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Abstract 
We consider the problem of automatic genome segmentation (AGS) that aims to assign discrete labels to 
all genomic regions based on multiple ChIP-seq samples. We propose to use a hybrid model that 
combines a hidden Markov model (HMM) with an artificial neural network (ANN) to overcome the 
weaknesses of a standard HMM. Our contributions are threefold: first, we benchmark two approaches to 
generate targets for ANN training on an example dataset; second, we investigate many different ANN 
models to identify the ones with best predictions on chromatin states; third, we test different hyper-
parameters and discuss how they affect the machine learning algorithms’ performance. We find our best 
performing models to beat two pervious state-of-the-art methods for AGS by large margins. 

1 Introduction 
The human genome contains a huge collection of functional elements that play key roles in regulating 
health and diseases. Identifying these functional elements is like labelling the various genomic locations 
with different colors and each color corresponds to a distinct functional category. This has been a very 
slow and painstaking process for experimental biologists. Chromatin marks, such as transcription factors, 
histone modifications and DNaseI hyper-sensitive sites, have been associated with many important 
cellular processes and diseases. Researchers hypothesize that combinations of the chromatin marks, or so-
called chromatin states, are linked to distinct biological functions1. Each chromatin state is associated 
with genomic locations that may correspond to specific types of functional elements, such as 
transcriptional start sites (TSSs), enhancers, transcribed and repressed regions. With the advent of the 
next-generation sequencing (NGS) technology and particularly ChIP-seq, the genomic locations of a 
multitude of chromatin marks have been mapped, generating a large amount of data2,3.  

Each ChIP-seq sample can be used to derive the enrichment values of a chromatin mark on the whole 
genome at single-base resolution, which provides an opportunity to use machine learning techniques to 
exploit the rich set of ChIP-seq data that has already been generated in public. Automatic genome 
segmentation (AGS) aims to cluster multiple ChIP-seq samples based on their combinations and assign 
meaningful labels to them. One choice is to use the HMM that is widely used to model biological 
sequences. The HMM can be used to assign a discrete state number to a genomic location without being 
given any training labels, basically performing an unsupervised clustering for all genomic regions. This 
approach was previously explored4 and was later extended into a dynamic Bayesian network model that 
makes single-base resolution inference computationally feasible5. However, standard HMMs suffer from 
several weaknesses that can lead to poor discrimination. Here, we consider the use of a hybrid model that 
combines an ANN with an HMM to overcome its limitations. This “hybrid” approach had been explored 
to enhance automatic speech recognition (ASR) for many years6 but only recently became mainstream7. 
As far as we know, we are the first group to explore this approach for AGS. 

We consider two approaches to hypothesize the state labels from ChIP-seq data as targets for ANN 
training and benchmark them on an example dataset. We test many different ANN models to identify the 
ones with the best predictions on chromatin states and find that a wide but shallow network may be most 
suitable for our inputs. We also discuss how the hyper-parameters used in our machine learning 
algorithms affect the system’s performance. Finally, we find our best performing models to beat two 
previous approaches by large margins. 
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2  Approach 

2.1 Overview of the HMM-ANN hybrid model 
The genomic ChIP-seq data can be represented as 𝒐"# = 𝒐", 𝒐&, … , 𝒐#  where 𝒐( ∈ ℜ+  is a vector of 
signals at a fix-sized window (indexed by 𝑡) from 𝐷 ChIP-seq samples. In this study, we use Gaussian 
mixture models (GMMs) as the probabilistic distributions for 𝒐(. The window size is chosen to be 200bp 
across this study. The HMM specifies a generative model that the signals are generated from a sequence 
of hidden states 𝒒"# = 𝑞", 𝑞&, … , 𝑞# , 𝑞( ∈ 1,2, … , 𝑁  are discrete numbers representing chromatin states. 
The HMM is characterized by the following parameters: initial probabilities 𝜋4 = 𝑝 𝑞" = 𝑖 ; transition 
probabilities 𝑎48 = 𝑝 𝑞(9" = 𝑗 𝑞( = 𝑖 ; observation probabilities 𝑏8 𝒐( = 𝑝 𝒐( 𝑞( = 𝑗 . In a standard 
HMM, the 𝒐(  is only dependent on the 𝑞(  but not any of the neighboring observations. This certainly 
contradicts with the biological reality. However, trying to directly model the relationships between 𝒐( and 
the neighboring observations and/or hidden states will involve an exponentially growing number of 
parameters. A hybrid model was initially proposed to circumvent this problem in ASR, which can be seen 
by applying the Bayes rule so that 𝑝 𝒐( 𝑞( ∝ 𝑝 𝑞( ="𝑝 𝑞( 𝒐(  where the prior probabilities 𝑝 𝑞(  can 
be empirically estimated and the posterior probabilities 𝑝 𝑞( 𝒐(  can be approximated by a classifier. The 
posterior probabilities can often be better approximated by adding a contextual window: 𝑝 𝑞( 𝒐( ←
𝑝 𝑞( 𝒐(=?(9?  where 𝑟 is the radius, which allows the neighboring information to be incorporated. Because a 
classification method usually does not make strong assumptions about the inputs, this also allows us to 
model the relationships between multiple ChIP-seq samples without specifying their distributions. In 
theory, any classification method can be used here but typically an ANN is used, which allows flexible 
modeling of the inputs. To train an ANN, the pairs of 𝑞(, 𝒐(=?(9?  are required as training data. In 
previous applications of this hybrid model, such as ASR, forced Viterbi alignment can be used to generate 
𝑞( because the transcriptions of the speech waveforms are generally available. In AGS, we will have to 
first hypothesize 𝑞(  from observations without using any training labels. Here we will use an HMM-
GMM as the boot model to generate the initial values for 𝑞(. After that, the hypothesized 𝑞( will be used 
as targets to train an ANN that will be later combined with an HMM to train a so-called HMM-ANN 
hybrid model. The hybrid model will then be used to estimate 𝑞( again. In ANN training, the quality of 
targets is a very important factor to its success. We will discuss two approaches for targets generation 
from an HMM-GMM in the following. 

2.2 The Forward-Backward algorithm 
Since the 𝑞( have to be estimated, there are intrinsic uncertainties about the estimates and this seems to 
suggest the use of posterior probabilities 𝑝 𝑞( 𝒐"#  as training labels. The forward-backward algorithm 
(FB) was previously exploited to provide training labels for ANNs in ASR with success8. Here we 
consider a modified version of it with an additional parameter 𝑤B  to adjust the balance between the 
observation and the transition probabilities. First, let’s give the definition and a recursive formula to 
calculate the forward and the backward probabilities:  

𝛼(
DE 𝑖 = 𝑝 DE 𝑞( = 𝑖, 𝒐"( = 𝛼(="

DE 𝑎84 𝑏4 𝒐( DEF
8G"   

𝛽(
DE 𝑖 = 𝑝 DE 𝒐(9"# 𝑞( = 𝑖 = 𝛽(9"

DE 𝑎48 𝑏8 𝒐(9"
DEF

8G"   

Then, the modified posterior probability can be calculated as 

𝑝 DE 𝑞( = 𝑖 𝒐"# = 𝛼(
DE 𝑖 𝛽(

DE 𝑖 𝛼(
DE 𝑗 𝛽(

DE 𝑗F
8G"   

We assign more weight to the observation probabilities than the transition probabilities when 𝑤B > 1, and 
vice versa when 𝑤B < 1. In this study, 𝑤B is treated as a hyper-parameter and is empirically determined.  
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2.3 The Viterbi algorithm 
We can also obtain the 𝒒"# as the most likely state sequence that generates the observations. Similarly, we 
modify the Viterbi algorithm (VT) that aims to maximize the joint likelihood of 𝑝 𝒐"#, 𝒒"# . First, assume 
we already know the maximum of  

𝛿4
DE 𝑡 = max

OP,OQ,…,ORSP
𝑝 DE 𝒐"( , 𝒒"(=", 𝑞( = 𝑖  

Then, we give a recursive formula 𝛿8
DE 𝑡 + 1 = max

4
𝛿4
DE 𝑡 𝑎48 𝑏8 𝒐(9"

DE and the initial condition 

𝛿4
DE 1 = 𝜋4 𝑏4 𝒐" DE to solve the optimization problem. It shall be noted that the VT is also used in 

the decoding phase to determine the chromatin state sequence and there is a separate weight parameter 𝑤U 
to control that, which shares the same definition as 𝑤B. Both 𝑤B and 𝑤U are chosen from several values – 
[0.5, 1.0, 2.0, 3.0, 4.0, 5.0]. 

2.4 Neural network training 
In our ANNs, the inputs are the ChIP-seq signals from the neighboring windows centered on each 𝒐(. 
Each ANN needs to classify the inputs into 𝑁 chromatin states, where 𝑁 is typically larger than 20. We 
choose to use a softmax output layer to deal with the multi-classification problem and it also serves as a 
baseline without using any nonlinearity. We then add one layer of hidden units and choose the layer size 
from a number of values – [250, 500, 1000, 2000, 3000, 4000]. Another layer of hidden units with the 
same size is added to the ANN to see if there is any improvement. The hidden unit type is chosen to be 
the rectifier linear function that is found to be fast in convergence and allows a deep ANN to be trained 
without using pretraining9. The ANNs are optimized using stochastic gradient descent (SGD) with 
momentum and a mini-batch size of 100 samples. The momentum term is initially chosen to be 0.5 and 
linearly increases to 0.9 after 100 epochs. We initially searched through several values for the learning 
rate, [1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001] and found 0.01 to be the fastest in convergence without 
diverging from taking too large steps. The cross-entropy score on a validation set is used to judge 
stopping criterion. A window of 400 epochs is used to ensure convergence. Dropout is used to prevent 
overfitting with dropping rates of 0.5 for hidden units and 0.2 for inputs. We choose the radius to be 5 or 
10 and the motivation is that 5 consecutive windows correspond to a 1Kb genomic region that is typically 
the half-size of a functional element such as the promoter and the enhancer. We use 𝑟 = 10 to see if any 
improvement can be made by including more neighboring signals.  

2.5 Benchmark dataset 
We choose a ChIP-seq dataset from a previous study5, which has a mix of histone modifications, 
transcription factors and open chromatin accessibility. The dataset consists of 31 ChIP-seq samples that 
were originally used to predict 25 chromatin states at single-base resolution from the human K562 cell 
line. Here we use the same dataset but average the signals for each 200bp window. We perform training 
and hyper-parameter tuning on the ENCODE region that is ~1% of the human genome and then make 
predictions on the whole genome. The ENCODE region contains 149,781 windowed samples out of 
which 20,000 are used as a validation set and the rest are used as a training set for the ANNs. To evaluate 
the algorithm’s performance, we use the TSSs with at least two CAGE counts as true positives. A hit is 
defined as an overlap with at least 1bp between a predicted TSS state and a CAGE-supported TSS, based 
on which the precision and recall scores are calculated. Two previous state-of-the-art methods, namely 
ChromHMM and Segway, are compared with our algorithm. We use ChromHMM to train a model on the 
ENCODE region with its default parameters and make predictions on the whole genome. For Segway, we 
directly use the result downloaded from its website. We use the Graphical Models Toolkit10 for the 
HMM-GMM and as a framework for the hybrid model, and Pylearn211 for ANN training on a GPU.  
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3 Result 
We find the probabilistic mass of 𝑞( generated by the HMM tends to concentrate more on one chromatin 
state category if we increase the 𝑤B. This is not an issue when the VT is used for targets generation, which 
always assigns 1 for one category and 0 for the rest. We choose 𝑤B = 0.5 and 𝑤B = 3.0 to test how the 
choice of ANN models affects their abilities to predict 𝑞( from inputs (see Fig. 1). It can be seen that it is 
much harder to predict the targets when they are more ambiguous (i.e., 𝑤B = 0.5). Using hidden units 
helps to reduce the loss function but using two hidden layers does not seem to be necessary. In fact, the 1-
hidden layer ANNs perform better than the 2-hidden layer ANNs when 𝑤B = 3.0. There is a strong trend 
that the ANN favors large layer size. The ANNs always perform the best when the layer size is between 
2000 and 4000. We therefore conclude that our inputs contain a large number of relatively simple features 
in comparison with the features used in other application fields of ANNs, such as computer vision and 
ASR. We also find 𝑟 = 5 to be always better than 𝑟 = 10, i.e., adding farther neighboring windows does 
not improve the prediction of 𝑞(. 

We then fix the layer size to be 3000, 𝑟 = 5 and use a grid search to find the best combination of 𝑤B and 
𝑤U for predicting the TSS state (see Fig. 2). We find the VT generated targets to give robust performance 
scores against the choice of the weight parameters. While for the FB generated targets, the performance 
can degenerate when 𝑤B = 0.5, 1.0	or	2.0 depending on the value of 𝑤U, no matter a 1-hidden layer or 2-
hidden layer ANN is used. We hypothesize that an excess amount of ambiguity in the targets can fail an 
ANN to capture the regularities among the inputs. Since increased 𝑤B makes the probabilistic mass of 𝑞( 
to concentrate more on the most promising state, this observation suggests that the VT is a better 
approach than the FB for targets generation by reducing ambiguities. Table 1 summarizes the 
performance scores of different models on the whole genome with the weight parameters tuned on the 
ENCODE region. It can be seen that our HMM-GMM and HMM-ANN models outperform the two 
existing approaches by large margins. By using the hybrid models, we are able to obtain much higher 
precisions while maintain similar recalls compared with the HMM-GMM boot model. The hybrid models 
based on the VT generated targets give the best performance while using a 2-hidden layer ANN does not 
improve the performance over a 1-hidden layer ANN. 

Fig.	1	Different	ANN	models’	Cross-entropy	scores	for	predicting	FB	generated	targets	on	the	validation	
set.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2016. ; https://doi.org/10.1101/034579doi: bioRxiv preprint 

https://doi.org/10.1101/034579
http://creativecommons.org/licenses/by-nc-nd/4.0/


First	appeared	at	the	Workshop	on	Machine	Learning	in	Computational	Biology	at	NIPS	2015	
	

 

Fig.	2	Grid	search	to	determine	the	target	generation	and	decoding	weights	on	a	1-hidden	layer	ANN	
with	size	of	3000.	The	dash-dotted	lines	represent	the	precision	and	recall	for	the	HMM-GMM	
model.	

Table 1. Performance scores for different models on predicting the CAGE based TSSs. 

Model	 Ref.	 Parameters	 Precision	 Recall	 F1	score	
ChromHMM	 4	 Defaults	 0.41	 0.67	 0.51	
Segway	 5	 Downloaded	 0.32	 0.73	 0.44	
HMM-GMM		 This	study	 𝑤B = 5.0	 0.55	 0.75	 0.64	
HMM-ANN,	FB,	1hidx3000	 This	study	 𝑤B = 1.0, 𝑤U = 0.5	 0.73	 0.72	 0.72	
HMM-ANN,	VT,	1hidx3000	 This	study	 𝒘𝒍 = 𝟑. 𝟎, 𝒘𝒅 = 𝟑. 𝟎	 0.74	 0.73	 0.73	
HMM-ANN,	FB,	2hidx3000	 This	study	 𝑤B = 1.0, 𝑤U = 0.5	 0.71	 0.74	 0.72	
HMM-ANN,	VT,	2hidx3000	 This	study	 𝒘𝒍 = 𝟑. 𝟎, 𝒘𝒅 = 𝟐. 𝟎	 0.71	 0.75	 0.73	
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