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Abstract
Adaptation to temporally fluctuating environments can be achieved through evo-

lution of fixed genetic effects, by phenotypic plasticity (either developmental plastic-
ity or trans-generational plasticity), or by randomizing offspring phenotypes (often
called diversifying bet-hedging). Theory has long held that plasticity can evolve
when information about the future environment is reliable while bet-hedging can
evolve when mixtures of phenotypes have high average fitness (leading to low among
generation variance in fitness). To date, no study has studied the evolutionary routes
that lead to the evolution of randomized offspring phenotypes on the one hand or
deterministic maternal effects on the other. We develop simple, yet general, models
of the evolution of maternal effects and are able to directly compare selection for
deterministic and randomizing maternal effects and can also incorporate the notion
of differential maternal costs of producing offspring with alternative phenotypes. We
find that only a small set of parameters allow bet hedging type strategies to outcom-
pete deterministic maternal effects. Not only must there be little or no informative
cues available, but also the frequency with which different environments are present
must fall within a narrow range. By contrast, when we consider the joint evolution of
the maternal strategy and the set of offspring phenotypes we find that deterministic
maternal effects can always invade the ancestral state (lacking any form of maternal
effect). The long-term ESS may, however, involve some form of offspring randomiza-
tion, but only if the phenotypes evolve extreme differences in environment-specific
fitness. Overall we conclude that deterministic maternal effects are much more
likely to evolve than offspring randomization, and offspring randomization will only
be maintained if it results in extreme differences in environment-specific fitness.

1 Introduction

Variability in the environment is ubiquitous and is expected to provide a significant op-
portunity for selection (Proulx and Phillips, 2005). When the environment fluctuates on
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a time scale of generations or longer, then one route for adaptation is the production
of discrete phenotypes that vary in their performance over the range of environments
that the population typically experiences. A long-standing theoretical dichotomy exists
between strategies that produce a fixed set of phenotypes (Crean and Marshall, 2009;
Kaplan and Cooper, 1984; Seger and Brockman, 1987; Bull, 1987) and strategies that
allow some form of phenotypic plasticity (Hoyle and Ezard, 2012; Kuijper and Hoyle,
2015; Kuijper et al., 2014; Tufto, 2015; Donaldson-Matasci et al., 2013, 2010; Jablonka
et al., 1995; Leimar and McNamara, 2015; Donaldson-Matasci et al., 2010). In general,
such strategies can be considered a form of phenotypic plasticity in that a single genotype
can lead to adults with distinct phenotypes. In scenarios where the environment fluctu-
ates over generations, fitness can be approximately measured as the geometric mean of
a genotypes reproductive output (Cohen, 1966; Seger and Brockman, 1987; Proulx and
Adler, 2010; Saether and Engen, 2015). While the geometric mean fitness concept de-
pends on the frequency of environment types, and not on the sequence of environmental
transitions (Seger and Brockman, 1987), the fitness consequences of a plastic strategy
may actually depend on the order of environmental transitions. For example, under an
epigenetic "phenotypic memory" model, the fitness of a strategy depends on the probabil-
ity that a parent has a phenotype that matches the parental environment and that their
offspring then experience the same environment (Jablonka et al., 1995). Under strict
developmental phenotypic plasticity, the adult (i.e. fitness related) phenotype is deter-
mined by the offspring genotype and juvenile environment. If the juvenile environment is
a good predictor of the adult environment (i.e. there is high mutual information entropy
between juvenile and adult environment) then a developmentally plastic genotype may
have high fitness (Simons, 2011).

Seger and Brockman (Seger and Brockman, 1987) attempted to clarify then common
misconceptions about reproductive variance, risk, and population genetic change. They
argued that the term "bet hedging" should be reserved for situations where a change in
genotype increases the geometric mean fitness at the expense of a decrease in the mean
of fitness. In this framework, bet hedging can be accomplished either by producing a
fixed phenotype that is insensitive to environmental variability (termed conservative bet
hedging) or by producing a range of phenotypes at random such that the ensemble of
offspring produced has a higher geometric mean fitness (termed diversifying bet hedging).
Diversifying bet hedging strategies can achieve high geometric mean fitness by producing
a mixture of phenotypes that vary in their environment-specific performance. This type
of strategy always involves a certain amount of waste because a fraction of offspring have
phenotypes that do not match the environment. This potential fitness can be quantified
in an information theoretic sense and used to understand how strong selection can be to
take advantage of cues that predict the future environment (Donaldson-Matasci et al.,
2013, 2010).

Given the diversity of work on the evolution of developmental plasticity, maternal
effects, and phenotypic diversification, our contribution aims to identify the environmen-
tal conditions and phenotypic trade-offs that lead to the evolution of particular forms of
maternal effect. We start by considering scenarios where the same phenotypic trade-offs
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apply to genotypes that produce phenotypically diversified offspring as apply to geno-
types that influence offspring phenotype through environment-specific maternal effects.
While prior work has identified conditions that favor maternal effects on the one hand,
and conditions that favor diversifying bet-hedging on the other, our approach allows us
to consider both in a common framework and determine which type of maternal effect is
most likely to evolve and be maintained.

Our goal here is to understand how maternal strategies can evolve in a fluctuating
environment when there is little opportunity for developmental plasticity. It is generally
understood that developmental plasticity can evolve when individuals have access to
reliable information early in development that can predict their future environment, and
when the future environment is relatively constant for the adult lifespan (Uller, 2008).
However, in many cases the timing of development and environmental exposure makes
it difficult for a developing offspring to independently acquire and utilize this sort of
information. This would be the case, for instance, if juvenile survivorship depends on
phenotypes that must be present before the developing individual is able to express them.
We recently showed this to be the case for survivorship of C. elegans when embryos are
exposed to anoxia (Dey et al., 2015).

In scenarios where mothers can determine offspring phenotype the range of mater-
nal strategies encompasses mechanisms that produce randomized offspring and those
that represent anticipatory maternal effects. Mechanistically, the maternal strategies
in question can operate by deterministically altering offspring phenotype in response to
maternal environment/phenotype (Deterministic Maternal Effect), or by randomiz-
ing offspring phenotype (Randomized Maternal Effect). We use these terms since
they describe specific mechanistic stratagies without implying a specific fitness benefit
or selective outcome (as bet hedging and anticipatory maternal effects do). A further
extension is diversifying bet hedging around a norm of reaction where a genotype uses
some environmental cues to shift the probabilistic distribution from which phenotypes
are drawn (Crean and Marshall, 2009; Furness et al., 2015). We refer to situations where
environmental cues are used to alter the distribution of offspring phenotypes as aHybrid
Maternal Effect.

Here we focus on situations where the environment fluctuates following a Markovian
stochastic process and assume that developing offspring do not have direct access to en-
vironmental information themselves. We focus on the situation where mothers are able
to influence offspring phenotype and take a general approach to the form of the maternal
effect. Much prior work on the evolution of maternal effects and phenotypic variance
make vague assumptions about how phenotype is mechanistically determined and ignore
trade-offs that might underlie the production of diversified broods. We investigate a fairly
general scenario whereby mothers are able to directly influence offspring phenotype, both
by investing resources and by directly affecting development of offspring (i.e. through
maternally transferred resources and RNA). We consider a scenario where the maternal
strategy involves production of a pair of offspring phenotypes with a maternally deter-
mined probability that depends on the environment that the mother experienced. Given
this range of maternal effects, we explore the joint evolution of the maternal strategy
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and set of possible offspring phenotypes. The range of maternal strategies includes the
notion of "diversified bet hedging", where mothers produce a range of offspring pheno-
types, as well as deterministic maternal effects, where mothers produce offspring of a
particular phenotype whenever the mother encounters a specific environment. We also
investigate intermediate strategies that allow randomization of offspring phenotype in an
environment-specific manner.

We take several approaches to understanding this problem, but our overall approach
aims to understand the long term population genetic outcomes when recurrent mutation
introduces mutants that affect both the maternal effect strategy and the phenotypes
that make up that strategy. There are many ways that theorists have approached such
long term evolutionary dynamics that include Gillespie’s Strong Selection Weak Mutation
(SSWM) approach (Gillespie, 1991), Hammerstein’s “streetcar theory” (Hammerstein,
1996), and the Adaptive Dynamics approach (Dieckmann and Law, 1996; Champagnat
et al., 2001; Proulx and Day, 2002). We take a hybrid approach and first explore the
population genetics of segregating maternal effect mutants, and then study the joint evo-
lution of maternal effect strategies with offspring phenotypes. This allows us to examine
the origin of maternal effect strategies from ancestral populations that have already ex-
perienced phenotypic evolution with purely genetic inheritance.

Our main conclusion is that deterministic maternal effects can be beneficial in a wide
range of conditions, and are able to evolve de novo from any ESS that lacks maternal
effects. In contrast, bet-hedging is only beneficial when there is already a strong fitness
effect of the alternative phenotypes, and experiences no or weak selection from ESS that
lacks maternal effects. Nevertheless, bet-hedging may evolve as a derived feature in
populations that have already evolved deterministic maternal effects, but only when it is
possible to evolve dichotomous phenotypes that have extreme differences in environment-
specific fitness.
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Variable Definition
ρi→j the probability that the environment changes from i to j between two

generations
α The frequency of generations that experience environment 1
wi(x) the offspring fitness of genotype x in environment i
c(x) the fecundity of advantage of a female producing all offspring of phe-

notype x
δi the relative fitness of phenotype 2 in environment i
ς the relative fecundity of a female who produces only phenotype 2

γi the probability that a mother produces offspring with phenotype 1
when she experiences environment i

wi,j(x) the fitness of a mother with genotype x making the transition from
environment i to environment j

ŵ(x) the geometric mean fitness of genotype x
zi The ith phenotypic trait value produced by a maternal effect strategy
σi The Gaussian parameter for the strength of selection in environment

i

DME Deterministic Maternal Effect, where mothers determine offspring
phenotype based on their experience

RME Randomized Maternal Effect, where mothers produce a probabilistic
distribution of offspring phenotypes irrespective of their experience

HME Hybrid Maternal Effect, where mothers produce a probabilistic dis-
tribution of offspring phenotypes based on their experience

2 The Models

2.1 Environmental Fluctuations

We consider a scenario where the environment fluctuates via a stochastic process that
may have autocorrelation. We use a simple Markovian model with two possible environ-
mental states 1 and 2. The probability that the environment changes from state i in one
generation to the other state in the next generation is ρi→j . The total frequency of gen-
erations in environmental state 1 is then α = ρ2→1

ρ1→2+ρ2→1
. Genotypic fitness of strategies

that have a maternal effect depend on the frequency of the two-generation transitions
which can be easily calculated. For example, the frequency of generations where there is
a transition from environment 1 to 2 is just ρ1→2α.

2.2 Fitness of Maternal Effect Strategies

In one extreme, we can consider a maternal effect that allows a mother to choose the
distribution of phenotypes that her offspring will have, without any constraints or trade-
offs at any level. In this scenario, the genetic effect is a maternal “strategy” whereby
the mother bases the offpsring phenotypes on information that she has about the likely
environments her offspring will face. One way for this to occur, for example, is if mothers
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can alter the developmental trajectory of offspring by adjusting the embryonic environ-
ment. This corresponds with an assumption that mothers are free to adjust the fraction
of offspring expressing one of two possible phenotypes.

Physiological trade-offs likely limit the scope of maternal effects. For example, the
well known size/number trade-off means that allocation of resources to produce larger
eggs necessarily limits the number of eggs that can be produced (Smith and Fretwell,
1974; Fischer et al., 2011). We incorporate such trade-offs by assuming that the total
number of offspring produced trades-off with offspring phenotype. This could occur
because of size-number trade-offs, or because the maternal strategy requires altering
maternal physiology or life-history in a way that reduces fecundity. We assume that the
total fecundity of females producing a mixed-clutch of offspring is a linear function of
her allocation to each phenotype.

We use the geometric mean of reproductive output as the measure of invasion success
(Cohen, 1966; Seger and Brockman, 1987). In our case, there is an interaction between
pairs of generations so that we must consider not just the frequency of generations of
type i, but rather the frequency of all 4 possible transitions. Given those frequencies, we
can calculate the geometric mean fitness of a genotype based on the reproductive output
of the strategy.

Most of the results for the evolution of bet-hedging and maternal effects can be
explained by comparing fitness outcomes based on two possible offspring phenotypes.
This does not mean that we restrict our attention to two pre-determined phenotypes,
but rather consider how maternal effects evolve with two phenotypes at a time followed
by mutational input that creates new, but similar, phenotypes.

We call a genotype that produces only a single phenotype of offspring a "pure genetic"
strategy since phenotype is determined strictly genetically. If we consider two pure
genetic strategies (phenotype 1 and phenotype 2), one will have higher geometric mean
fitness and go to fixation. The Log geometric mean fitness of pure genetic strategy 1 and
2 are

log(ŵ1) = (α log(c1w1,1) + (1− α) log(c1w2,1))

log(ŵ2) = (α log(c2w1,2) + (1− α) log(c2w2,2)) .

We adopt the parameterization that c2 = ς1,2c1 and wi,2 = δi,2wi,1. When considering
just two phenotypes we can simplify the notation by always referencing the parameters
based on a change from phenotype 1 to phenotype 2 and suppressing the second subscript,
i.e. δi ≡ δi, 2 and ς ≡ ς1,2. Assuming that δ1 < 1, δ2 > 1, we find that

log(ŵ2)− log(ŵ1) = ς + α log(δ1) + (1− α) log(δ2), (1)

showing that the absolute fecundity and offspring fitness levels are not required to de-
termine which strategy has higher long-term fitness. Because much of the analysis will
be done in the ρi→j parameter space, it is convenient to find the relationship between
ρ1→2 and ρ2→1 that favors each of the pure genetic strategies. Solving for the value of
ρ2→1 that causes the fitness difference between strategies to be exactly 0 we find that
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Figure 1: Plots showing regions of parameter space that favor each of the possible pure
genetic strategies. Parameters are δ1 = 0.8, δ2 = 1.2, ς = 1.0. A line described by
inequality 2 divides the parameter space into two regions. Above the line, the frequency
of environment 1 is high enough to favor phenotype 1, while below the line phenotype 2
is favored.

pure genetic strategy 2 is favored whenever

ρ2→1 > −
ρ1→2(log(δ2) + log(ς))

log(δ1) + log(ς)
. (2)

Figure 1 shows the regions of parameter space in which each pure genetic strategy has
higher fitness.

2.2.1 Deterministic Maternal Effects

A Deterministic Maternal Effect strategy (DME) is one where the mother determines
the offspring phenotype based on her experienced environment. This is a deterministic
strategy in that all offspring have the same phenotype. Two possible forms of DME exist,
one where mothers produce offspring that have the phenotype adapted to the maternal
environment (maintaing DME: mDME), and the other where mothers produce offspring
that have the phenotype adapted to the other possible environment (alternating DME:
aDME).

To investigate when DME will outcompete pure genetic strategies we have to deter-
mine whether or not the fitness of a DME strategy is higher than both possible pure
genetic strategies. To do this we first determine which pure genetic strategy has higher
fitness and then calculate the difference in log fitness between the DME strategy and
the best pure genetic strategy. The log geometric mean fitness of DME strategies that
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produce offspring with phenotypes 1 or 2 is given by

log(ŵaDME) = ((1− ρ1→2)α log(c2w1,2) + ρ1→2α log(c2w2,2)) +

ρ2→1(1− α) log(c1w1,1) + (1− ρ2→1)(1− α) log(c1w2,1))

log(ŵmDME) = ((1− ρ1→2)α log(c1w1,1) + ρ1→2α log(c1w2,1) +

ρ2→1(1− α) log(c2w1,2) + (1− ρ2→1)(1− α) log(c2w2,2)) .

The log geometric mean fitness benefit of the DME strategies can be simplified to

log(ŵaDME)− log(ŵ1) = α
(
(1− ρ1→2) log(δ1) + ρ1→2 log(δ2) + log(ς)

)
log(ŵaDME)− log(ŵ2) = −(1− α)

(
ρ2→1 log(δ1) + (1− ρ2→1) log(δ2) + log(ς)

)
log(ŵmDME)− log(ŵ1) = (1− α)

(
ρ2→1 log(δ1) + (1− ρ2→1) log(δ2) + log(ς)

)
log(ŵmDME)− log(ŵ2) = −α

(
(1− ρ1→2) log(δ1) + ρ1→2 log(δ2) + log(ς)

)
In each case, the advantage of the DME strategy depends simply on a linear function
of the log fitness ratio in each environment, the log fecundity cost, and the probability
of changing from one environment. To determine which strategy, for a specific set of
parameters, represents an ESS we simply test whether the DME strategy can invade the
better of the two pure genetic strategies. Figure 4 shows how the ESS depends on the
ρ’s. Assuming that δ1 < 1 and δ2 > 1, increasing values of ρ make it likely that aDME is
the ESS, and decreasing values of ρ make it likely that mDME is the ESS. These regions
touch at a single point where the line showing that both pure genetic strategies have
equal geometric mean fitness crosses the off-diagonal, where ρ2→1 = 1−ρ1→2. This point
is defined by

ρcrit =
log(δ1) + log(ς)

log(δ1)− log(δ2)
. (3)

If ρ1→2 > ρcrit and ρ2→1 > 1 − ρcrit then aDME can invade, and if both ρ1→2 < ρcrit
and ρ2→1 < 1 − ρcrit then mDME can invade. Otherwise neither mDME or aDME can
invade both pure genetic strategies (figure 2).

These results imply that DME can only evolve if the environmental sequence is pre-
dictable enough, either predictably alternating or predictably remaining constant. Note
that when ρ2→1 = 1− ρ1→2 the current environment is completely uninformative in pre-
dicting the next generation’s environment (i.e. the mutual information entropy between
successive environmental states is 0 (Donaldson-Matasci et al., 2013, 2010)). DME can
never evolve if the environment is uninformative, however, for fixed δ1, δ2 and ς = 0, then
there is always a region where the environments tend to alternate (ρ1→2 + ρ2→1 > 1)
where aDME is favored, and a region where the environment tends to stay the same
(ρ1→2 + ρ2→1 < 1) where mDME is favored.

2.2.2 Randomized Maternal Effects

Seger and Brockman define bet-hedging as a reduction in the generation-to-generation
variance in reproductive success that increases geometric mean fitness (without increas-
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Figure 2: Plots showing regions of parameter space that favor DME. Parameters are
δ1 = 0.8, δ2 = 1.2, ς = 1.0. The intersection of the line described by inequality 2 and the
negative diagonal line defines the critical value ρcrit. Above and to the right of this point
aDME is favored, while below and to the left of this point mDME is favored.

ing the mean of fitness) (Seger and Brockman, 1987), but the term is most commonly
associated with one specific mechanism- diversification of offspring phenotypes (Kuijper
et al., 2014; Simons, 2009; Philippi and Seger, 1989; Crean and Marshall, 2009, e.g. see).
We will refer to maternal effects that produce multiple offspring types without using any
predictive information as a Randomized Maternal Effects or RME. This is both to avoid
existing confusion between bet-hedging and fitness variance reduction, and to emphasize
that maternal effects may involve both deterministic and random components.

To determine when RME will invade a population composed of genotypes that code
directly for phenotype, we again calculate the geometric mean fitness of the competing
strategies. In the case of RME, however, the geometric mean fitness does not depend on
the environmental transition probabilities directly, but instead depends on the frequency
of the environment 1 ( α).

log(ŵRME) = α log(γc1w1,1 + (1− γ)c2w1,2) +

(1− α) log(γc1w2,1 + (1− γ)c2w2,2)

where here γ is the probability of producing phenotype 1 and does not vary with the
maternal environment. We can now solve for the value of γ∗ that maximizes ŵRME.
Taking the derivative with respect to γ and solving for the critical point gives.

γ∗ = −
ς
(
αδ2(1− δ2ς) + (1− α)δ1(1− δ1ς)

)
(1− δ1ς)(1− δ2ς)

A tedious but straightforward calculation verifies that the second derivative with respect
to γ is always negative and therefore that ŵ(RME) is maximized at γ∗ if 0 < γ∗ < 1. If
γ∗ is outside the range of (0, 1) then a purely genetic strategy always has higher fitness
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(a) (b)

Figure 3: Plots showing regions of parameter space that favor RME. The line described
by inequality 2 is shown in white and is always in the center of the cone favoring RME.
The width of the region favoring RME depends on the magnitude of the fitness effects.
In panel a, parameters are δ1 = 0.8, δ2 = 1.2, ς = 1.0. In panel b, parameters are
δ1 = 0.5, δ2 = 2.0, ς = 1.0.

than RME.Thus, RME can invade the pure genetic strategy if

− δ1(1− δ2ς)
δ2(1− δ1ς)

<
ρ2→1

ρ1→2
< −1− δ2ς

1− δ1ς
(4)

Put simply, if the fitness effect of a change in phenotype is large in both environments
(but in opposite direction), then RME is favored for a larger range of α values (figure 3.
However, for moderate values of δ, the range of α that favors RME is fairly restrictive. For
example, even with a 2-fold advantage of both phenotypes in their favored environments,
only 1/3 of the possible values of α favor the RME strategy.

2.2.3 Partial DME

The DME strategies that we have so far considered allow for maternal strategies that use
information about the state of the environment to determine offspring phenotype, while
RME strategies do not use information about the environment and instead produce off-
spring phenotypes at random. A more comprehensive strategy, however, is one that uses
information about the maternal environment to optimally control the offspring phenotype
distribution. This is sometimes called ‘dynamic bet hedging’ or ‘diversified bet-hedging
around the norm of reaction’ (Crean and Marshall, 2009; Furness et al., 2015). We refer
to this as a hybrid maternal effect, HME. Because a pure genetic strategy, DME and
RME are subsets of this strategy, the optimal HME must have higher fitness than all
other strategies. Instead of asking when HME is the highest fitness strategy we ask two
questions; does the HME strategy collapse onto one of the other strategies and if it does
not, what is the magnitude of the fitness advantage in favor of HME?
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The HME strategy can be defined by two parameters, γi,1, which determine the prob-
ability of producing offspring of phenotype 1 when the mother experiences environments
i. For simplicity, we define γi ≡ γi,1. The log geometric mean fitness benefit of the HME
strategy can be simplified to

log(ŵHME)− log(ŵ1) = α
(
ρ1→2 log(γ1 + (1− γ1)δ2ς) + (1− ρ1→2) log(γ1 + (1− γ1)δ1ς)

)
+

(1− α)
(
ρ2→1 log(γ2 + (1− γ2)δ1ς) + (1− ρ2→1) log(γ2 + (1− γ2)δ2ς)

)
log(ŵHME)− log(ŵ2) = α

(
(1− ρ1→2) log

(
1− γ1 +

γ1
δ1ς

)
+ ρ1→2 log

(
1− γ1 +

γ1
δ2ς

))
+

(1− α)
(
ρ2→1 log

(
1− γ2 +

γ2
δ1ς

)
+ (1− ρ2→1) log

(
1− γ2 +

γ2
δ2ς

))
We can find the values of γ1, γ2 that maximize the fitness of the HME strategy by taking
the derivative and solving for the critical point. Again, only if the critical point has
0 < γi < 1 will this represent the optimum value. We find

γ̃1 =
ςρ1→2

(
δ2 − δ1) + δ2(δ1ς − 1)

)
(δ1ς − 1)(δ2ς − 1)

γ̃2 =
ςρ2→1

(
δ1 − δ2) + δ1(δ2ς − 1)

)
(δ1ς − 1)(δ2ς − 1)

.

While HME always has fitness greater than or equal to the other maternal effect
strategies, the optimal γi may be 0 or 1, indicating that HME strategy collapses to
a DME strategy. In fact, only a small segment of the (ρ1→2, ρ2→1) parameter space
favors HME in this stricter sense. By solving for the values of (ρ1→2, ρ2→1) that lead to
0 < γi < 1 gives

δ1ς − 1

(δ1 − δ2)ς
< ρ1→2 <

δ2(δ1ς − 1)

δ1 − δ2
δ1(1− δ2ς)
δ1 − δ2

< ρ2→1 <
1− δ2ς

(δ1 − δ2)ς
.

As shown in Figure 4, the area where bet-hedging is strictly favored in both parental
environments is represented by a square whose corners are positioned at the intersection
of negative diagonal line and the line showing the region where RME is strictly better
than a pure genetic strategy (i.e. the lines defined by inequality 4).

2.3 ESS maternal effect strategies

In this section we consider competition between maternal effect strategies. For example,
two discrete phenotypes may be available (i.e. shade and sun leaves), and we consider
competition between alternative maternal effect strategies that change when the two
phenotypes are produced, but do not alter the phenotypes themselves.

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 16, 2015. ; https://doi.org/10.1101/034546doi: bioRxiv preprint 

https://doi.org/10.1101/034546


(a) (b)

0.0

0.5

1.0

Ρ1

0.0

0.5

1.0

Ρ2

0.00

0.02

0.04

0.06

0.08

Selection Coefficient

(c)

Figure 4: Plots showing regions where different types of maternal effect can invade the
single-phenotype strategy. For both panels, δ1 = 0.8, δ2 = 1.2, ς = 1.0. The dashed
line on the diagonal is for reference only. The solid white line represents the boundary
between regions where the two pure genetic strategies have equal fitness. The point
where the dashed line and the solid white line intersect define the rectangular regions
that favor the DME strategies. Panel (a) shows the regions that allow mDME, aDME,
and RME to invade the pure genetic strategies. The area where the blue shading overlaps
either the orange or green represent parameters that would allow both RME and DME
to invade against a pure genetic strategy. However, RME has higher fitness than DME
only between the two black curves. Panel (b) shows regions of parameter space that favor
different maternal effects strategies if the selection coefficient is larger than 10−3. Again,
regions between the two blue curves allow for RME to replace pure genetic strategies,
but only in the blue area does RME invade DME. The HME strategy is predicted to have
the highest fitness in the region defined by the dashed yellow lines, however the selection
coefficient in favor of HME is larger than 10−3 in the region shaded with yellow. Panel
(c) shows the fitness surface for aDME, mDME and RME.

The expressions for the fitness benefit of the different maternal effect strategies can be
used to determine which strategy has the highest fitness for a specific set of parameters.
Although genetic and ecological interactions could cause frequency-dependent effects,
no frequency-dependence emerges from the basic model. This means that the outcome
of selection can be predicted based on the genotypic fitness values directly. Thus we
can consider a fixed set of phenotypic fitness values and determine which regimes of
environmental change favor specific maternal effect strategies over pure genetic strategies.

First considering only RME and DME, we find that in most of the region where DME
(either aDME or mDME) has higher fitness than the pure genetic strategy, DME also
has higher fitness than RME. When the parental environment provides little information
about the offspring environment, then RME has higher fitness than DME. As the level
of environmental predictability goes up, fitness of the DME strategies increase while the
fitness of RME strategies does not (it depends only on α (figure 4 panel a). Note that
RME and DME must have equal fitness at the point where they also have equal fitness
with the pure genetic strategy, i.e. at the points where the green and blue or orange
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regions intersect. Since increasing the difference in fitness between the phenotypes in the
two environments increasing |log(δi)|) leads to a wider cone described by the blue region,
increased fitness effects also result in a larger area where RME is favored.

We also need to consider HME, but since HME always has fitness greater than or
equal to the other strategies it makes more sense to ask when a mutation that causes a
change in maternal effect strategy would be likely to spread in finite population. To do
this we simply assume that there is a selection coefficient threshold, smin, below which
mutations are unlikely to become fixed (i.e. because population size is finite and drift
is expected to dominate at low values of s). We consider the sequential introduction
of RME, DME and HME (the alternative sequence of DME, RME, HME yields similar
results).

An example shown in figure 4 b serves to illustrate the general results. The slope of
the white line depends on the fitness parameters and the fecundity cost, ς, and remains in
the upper right quarter plane so long as ς is not too different from 1. The conditions that
favor RME are restricted to a small region around the negative diagonal, around which
the HME strategies have the highest fitness. HME is never under very strong selection
when compared with RME and DME, but has the largest effect near the intersection of
the RME region and the DME regions. This is evidenced by the fact that the region
where selection in favor of HME is larger than scrit is hugs the contours of the regions
favoring DME. Although there is complete symmetry in the boundaries of the regions
where aDME and mDME have higher fitness than the pure genetic strategy, panel b
shows that there is a quantitative difference in these effects as shown by the smaller area
of the orange region when compared with the green region.

The size of the regions favoring DME, RME, and HME depend on the parame-
ters determining environments specific fitness and phenotype dependent fecundity. In-
creases in the environment-specific effects make the regions supporting RME and HME
larger, at the expense of the size of the regions favoring DME (figure 5). Changes in
the environment-specific selection coefficients can shift the regions that favor DME, but
RME is still favored in environmental regimes that carry little information about the
future.

Changes in the fecundity cost (ς) also shift the regions favoring maternal effects, but
maintains the same relative range of α that allow RME (figure 6). As expected, when one
phenotype is favored in terms of maternal fecundity, mothers benefit by producing the
easier to produce phenotype. If this effect is large enough, then the pure genetic strategy
to produce the phenotype associated with higher fecundity is the ESS regardless of the
environmental regime. The region supporting pure RME remains quite small, regardless
of the change in ς.

While changes in scrit alter the range of parameters that support all types of maternal
effect, it has a much larger effect on HME and RME (figure 6). This is because the fitness
advantage of DME is generally much larger than for RME. Increasing scrit first increases
that area that supports pure RME, but as scrit gets larger HME tends to replace RME.
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Figure 5: The effect of the within-environment selection strength on the regions where
alternative forms of maternal effect are favored. aDME is favored in the green regions,
mDME in the orange, RME in the blue, and HME in the yellow. The critical selective
advantage is set at smin = 10−3 and both phenotypes have the same fecundity effect,
ς = 1. The values of δ1, δ2 were systematically varied from e−(.1+.2∗j) and e.1+.2∗j , j from
1 to 3, respectively.

3 Joint evolution of phenotype and maternal effects

In the previous sections, we considered how mutations that produce a novel maternal
effect strategy would fare. However, both the phenotypes and the strategic deployment
of those phenotypes are expected to evolve. In this section we consider how a population
can evolve both in terms of the phenotypes produced as well as in terms of the strategies
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Figure 6: Effect of differential fecundity of the two phenotypes on the regions where
alternative forms of maternal effect are favored. For all panels, aDME is favored in the
green regions, mDME in the orange, RME in the blue, and HME in the yellow. The
parameter values are δ1 = 0.8, δ2 = 1.2, and smin = 10−3. ς was systematically varied
from 0.9 through 1.2. Lower and higher values of ς create very strong selection in favor
of a single phenotype meaning that one of the pure genetic strategies is the ESS.

Figure 7: Effect of the threshold value of the selection coefficient, scrit. For all plots,
aDME is favored in the green regions, mDME in the orange, RME in the blue, and HME
in the yellow. When scrit is high the region that supports RME is absent. Larger values
of scrit give RME more scope to evolve, but also increase the opportunity for HME to
replacer RME. As the value of scrit increases, the region supporting HME increases to
fill the region within the dashed yellow lines.

controlling phenotype production. We first consider mutations that introduce a novel
phenotype into an ancestral population that produces a single phenotype in all situa-
tions. We then examine the joint invasion of a maternal effect along with a change in
phenotype. We then present some numerical examples and simulations based on a model
of phenotypic trade-offs.

3.1 Invasion of alternative phenotypes

In this section we turn to evolutionary change in the phenotypes that are available to be
produced by the maternal effect strategy. This allows us to consider mutations that cause
small changes in the phenotypes from an ancestral state where only a single phenotype is
produced. These results are useful in their own right, but also pave the way to considering
the joint evolution of the phenotypes and the maternal effect strategy in the next section.
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(a) (b)

Figure 8: Fraction of parameter space that favors RME as compared with DME. In both
panels, the vertical axis is the are of parameter space favoring the RME divided by the
area of parameter space where either RME or DME is favored over a single phenotype.
There is no fecundity advantage, so ς = 1. Panel (a) shows the response when allele 2
is disfavored in environment 1 by the same amount as it is favored in environment 2.
Therefore δ1 = 1/δ2. The magnitude of the fitness difference is varied from δ1 = 1.1 to
δ1 = 4.0. Inset diagrams show the area where DME and RME are favored. Panel (b)
shows the effect of asymmetric environment-specific fitness. In this panel, δ2 = 0.91 and
δ1 is varied between 1.1 and 4.

We start by considering a population that produces a single phenotype in all offspring.
We then ask how a mutant that has a specific maternal effect strategy that produces the
ancestral phenotype and an alternative phenotype. This is like introducing a mutant that
has a joint effect both on the strategy of phenotype production and on the phenotypes
that are produced. The idea is that one of the phenotypes is the original (ancestral)
phenotype and the other only differs from the ancestral phenotype by a small amount.

When the values of ρ1→2, ρ2→1 are in a region that provides little information about
the future environment, then only RME can invade. However, the values of δ1, δ2 must
be finely balanced. If the benefit in environment 1 is too large, then the purely genetic
strategy using the novel phenotype would invade and replace the ancestral phenotype.
Likewise, if the fitness cost in environment 2 is too large then the bet-hedging strategy
will not invade at all. In fact, the curves defining the region where RME can invade
approach each other faster than linearly as the difference from the ancestral phenotype
becomes small. This means that only very specific phenotypic trade-offs can possibly
support invasion of RME. Figure 9 shows that RME only invades for a narrow range
of fitness parameters and, when scrit > 0 the change in phenotype must be above a
threshold for invasion.

When the maternal environment does contain significant information about the off-
spring environment, then DME can invade for a range of values of δ1, δ2. So long as
ρ1→2 6= 1 − ρ2→1, the region allowing invasion DME is bounded by two curves that
have different slopes, even near the ancestral phenotype. This means that there are al-
ways a range of phenotypic trade-offs that would allow invasion of DME. Both aDME
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Figure 9: Invasion of a novel phenotype using fixed maternal effect strategies. The colored
regions show parameters for a mutant that produces a novel phenotype that decreases
fitness in condition 1 and increases fitness in condition 2. Note that a phenotype that
is the same as the ancestral phenotype would be represented by a point in the top left
corner of the plot. The axes are on a log scale. For all panels scrit = 0.001 and ς = 1. For
all plots, aDME is favored in the green regions, mDME in the orange, RME in the blue,
and HME in the yellow. For values of ρ1→2, ρ2→1 that contain little information about
the environment (i.e. ρ2→1 = 1 − ρ1→2) RME can invade, but the region of invasion
becomes narrow as the mutant effect is small. For larger values of ρ, aDME can invade,
and HME is only favored in a narrow slice of parameter space. For lower values of ρ,
mDME can invade, but the regions of invasion are smaller than for aDME.

and mDME have similar ranges of invasion when the rates of environmental change are
symmetric (i.e. ρ1→2 = ρ2→1), but mDME is substantially more limited for asymmetric
environmental transition rates (figure 9)
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3.2 Joint evolution of maternal effect and phenotypes

In this section we consider an ancestral state of a purely genetic strategy that produces
one phenotype in all conditions. We then allow mutations to introduce variance in the
phenotype, and allow the population to move to a stable attractor, the single-phenotype
ESS. At this ESS, the first order selection coefficients for changes in phenotype are, by
definition, 0. Once the population has reached the single-phenotype ESS we look at
mutations that have small effects on both the phenotypes produced and the frequency
at which the phenotypes are produced. These can be mutations that produce RME or
mutations that produce HME.

First we derive the conditions for the spread of mutations that cause HME or RME.
In this context HME involves a small frequency of offspring carrying a new phenotype to
be produced after the mother experiences one environment (but not the other). Further,
the new phenotype is assumed to be quantitatively similar to the single-phenotype ESS
phenotype.This notion of the phenotype being produced only infrequently and being a
similar phenotype to the ancestral phenotype is analogous to looking at the second order
effects of changes in phenotype. We show that once the population reaches the single-
phenotype ESS, mutations that introduce HME are favored so long as ρ1→2 6= 1− ρ2→1

. In other words, HME can evolve as long as the parental environment provides some
information about the offspring environment.

Likewise, we can explore selection on mutations that introduce RME near to the
single-phenotype ESS. Here we mean a mutation that causes a new phenotype to be pro-
duced infrequently irrespective of the parental environment. Again, the new phenotype
is assumed to be quantitatively close to the single-phentoype ESS. In contrast to the
HME result, second order selection in favor of mutations that causes RME is always 0.

Variable Definition
zi The ith phenotypic value produced by a maternal effect strategy
wi(z) the survivorship of phenotype x in environment i
c(z) the fecundity of a female producing all offspring of genotype z
γi,j The probability of producing the jth phenotype in environment i

In the absence of any type of maternal effect or phenotypic randomization, we expect
that the population will evolve to an ESS where all individuals have a single phenotype
that balances the selective pressures from both environments. We assume that there is a
single dimension that describes the phenotype, that the two environments favor different
phenotypes via fitness functions that are monotonic in the region of interest, and that
female fecundity depends on offspring phenotype alone. Fecundity is assumed to be a
monotonic function of phenotype. Without loss of generality we assume that

w′1(z) < 0

w′2(z) > 0

c′(z) > 0,
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such that environment 1 favors lower values of z, environment 2 favors higher values of
z, and fecundity is highest for low values of z. This means that any hybrid maternal
effect would involve increasing the value of z in anticipation of offspring experiencing
environment 2 and decreasing the value of z in anticipation of offspring experiencing
environment 1. We write the general geometric mean fitness function as a function of
four variables, ŵ(z1, z2, γ1,1, γ2,1). Note that if γ1,1 = γ2,1 = 1 then only phenotype z1 is
expressed. We can define

dŵ(z1, z1, γ1,1, γ2,1)

dx1
=

ρ1→2

ρ1→2 + ρ2→1

(
c′(z1)

c(z1)
+
w′2(z1)

w2z1

)
+

ρ2→1

ρ1→2 + ρ2→1

(
c′(z1)

c(z1)
+
w′1(z1)

w1z1

)
.

Solving for the value of z1 = z∗ that makes the derivative of fitness zero gives the single-
phenotype ESS,

ρ1→2

(
c′(z∗)

c(z∗)
+
w′2(z

∗)

w2(z∗)

)
+ ρ2→1

(
c′(z∗)

c(z∗)
+
w′1(z

∗)

w1(z∗)

)
= 0 (5)

Now we would like to determine the spread of mutants that alter the phenotypes z1, z2
as well as the environment-specific probability of producing each of those phenotypes.
Our main simplifying assumption here is that mutations will cause only a small change
in the phenotype. In contrast, we are able to explore both infinitesimal and large changes
in γ.

We assume the population has already evolved to the single-phenotype ESS and that
γ1 = γ2 = 1. This represents a genotype where only a single phenotype is produced,
and avoids artificial conditions such as genotypes that code for an phenotype that is
never produced. If we write the fitness function as ŵ(z1, z2, γ1,1, γ2,1) then the single-
phenotype ESS is characterized as ŵ(z∗, z∗, 1, 1). Altering either γ has no effect on fitness
and altering the value of the second phenotype (i.e. z2) has no effect on fitness because
these changes do not alter phenotype in any situations. This means that

∂ŵ(z∗, z2, γ1,1, γ2,1)

∂z2

∣∣∣∣
z2=z∗,γ1,1=1,γ2,1=1

= 0

∂ŵ(z∗, z2, γ1,1, γ2,1)

∂γ2,1

∣∣∣∣
z2=z∗,γ1,1=1,γ2,1=1

= 0

∂ŵ(z∗, z2, γ1,1, γ2,1)

∂γ1,1

∣∣∣∣
z2=z∗,γ1,1=1,γ2,1=1

= 0.

Simply put, mutations that do not alter the phenotype have no effect on fitness. This
is, to some extent, due to the choice to parameterize the phenotypic values z1 and z2 as
separate parameters from γ1,1 and γ2,1.

Invasion of a mutant that creates either pure bet-hedging or a hybrid maternal effect
can be worked out by considering mutant strategies near the single-phenotype ESS that
alter both z2 and the γ’s. For bet-hedging, this is a mutation that alters both γ1,1 and
γ2,1 by the same amount, whereas a hybrid maternal effect decreases only one γ and

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 16, 2015. ; https://doi.org/10.1101/034546doi: bioRxiv preprint 

https://doi.org/10.1101/034546


takes advantage of the correlation between the parental environment and the offspring
environment.

Invasion of the mutant depends on the appropriate mixed partial derivative. For bet
hedging to invade,we require ∂2ŵ(z∗,z2,γ,γ)

∂z2∂γ

∣∣∣
z2=z∗,γ=1

> 0. However, we find that

∂2ŵ(z∗, z2, γ, γ)

∂z2∂γ

∣∣∣∣
z2=z

∗
γ=1

=
−
(
ρ1→2

(
c′(z∗)
c(z∗) +

w′2(z
∗)

w2z∗

)
+ ρ2→1

(
c′(z∗)
c(z∗) +

w′1(z
∗)

w1z∗

))
ρ1→2 + ρ2→1

= 0, (6)

which is zero because of the condition at the single-phenotype ESS. Thus, bet-hedging
strategies that have small changes in the phenotype do not, to a first order approximation,
cause an increase in fitness. This is true regardless of the fitness functions or environ-
mental frequencies. This approach can easily be extended to third order effects, where it
can be seen that positive selection for RME is sometimes, but not always, present.

For hybrid strategies, only one of the γ values is altered, and this is done in a way
that depends on the fitness values of the phenotypes. Obviously, mutations could arise
that cause the altered phenotype to be produced at inappropriate times, and these would
be selected against. The appropriate condition for invasion of a mutation with a small
effect on the HME, when an increase over z∗ is favored if the current environment is 1,
is ∂2ŵ(z∗,z2,γ1,1,1)

∂z2∂γ1,1

∣∣∣
z2=z

∗
γ1,1=1 > 0. We find that

∂2ŵ(z∗, z2, γ1,1, 1)

∂z2∂γ1,1

∣∣∣∣
z2=z

∗
γ1,1=1 =

(
ρ1→2ρ2→1

(
c′(z∗)
c(z∗) +

w′2(z
∗)

w2z∗

)
+ ρ2→1(1− ρ1→2)

(
c′(z∗)
c(z∗) +

w′1(z
∗)

w1z∗

))
ρ1→2 + ρ2→1

(7)

By comparing this expression and the expression for the single-phenotype equilibrium
(equation 5) we note that the first term is multiplied by ρ2→1 while the second by 1−ρ1→2.
By assumption c′(z∗)

c(z∗) +
w′1(z

∗)
w1(z∗)

> 0 so that whenever ρ2→1 > 1− ρ1→2 the maternal effect
invades. This is because the fitness derivative taken implies that γ is reduced when the
mother faces environment 1, and ρ2→1 > 1−ρ1→2 implies that when mothers experience
environment 1, their offspring are more likely to experience environment 2 than if the
mother herself experienced environment 2. In general, ρ2→1 > 1 − ρ1→2 indicates that
the environments have a tendency to alternate, whereas ρ2→1 < 1− ρ1→2 indicates that
the environments have a tendency to remain the same over multiple generations. A
similar calculation shows that ∂2ŵ(z∗,z2,1,γ2,1)

∂z2∂γ2,1

∣∣∣
z2=z

∗
γ1,1=1 > 0 if ρ2→1 < 1 − ρ1→2, implying

that maintaining maternal effects can evolve when environments tend to remain the
same. This result shows that regardless of the specific details of the survivorship and
fecundity functions, HME can always invade a single-phenotype ESS.

Other possibilities include more extreme types of maternal effect strategies, such as an
RME strategy that produces the optimal γ or DME strategies that have γ1,1 = 1, γ2,1 = 0.
Similar calculations can be made and we find that whenever mutations cause small effects
in phenotypes but produce those phenotypes in an environment-independent way (i.e.
bet-hedging), then the second order fitness effects are 0. In contrast, even complete DME
shows a positive second order fitness effect.
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3.3 Joint evolution of the maternal effect strategy and offspring phe-
notypes under a phenotypic trade-off

In this section we develop a simple trade-off model for phenotypes and show how the
trade-off curve allows for the evolution of maternal effects. As the results from the
previous sections show, we find conditions where DME evolve by small mutational steps
from ancestral populations that lack maternal effects.

We use, as an example, a model where the fitness in each type of environment is a
Gaussian function of the difference between the phenotype and the environment-specific
phenotypic optimum. Thus environment specific fitness is defined as

wi(z) = e−(ẑi−z)
2/(2ω2

i ) (8)

where z is the phenotypic trait value, ẑi is the optimum phenotype in environment i, and
ωi is inversely related to the strength of selection in environment i. For simplicity, the
environment specific optima are set at ẑ1 = 0 and ẑ2 = 1 and we assume that ω = ωi.
It has been shown by Bull using a continuous trait version of this model that selection
for phenotypic diversification depends on ω being small relative to the magnitude of
the fluctuations in the phenotypic optima (i.e. ẑ2 − ẑ1) (Bull, 1987). Fecundity effects
can also be tied to the phenotypic trait value by assuming that fecundity is a continuos
function of z. In the absence of fecundity effects, the environment-specific fitness surface
is defined by one parameter, ω and overall fitness surface depends on ω, ρ1→2, and ρ2→1.

In the previous section we showed mutations inducing DME can always invade the
single-phenotype optimum, and that conditions for the invasion of RME were more re-
strictive. We showed for general fitness functions that selection for RME is weaker than
selection for DME, because the second order effects are always zero. (As a side note, it is
also the case for Bull’s result that invasion of increased phenotypic variance is a higher-
order effect.) Given the Gaussian model assumed here, we can calculate whether or note
RME can invade at all by examining the mixed partial derivatives of fitness near the
single-phenotype optima. Taking the partial derivative of the log of the general fitness
function gives

∂2 log(ŵ(z∗, z2, γ, γ))

∂z22

∣∣∣∣
z2=z∗

=
(1− γ)

(
γα(1− α)− ω2

)
ω4

(9)

where here γ is probability of producing phenotype z∗ and is independent of the maternal
environment. If γ = 1 then only the phenotype z∗ is produced. For any value of γ < 1
the expression will be positive if ω2 is sufficiently small. Mutants that have γ near 1 can
invade so long as ω2 < α(1 − α). The same result is found if we assume that the RME
mutant produces two phenotypes equally spaced on either side of the single-phenotype
ESS. As in Bull’s classic result, we find that the fitness function must be sufficiently
steep for phenotypic variation to be selected (Bull, 1987). When ω is too high to allow
invasion of RME, then the ESS must involve DME.

Under the assumption that successive mutations only alter the phenotypes produced
by small amounts, we can work out the long-term evolutionary behavior by examining the
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fitness gradient. Our general results guarantee that near the signle-phenotype ESS, the
gradient is steeper for mutants inducing a form of DME than for mutants inducing RME.
As successive mutations appear and spread in the population, the common phenotypes in
the population get farther from the single-phenotype ESS, making our approximations
invalid. Further evolution will occur, and if RME mutants become more fit than the
resident DME strategy, for the same phenotype parameters, then we expect that RME
will spread and may be the ESS. Based on these ideas, the evolutionary outcome can
be divided into 4 types of outcome: (1) RME cannot invade and the ESS involved some
form of DME, (2) RME could invade in the absence of DME, however DME represents
the global fitness maximum and RME is excluded (3) RME could invade in the absence
of DME, and RME represents the global fitness maximum. Even in this case, DME may
be an ESS because RME mutants near the optimum DME phenotypes have lower fitness
(4) RME can invade and has higher fitness than DME for most parameters; RME is the
ESS and can evolve smoothly.

Examples of the 4 general types of evolutionary dynamics are shown in figure 10 and
the supplemental Mathematica notebook can be used to explore the parameter space
further. Panel (a) in figure 10 shows an example where the curvature of the fitness
surface precludes the evolution of RME. In this example, the environment-specific fitness
functions are relatively shallow. This can also be expressed in terms of a Levins’ fitness
set, where the possible values of fitness are plotted against each other (Levins, 1962).
The curvature of the fitness set is concave. Our general result for invasion of DME can
be shown in terms of the fitness effects that are required for DME to invade, and on top
of that we plot (on a log scale) the fitness set. Because the fitness set passes through the
green region we know that mutants that alter one phenotype but have DME will invade.
We can also visualize the effect of mutations that alter both phenotypes by plotting the
regions where DME can invade the single-phenotype ESS along with the contours of the
fitness function. We can see that mutations that push one z value higher and the other
lower will invade and that the joint maternal effect and phenotypic value ESS occurs at
z1 = .75, z2 = .25.

When ω is small enough then RME can invade the single-phenotype (no maternal
effect) ESS. In this case, we still expect that DME has higher fitness for mutations that
affect z by a small amount, but the global behavior may involve evolution of RME. In
cases where there is still a large information signal, DME may globally exclude RME.
Panel (b) of figure 10 shows one such example. In this case, the fitness set is concave,
but since there is a high degree of predictability to the environment, DME has higher
fitness than RME for all phenotype pairs (z1, z2).

When ω is even lower, RME may have higher values of fitness for some pairs (z1, z2)
and be the global fitness optimum, and still be unlikely to evolve. Panel (c) of figure 10
shows a case where DME invades near the single-phenotype ESS, and has local maxima
at z1 = 0.75, z2 = 0.25. RME has highest fitness for the most extreme values of z, but has
lower fitness in the region of the DME ESS. This suggests that RME may have difficulty
evolving even when it is the global optimum.

When both ω is lower and the predictability is low, RME may evolve smoothly

22

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 16, 2015. ; https://doi.org/10.1101/034546doi: bioRxiv preprint 

https://doi.org/10.1101/034546


from DME. Panel (d) of figure 10 shows a case where DME invades near the single-
phenotype ESS and RME has higher fitness for z values close enough to the single-
phenotype ESS that RME can smoothly evolve. The contours show that RME will
continue to evolve more extreme values of z until the population reaches the global
optimum at z1 = 1, z2 = 0.

3.4 Simulation Results

Our analytical results on the invasion of maternal effect mutants are based on small
mutational effects arising near a single phenotype ESS. A simulation approach allows
the influence of several processes to be included. Although approximations exist for
the probability of fixation in a fluctuating environment (tuljapurkar, 1982; Saether and
Engen, 2015), they do not incorporate induced frequency dependence (Proulx, 2000;
Lande, 2007, 2008; Proulx and Adler, 2010). Stochastic tunneling may also contribute
to the evolution of maternal effects, since multiple substitutions may be required to alter
both the phenotypes produced and their frequency of production (Iwasa et al., 2004;
Weissman et al., 2009; Lynch and Abegg, 2010; Proulx, 2011). These effects are hard to
account for in most analytical formalisms.

We use the Gaussian selection scheme outlined in the previous section with environ-
ments having optimum trait values of 0 and 1. Our simulation characterizes individual
genotype via parameters that describe the type of maternal effect, the phenotypes pro-
duced, and in the case of RME, the probability of producing each phenotype. The first
parameter is a discrete variable representing the maternal effect strategy of the individual
and can be ‘G’ for a genetically determined phenotype, ‘DME’ , or ‘RME’. Mutations al-
ter the type of maternal effect with probability µME and alter the parameters determining
phenotype and probability of producing each phenotype with probability µ.

G individuals have only one other parameter, z, their phenotype value. Upon re-
production, these individuals can experience mutations in the parameter z, following a
truncated normal distribution between 0 and 1, with the mutational variance described
by σ2m. When mutations in the matronal effect strategy itself occur (with probability
µME), the maternal effect strategy is switched to one of the other two strategies with
equal probability, while the phenotype parameter is maintained at the same value. If the
maternal effect strategy changes to RME then the probability of phenotype production
is drawn from a uniform distribution.

DME individuals are characterized by two phenotype parameters, z1 and z2. For
simplicity, z1 is produced when mothers experience environment 1 and z2 is produced
when mothers experience environment 2. Mutations in either phenotype are equally likely
and are again drawn from a normal distribution centered around the current phenotype.
If a mutation alters the maternal effect strategy to G, one of the two phenotypes is
selected, with equal probability. If a mutation alters the maternal effect strategy to
RME, both phenotypes are maintained, and the probability of phenotype production is
drawn from a uniform distribution.

RME individuals are characterized by two phenotype parameters, z1 and z2 and by
γ, their probability of producing phenotype z1. Mutations are equally likely to affect
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(a)

(b)

(c)

(d)

Figure 10: Numerical results for joint evolution of maternal effect strategies and the
phenotypes that they control. In panel (a) the parameters are σ = 0.8/

√
2, ρ1→2 =

0.75, ρ2→1 = 0.75. Under these conditions, RME is never favored over the ancestral,
single-phenotype ESS. Panel (b) has parameters σ = 0.65/

√
2, ρ1→2 = 0.75, ρ2→1 = 0.75.

RME never has higher fitness than DME. Panel (c) has parameters σ = 0.5/
√
2, ρ1→2 =

0.75, ρ2→1 = 0.75. Panel (d) has parameters σ = 0.5/
√
2, ρ1→2 = 0.65, ρ2→1 = 0.65.

z1, z2, and γ and are drawn from truncated normal distributions. If a mutation alters
the maternal effect type to DME, the two z values are maintained. If a mutation alters
the maternal effect to G then one phenotype is selected at random as the z value.

24

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 16, 2015. ; https://doi.org/10.1101/034546doi: bioRxiv preprint 

https://doi.org/10.1101/034546


Figure 11 shows a sample of simulation results for a range of parameters spanning
the conditions that are predicted to lead to DME and RME. For fitness functions that
are not steep enough, DME readily evolves and the year-to-year variance in phenotype
increases. For fitness functions that allow the possibility of RME, if the environmental
sequence is predictable enough we still observe DME. When the fitness function is both
steep and information content of the environmental sequence is reduced we observe an
initial evolution of DME with a narrower range of phenotypes produced. Eventually
RME invades and the range of phenotypes increases, but the year-to-year variance in
phenotype goes down.

We performed 100 simulations of each set of parameters shown in figure 11 to test
these general conclusions. For this batch of simulations, we initialized the populations
at the single-phenotype ESS (zi = 0.5). We then ran the simulation until either DME
or RME reached and maintained a frequency of at least 0.95 for 500 generations and the
difference between the two phenotypes produced was at least 0.05. The latter require-
ment was to eliminate situations where a maternal effect mutant that recapitulated the
pure genetic strategy became common through drift. For conditions that strongly favor
DME (figure 11, column 1), DME evolved in 100 out of 100 times (in less than 40,000
generations). For conditions that have both a DME and RME ESS (figure 11, column
2), DME evolved first in 97/100 times. We continued the simulations in the 3 cases
where RME reached high frequency and found that DME replaced RME within 2000
generations. Finally, in situations where we expect DME to evolve first but be replaced
by RME (figure 11, column 3), we still found that in 97/100 simulations DME evolved
first. In the other 3 simulations RME reached high frequency, and continued simulation
resulted in the maintenance of RME in 1 out of 3 cases, but a reversion to DME in
the other 2 simulations. Overall, our simulation evidence backs up the idea that DME
evolves first and is only replaced by RME when it is strongly favored.

4 Conclusions

While there is an extensive theoretical literature on population genetics under variable
environmental conditions and selection for maternal effects, our goal here is to use a
common theoretical framework to follow the evolution of maternal strategies where the
maternal strategy can involve altering offspring phenotype based on the maternal en-
vironment. We classify the maternal strategies as deterministic (DME), randomized
(RME), or hybrid (HME). Our definitions of maternal effect strategies are based on the
mechanism of the maternal effect, and encompass the notions of diversified bet-hedging
and anticipatory maternal effects (Philippi and Seger, 1989; Seger and Brockman, 1987;
Uller, 2008),without conflating the selective outcome of a maternal effect with the mech-
anistic basis of that effect. We took two complementary approaches to understanding the
evolution of maternal effect, the first looked at the relative advantage of alternative MEs
when the set of possible offspring phenotypes was held constant, while the second ap-
proach considered the joint evolution of the maternal effect and the phenotypes assuming
a continuum of possible phenotypes.
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By considering phenotypes with fixed effects we were able to examine the conditions
under which the three maternal effect strategies has the largest advantage over a purely
genetic strategy. We found that DME is advantageous only when there is predictive power
in knowing the maternal environment, while RME is advantageous when the frequency
of the two environments falls within a band of intermediate values. The relative fitness
effects in the two environments determines the range environmental conditions that favor
DME; in contrast increased magnitude of the effects makes RME more advantageous.
The environmental parameters that favor RME over DME are in regions where the
maternal environments has little predictive information. If producing more offspring
with one phenotype entails a fecundity cost, then we find that the range of environ-
mental conditions that favor either DME or RME are shifted, and that relatively small
fecundity effects are enough to cause a purely genetic strategy to have highest fitness.
While HME always has fitness that is equal or greater than either DME or RME, the
HME strategy collapses onto the DME strategy in a wide area of parameter space. Only
when the maternal environment provides limited information is an HME strategy the
most fit. For environments that have more information available, the HME strategy is
to produce a fixed phenotype for each of the possible maternal environments.

We also considered an evolutionary scenario where, in addition to genetic variance
in the maternal effect strategy, the set of phenotypes produced could evolve. The idea
is that the mutations can introduce a new set of phenotypes produced by the maternal
effect. Since the environment-specific fitnesses depend on the phenotype, this also evolves.
The results developed in the fixed fitness effect model imply that if the two phenotypes
produced are similar to each other then the range of environmental parameters that
favor RME will be small. Our general model assumes that before any maternal effect has
evolved the population has time to reach the single phenotype ESS. This is a point where a
purely genetic strategy is fixed in the population, and all mutants with nearby phenotypes
have lower fitness. We then investigated the strength of selection on a maternal effect
strategy (either DME or RME) that had access to mutant phenotypes near this ancestral
state. We found that mutations that create DME always spread near the ancestral state
as long as the maternal environment has some predictive power. In contrast, RME can
only invade if the fitness functions are sufficiently steep, an effect that has been previously
noted (Bull, 1987). In addition, we found that even when the fitness functions are steep
enough to allow RME to invade a purely genetic strategy, mutations that cause DME
are always at a selective advantage.

Several authors have explored multiple ways that offspring phenotype can be deter-
mined. While we here explored models where the parental genotype and parental envi-
ronment combine to determine offspring phenotype, other possibilities range from sys-
tems where parental phenotype alone determines offspring phenotype to systems where a
number of different inputs combine to determine offspring phenotype. The literature on
epigenetic effects has focused primarily on cases where parental phenotype determines
offspring phenotype (Jablonka et al., 1995), and has been extended to quantitative ge-
netic models of phenotypic inheritance (Hoyle and Ezard, 2012; Kuijper and Hoyle, 2015;
Tufto, 2015; Ezard et al., 2014). In these models, an Markovian environmental shift such
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as we model here can result in the evolution of similar maternal effects as we see here.
In particular, these studies found that when the environment tends to alternate between
states, a "negative maternal effect" tends to evolve, whereby mothers who survive to
breed tend to have phenotypes that will not be adaptive in the next generation, and
because of the negative maternal effect these mothers tend to produce offspring with
phenotypes that more closely match the expected environment in the next generation
(Kuijper and Hoyle, 2015). Such quantitative genetic models, however, explain the ma-
ternal effect as a statistical property and do not shed light on the mechanistic basis of the
response. Another recent approach has included a range of possible information sources
that a developing individual could use as a developmental cue (Leimar and McNamara,
2015), which has the benefit of including both genetic and cue-based phenotypic effects.

Donaldson-Matasci et al. (2013, 2010) considered the fitness value of information and
found an upper bound to selection for a generic phenotypically plastic strategy (i.e. any
combination of developmental plasticity or parental effect). Their analysis concerns fixed
sets of phenotypes, which gives useful insight into the evolutionary dynamics and could,
in principal, be combined with a model of phenotype/fitness trade-offs to determine the
invasion dynamics of new mutations. Our approach does this without explicitly using
information theory to determine the strength of selection on maternal effect mutants,
but a combination of the approaches may prove useful.

In this paper we have focused on scenarios with environmental autocorrelation be-
tween generations and explored how maternal strategies that alter offspring phenotype
evolve. Our modeling framework excludes scenarios where offspring can gain direct in-
formation on the environment that they are developing in, and thus limits the scope for
the evolution of developmental plasticity. Other work has shown that the relative infor-
mation content the developing individuals and that parents have can determine whether
maternal effects or developmental plasticity evolve (Kuijper and Hoyle, 2015; Leimar and
McNamara, 2015), but including opportunities for developmental plasticity to evolve is
not likely to make the evolution of RME more likely. If developmental plasticity evolves,
either alone or in conjunction with a maternal effect, then the fitness of such a strat-
egy would only increase over a DME strategy, making the invasion of RME even more
difficult.

While our results show that the scope for the evolution of RME is low, there are
specific conditions that make RME more likely. There must be a large potential fitness
benefit of having specialized phenotypes, allowing the evolution of highly specialized
phenotypes that have high fitness in a subset of environments and are more or less lethal
in other environments.
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Figure 11: Simulation results: Each column is for different conditions. The top row shows
the mean of the two (or one) phenotypes produced (shown in purple and cyan). For in-
dividuals that produce a purely genetic strategy, the two phenotypes are constrained to
be equal. The middle row is the frequency of aDME (green) and RME (blue). In these
simulations mutations altered the phenotype parameter with a probability of 10−3 follow-
ing a normal distribution with variance of 10−4. The maternal effect strategy mutated
with probability 10−4. The bottom row shows the generation-to-generation variance in
phenotype. In Column 1, the parameters are σ = 0.8/

√
2, ρ1→2 = 0.75, ρ2→1 = 0.75.

aDME is expected to evolve first and remain the global ESS. The phenotypic vari-
ance increases as aDME evolves and then remains steady. Column 2 has parameters
σ = 0.5/

√
2, ρ1→2 = 0.75, ρ2→1 = 0.75, and aDME is still expected to evolve and be a

local ESS. Column 3 has parameters σ = 0.5/
√
2, ρ1→2 = 0.65, ρ2→1 = 0.65, and RME is

expected to invade aDME. Note that aDME first evolves to a quasi-steady state level of
phenotypic variance. Once the RME invades, the magnitude of the phenotypic difference
increases substantially.
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