expression within 276	  

the cognition intensively loaded areas of the brain and the distinct patterns of expression 277	  

profiles (synchronous, asynchronous/mixed, and complementary, Figure 2A) support 278	  

associations of NTNG1 and NTNG2 with the recorded cognitive endophenotypes (Prosselkov 279	  
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et al., 2015). Based on the expression patterning over the human life-span, among the total 16 280	  

analysed brain areas we found two falling under the same “anti-phasic (complementary)” 281	  

classifier (Figure 2C): HIP and MD.  Adding more to that, MD is the only brain area (out of 282	  

the 16 presented) where NTNG1 expression level exceeds that of NTNG2 making it a 283	  

promising candidate for the phenomena of NTNGs SF explanation. Two other brain areas 284	  

classified by a synchronous paralogs expression deserve a special attention, dlPFC and mPFC 285	  

(Figure 2A-4). PFC circuitry has been known as a “hub of the brain’s WM system” (Kim et 286	  

al., 2013; Markowitz et al., 2015), which acts through direct HIP afferents (Spellman et al., 287	  

2015) and has many connections with other cortical and subcortical areas (Riga et al., 2014). 288	  

mPFC may function as an intelligence-control switchboard and lPFC, part of the FPN global 289	  

connectivity, predicts the WM performance and fluid intelligence (Cole et al., 2012). 290	  

Interactions of the auditory recognition information fed by the vPFC stream with the 291	  

sequence processing by the dorsal stream are crucial for the human language articulation 292	  

(Skeide and Friederici, 2015; Thothathiri and Rattinger, 2015). The fact that both NTNG 293	  

paralogs are extensively expressed across PFC (Figure 2A-2 and A-4) pinpoints this area as 294	  

a key for future molecular studies of the human-unique symbolic communications. And PFC 295	  

is not only implicated in many psychiatric disorders, including SCZ (Gulsuner and 296	  

McClellan, 2014; see also Riga et al., 2014 for ref.), but is also the only brain structure 297	  

unique to primates without known homologs in the animal kingdom (Wise, 2008). 298	  

Evolution of the protein paralogs encoded by the NTNGs. Forkhead box P2 (FOXP2) – a 299	  

ubiquitously expressed transcription factor that has been reported to be linked to the 300	  

evolution of human language through T303N, N325S substitutions when compared to a 301	  

primate ortholog (Enard et al., 2002) and is 100% identical to Nea protein (Krause et al., 302	  

2007). FOXP2 regulates the expression of multiple genes and among them is LRRC4C (gene 303	  

encoding NGL-1 – a post-synaptic target of Netrin-G1) in human and chimpanzee (Konopka 304	  
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et al., 2009). Netrin-G1 similarly to FOXP2 is a 100% conserved protein among the 305	  

hominins with only 1 mutation found in chimpanzee which is absent in marmoset (and other 306	  

primates) and mice proteins (Prosselkov et al., 2015). On the other hand, extinct hominins’ 307	  

Netrin-G2 relative to modern human contains T346A point mutation (as per current version 308	  

of hg19), also found in primates and mouse and known as rs4962173 (dbSNP missense 309	  

mutation) representing an ancient substitution from Neandethal genomes found in modern 310	  

humans and reflecting a recent acquisition of the novel allele around 5,300 yrs BC. Nothing 311	  

is known regarding the functional significance of this mutation but biochemically a 312	  

substitution of alanine (A) on a polar threonine (T) could bring an extra point of regulation, 313	  

e.g. a phosphorylation or glycosylation (NetPhos2.0 (Blom et al., 1999) assigns a low score 314	  

for the T346 to be phosphorylated but NetOGlyc4.0 (Steentoft et al., 2013) robustly predicts 315	  

it to be glycosylated, SM). Another mutation S371A/V reflects a selective sweep in Netrin-316	  

G2 protein from primates to hominins within a similar to T346A functional context when a 317	  

hydrophobic alanine (in chimpanzee, A)/valine (in marmoset, V) is replaced by a polar serine 318	  

(S) and a strong positive predictions for glycosylation but not phosphorylation (SM). This 319	  

poses a question whether these two human-specific protein substitutions associate with 320	  

advanced cognitive traits as they may represent a hidden layer of poorly studied so far protein 321	  

glycosylation-associated regulatome known to affect the brain function and diseases 322	  

(Baenziger, 2012; Baenziger, 2013). Adding more to this, T346 is nested on exon 5 just 20 323	  

nu away from the affecting WM score rs2274855 (Prosselkov et al., 2015), and, together 324	  

with S371A/V, they are both located within the lowest percent identity area (exons (5-7)) of 325	  

Netrin-Gs (Figure 3C) and, proposedly, contributing to the NTNG duplicates SF. There are at 326	  

least three more protein parts potentially contributing to the gene paralogs specialised 327	  

function subdivision (based on the low identity scores, Figure 3C): the secretory peptide, the 328	  

GPI-link, and the outmost structurally elaborated unstructured loops (I-III) responsible for the 329	  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2015. ; https://doi.org/10.1101/034645doi: bioRxiv preprint 

https://doi.org/10.1101/034645
http://creativecommons.org/licenses/by/4.0/


	   14	  

reciprocal binding of Netrin-Gs to their post-synaptic cognate partners, NGL-1 or NGL-2, 330	  

both containing a C-terminal PDZ-binding domain (Kim et al., 2006). An interesting finding 331	  

was reported in (Arbuckle et al., 2010) found a presence of SH3(PSD95) domain binding 332	  

site (required for the phosphatidylinositol-3-kinase recruitment) in mice Netrin-G2 (100% 333	  

identical to human) but not in Netrin-G1. The detected SH3 binding site overlaps with the 334	  

Netrin-G2-loop III responsible for the binding specificity to NGL-2 (Seiradake et al., 2011; 335	  

Soto et al., 2013; DeNardo et al., 2012). A plausible working hypothesis would be that 336	  

while internalised (and being GPI-link naïve/immature) the pre-synaptic Netrin-G2 is bound 337	  

to SH3-PSD95 via loop III but as soon as being secreted extracellularly (and being attached 338	  

to the membrane) it is bound to post-synaptic NGL-2. Corroborating this, in the absence of 339	  

Netrin-G2 in the KO mice NGL-2 is unstable on the post-synaptic surface and gets quickly 340	  

internalized (Qi et al., in press). We can only speculate regarding the potential importance of 341	  

PSD-95(SH3)-Netrin-G2-NGL-2 scaffolding loop interaction/competition but the ability for 342	  

Netrin-G1 to bind to SH3 has not been reported. Following this logic, Netrin-G1 should have 343	  

a similar binding partner via loop II while internalised. 344	  

 The overall identical structural scaffold among the Netrin-G paralogs (Figure 3D) is 345	  

likely to represent an anciently preserved one of the primordial protein (encoded by a single 346	  

gene in the primitive urochordate C.intestinalis) and its contribution to the process of SF 347	  

among the NTNG paralogs goes against the “structure drives function” concept. It looks like 348	  

that it is not the “structure” but rather the “evolution” itself that drives a selection for the best 349	  

structural (or unstructural in our case) fit out of the available frameworks provided by the 350	  

gene duplicates to fulfill the emerged functional demand in a new ecological niche. The 351	  

intricate variability of phenotype is grounded by the conserved nature of genotype and 352	  

constrained by the “structure-function” limitations of the coding DNA and is only possible 353	  

due to permissive evolutionary continuing elaborations of non-coding areas able to absorb the 354	  
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most recently acquired elements (having a potential to become regulatory at some point, e.g. 355	  

like HAR5 (Boyd et al., 2015)) and carried over by neutral drift as proposed by Kimura but 356	  

for proteins (Kimura, 1983). At the same time, the multiple protein substitutions coinciding 357	  

with the SF labor segregation phenomena among the Netrin-G paralogs question their neutral 358	  

nature. Both of them undergo a purifying selection from mice to human through the reduction 359	  

in size of non-coding DNA (introns) and encoded proteins (the mice Netrin-G2 is 2 aa longer 360	  

its human ortholog) further contributing to the host-specific SF. Thus while the non-coding 361	  

sequences are used to explore the evolutionary space in time, the restrictive boundaries of the 362	  

paralogs SF are determined by the protein (unstructured) elements. 363	  

Molecular evolution of the Cognitive Complement (CC). Appearance of the neural crest 364	  

(Abitua et al., 2012), an event that “affected the chordate evolution in the unprecedented 365	  

manner” (Green et al., 2015), multipotent progenitor cells (Stolfi et al., 2015), and 366	  

neurogenic placodes (suggesting a chemosensory and neurosecretory activities, Abitua et al., 367	  

2015) in first primitive urochordates/tunicates coincides with the presence of Ntng precursor 368	  

gene (ENSCING00000024925) later undergoing two rounds of duplication events in lamprey 369	  

and found to affect human cognitive abilities (Prosselkov et al., 2015). NTNG paralogs are 370	  

expressed in the human neural crest-forming cells with NTNG2 10 times stronger than 371	  

NTNG1 (Rada-Iglesias et al., 2012), both are differentially expressed in human comparing to 372	  

chimpanzee and rhesus monkey with NTNG2 expression model showing stronger probability 373	  

than NTNG1 (Iskow et al., 2012), and both are stronger expressed in human telencephalon 374	  

comparing to chimpanzee and macaque (Konopka et al., 2012). NTNG1 has been classified 375	  

as a brain module hub gene “whose pattern fundamentally shifted between species” 376	  

(Hawrylycs et al., 2015). Belonging to distinct modules of brain expression regulation (Liu 377	  

et al., 2012, Konopka et al., 2012), NTNGs are classified as “genes with human-specific 378	  

expression profiles” (Liu et al., 2012). The nearby gene ~260 kbp upstream of NTNG2 is 379	  
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MED27 (mediator of RNA polymerase II) has been proposed to be associated with the 380	  

evolution of human-specific traits (McLean et al., 2011). NTNG1 has also been reported 381	  

among the “adaptive plasticity genes” (Ghalambor et al., 2015) potentiating rapid adaptive 382	  

evolution in guppies (NTNG2 was not found among the input RNA for analysis). 383	  

 Complementarity among the NTNG paralogs and encoded by them proteins has been 384	  

reported previously: brain expression complementary pattern (in almost self-exclusive 385	  

manner) defined by the 5’-UTR-localised cis-regulatory elements (Yaguchi et al., 2014); 386	  

complementary distribution within the hippocampal laminar structures (Nishimura-Akiyoshi 387	  

et al., 2007); axon-dendrite synaptic ending resulting in differential control over the neuronal 388	  

circuit plasticity (Matsukawa et al., 2014); mutually-exclusive binding pattern to post-389	  

synaptic partners, NGL-1 and NGL-2, dictated by the protein unstructural elements 390	  

(Seiradake et al., 2011); alternative promoter usage vs alternative mRNA splicing (Wu et al., 391	  

2012) and increased coefficient of variation (CV, ST1d) for NTNG1 expression but not 392	  

NTNG2 in SCZ patients (similar to Zhang et al., 2015); KO mice behavioral phenotypes and 393	  

subcellular signaling partners complementarity (Qi et al., in press); “differential stability” 394	  

brain modules expression (NTNG1 is expressed in the dorsal thalamus (M11) as a hub gene 395	  

(Pearson’s 0.92) while NTNG2 is in neocortex and claustrum module (M6, Pearson’s 0.65)) 396	  

(Hawrylycs et al., 2015); hypocretin neurons-specific expression of NTNG1 (but not 397	  

NTNG2) as a sleep modulator (Yelin-Bekerman et al., 2015); top-down vs bottom-up 398	  

information flows gating in mice and differential responsiveness to neuronal stimuli 399	  

(Prosselkov et al., forthcoming); and human IQ-compiling cognitive domains 400	  

complementation (Prosselkov et al., 2015). The current study reports the NTNGs 401	  

complementarity association with the CDs (Figure 1A); mRNA splicing pattern 402	  

complementary at the quantitative and qualitative levels via differential use of the middle-403	  

located exons (Figure 1B); brain complementary oscillatory expression over the human life 404	  
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span observed in the intensive cognitively loaded brain areas (Figure 2); AE of the paralogs-405	  

segregated unique non-coding elements (Figure 3A); complementary pattern of the protein 406	  

orthologs (mice-to-human) protein sequence evolution. Such multi-level complementation is 407	  

likely to reflect a shared evolutionary origin from a single gene in a primitive vertebrate 408	  

organism 700 mln yrs ago and its subsequent functional segregation among the evolution-409	  

generated gene duplicates in jawless fish, such as lamprey. 410	  

 Occupying independent but intercalating functional niches, NTNG1 and NTNG2 do 411	  

not compensate but complement each other’s function forming a “functional complement” of 412	  

genes. Half a billion yrs ago the doubled gene dosage led to the gradual SF and manifested in 413	  

a function complementation within the cognitive domains, at least in human. We would like 414	  

to coin such gene pair as a Cognitive Complement (CC). 415	  

 416	  

CONCLUSION 417	  

The emerged functional redundancy, as an outcome of gene duplication, leads to function 418	  

subdivision and its bifurcation among the gene paralogs resulting in the paralogs SF. A 419	  

functional compensation is known to exist among the evolutionary unrelated genes but has 420	  

not been reported among the gene paralogs, more frequently characterized by the function 421	  

complementation. Gene paralogs structural identity (at both, gene and protein levels) does not 422	  

provide a substrate for functional compensation but rather for complementation, perturbating 423	  

“structure drives function” rule. A gene duplication event of a tunicate NTNG primordial 424	  

gene and the subsequent process of its function specialisation (driven by the new ecological 425	  

niches appearance and evolution) among the gene duplicates made them to SF into distinct 426	  

cognitive domains in a complementary manner forming a CC. In our forthcoming work we 427	  

are to describe how Ntng mice genes function resembles that of human orthologs (Prosselkov 428	  

et al., forthcoming). 429	  

430	  
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MATERIALS AND METHODS 430	  

Human brain NTNG transcriptome reconstruction. Relates to Figure 1B and 1-C. The 431	  

original source of the dataset was produced by (Wu et al., 2012: E-MATB-1030) and the 432	  

downloaded .bam files used for the re-processing are listed in ST1a. All reconstructed 433	  

transcripts are presented in ST1d standalone Excel file. Two samples were excluded from the 434	  

analysis due to failed “per base sequence quality” measure, and zero expression level for 435	  

NTNG1a and NTNG1int(9-10) otherwise consistently expressed throughout other samples 436	  

(ST1b). SAMtools software was used for the SNPs calling from the available RNA-seq 437	  

datasets (ST1c). For details refer to SM. 438	  

Human brain expression profiling for NTNGs across the life span. The original source of 439	  

data was www.brainspan.org. All available samples were initially included into the analysis 440	  

but two of them excluded at a later stage (MD for 12-13 pcw and mPFC for 16-19 pcw) due 441	  

to high deviation (6-7 times) from the mean for other replicas. The mean expression values 442	  

per each brain area as RPKM were plotted against the sampling age. Profiles classification 443	  

was done visually considering the trend over the all plotted points as an average. 444	  

NTNG1 (NTNG1m) and NTNG2 (NTNG2b) full-length mRNA transcripts assembly. 445	  

Relates to Figure 3B. Human NTNG1m brain transcript has been reported previously 446	  

(Meerabux et al., 2005) and we have also confirmed its ortholog presence in the mice brain 447	  

via full-length cloning (Prosselkov et al., unpublished). Since NCBI contains only its partial 448	  

CDS (AY764265), we used the RNA-seq-generated exons (Figure 1B) to reconstruct its full-449	  

length and to generate an ORF of the encoded Netrin-G1m. Similarly, human NTNG2b was 450	  

reconstructed from the RNA-seq dataset and from Ensemble as follows. Exon 5 sequence 451	  

was deduced from ENST00000372179, other exons were from ENST00000467453 (no 452	  

longer available on the current version of Ensemble) except for exon 6 deduced by running 453	  

three independent alignments against the human genomic DNA with the mice 3’-intron (5-6), 454	  
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exon 6, and 5’-intron (6-7) concomitantly confirmed by the generated full-length ORF for 455	  

Netrin-G2b. The reconstructed protein was predicted to encode 587 amino acids, which is in 456	  

a close proximity to the mice netrin-G2b ortholog of 589 residues (Prosselkov et al., forth.). 457	  

Full-lengths gene structures of NTNG paralogs reconstruction. Relates to Figure 3A. 458	  

Both, the obtained above from the STG brain samples RNA-seq and the reconstructed full-459	  

lengths transcripts carrying all stably expressed exons were used to confirm the intron-exon 460	  

junctions positioning for NTNG1 and NTNG2. Due to observed variability in the intron (1-2) 461	  

and exon 10 sizes their boundaries were left unmarked. 462	  

 463	  

SUPPLEMENTARY MATERIALS (SM) 464	  

Contain Supplementary Methods (RNA-seq of STG re-processing and SNPs detection) and 465	  

Supplementary Tables (ST1a-d, ST2) as a single compiled pdf file. Reconstructed RNA-seq 466	  

(.gtf) of the STG is presented as a standalone Excel file (ST1d). Also included: Netrin-G2b 467	  

predicted phosphorylation and O-glycosylation, Netrin-G1 vs Netrin-G2 Ukd alignment 468	  

(McWilliam et al., 2013), predicted secretory peptide cleavage and GPI attachments. 469	  
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