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ABSTRACT

Multivariate estimates of genetic parameters are subject to substantial sampling variation,
especially for smaller data sets and more than a few traits. A simple modification of
standard, maximum likelihood procedures for multivariate analyses to estimate genetic
covariances is described, which can improve estimates by substantially reducing their
sampling variances. This is achieved maximizing the likelihood subject to a penalty. Bor-
rowing from Bayesian principles, we propose a mild, default penalty – derived assuming
a Beta distribution of scale-free functions of the covariance components to be estimated
– rather than laboriously attempting to determine the stringency of penalization from
the data. An extensive simulation study is presented demonstrating that such penalties
can yield very worthwhile reductions in loss, i.e. the difference from population values,
for a wide range of scenarios and without distorting estimates of phenotypic covariances.
Moreover, mild default penalties tend not to increase loss in difficult cases and, on average,
achieve reductions in loss of similar magnitude than computationally demanding schemes
to optimize the degree of penalization. Pertinent details required for the adaptation of
standard algorithms to locate the maximum of the likelihood function are outlined.

INTRODUCTION

Estimation of genetic parameters, i.e. partitioning of phenotypic variation into its causal
components, is one of the fundamental tasks in quantitative genetics. For multiple charac-
teristics of interest, this involves estimation of covariance matrices due to genetic, residual
and possibly other random effects. It is well known that such estimates can be subject to
substantial sampling variation. This holds especially for analyses comprising more than a
few traits, as the number of parameters to be estimated generally increases quadratically
with the number of traits considered, unless the covariance matrices of interest have a
special structure and can be modelled more parsimoniously. Indeed, a sobering but realis-
tic view is that “Few datasets, whether from livestock, laboratory or natural populations,
are of sufficient size to obtain useful estimates of many genetic parameters” (Hill, 2010;
p.75). This emphasizes not only the importance of appropriate data, but also implies that
a judicious choice of methodology for estimation – which makes the most of limited and
precious records available – is paramount.
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A measure of the quality of an estimator is its ‘loss’, i.e. the deviation of the estimate from
the true value. This is an aggregate of bias and sampling variation. We speak of improving
an estimator if we can modify it so that the expected loss is lessened. In most cases, this
involves reducing sampling variance at the expense of some bias – if the additional bias
is small and the reduction in variance sufficiently large, the loss is reduced. In statistical
parlance ‘regularization’ refers to the use of some kind of additional information in an
analysis. This is often used to solve ill-posed problems or to prevent over-fitting through
some form of penalty for model complexity, see Bickel and Li (2006) for a review. There
has been longstanding interest, dating back to Stein (1975) and earlier (James and Stein,
1961) in regularized estimation of covariance matrices to reduce their ‘loss’. Recently,
as estimation of higher dimensional matrices is becoming more ubiquitous, there has
been a resurgence in interest (e.g. Bickel and Levina, 2008; Warton, 2008; Witten and
Tibshirani, 2009; Ye and Wang, 2009; Rothman et al., 2010; Fisher and Sun, 2011; Ledoit
and Wolf, 2012; Deng and Tsui, 2013; Won et al., 2013).

Improving estimates of genetic parameter

As emphasized above, quantitative genetic analyses require at least two covariance matri-
ces to be estimated, namely due to additive genetic and residual effects. The partitioning of
the total variation into its components creates substantial sampling correlations between
them and tends to exacerbate the effects of sampling variation inherent in estimation of
covariance matrices. However, most studies on regularization of multivariate analyses
considered a single covariance matrix only and the literature considering regularized es-
timates of more than one covariance matrix is sparse. In a classic paper, Hayes and Hill
(1981) proposed to modify estimates of the genetic covariance matrix (ΣG) by shrinking
the canonical eigenvalues of ΣG and the phenotypic covariance matrix (ΣP) towards their
mean, a procedure they described as ‘bending’ the estimate of ΣG towards that of ΣP. The
underlying rationale was that ΣP, the sum of all the causal components, is typically esti-
mated much more accurately than any of its components, so that bending would ‘borrow
strength’ from the estimate of ΣP, while shrinking estimated eigenvalues towards their
mean would counteract their known, systematic overdispersion. The authors demon-
strated by simulation that use of ‘bent’ estimates in constructing selection indices could
increase the achieved response to selection markedly, as these were closer to the popu-
lation values than unmodified estimates and thus provided more appropriate estimates
of index weights. However, no clear guidelines to determine the optimal amount of
shrinkage to use were available and ‘bending’ was thus primarily used only to modify
non-positive definite estimates of covariance matrices, and all but forgotten when meth-
ods which allowed estimates to be constrained to the parameter space became common
procedures.

Modern analyses to estimate genetic analyses are generally carried out fitting a mixed
model and using restricted maximum likelihood (REML) or Bayesian methodology. The
Bayesian framework directly offers the opportunity for regularization through the choice
of appropriate priors. Yet, this is rarely exploited for this purpose and ‘flat’ or minimally
informative priors are often used instead (Thompson et al., 2005). In a maximum likelihood
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context, estimates can be regularized by imposing a penalty on the likelihood function
aimed at reducing their sampling variance. This provides a direct link to Bayesian esti-
mation: for a given prior distribution of the parameters of interest or functions thereof, an
appropriate penalty can be obtained as a multiple of minus the logarithmic value of the
probability density function. For instance, shrinkage of eigenvalues towards their mean
through a quadratic penalty on the likelihood is equivalent to assuming a Normal distri-
bution of the eigenvalues while the assumption of a double exponential prior distribution
results in a LASSO type penalty (Huang et al., 2006).

Meyer and Kirkpatrick (2010) demonstrated that a REML equivalent to ‘bending’ can be
obtained by imposing a penalty proportional to the variance of the canonical eigenval-
ues on the likelihood, derived assuming a Normal distribution of the eigenvalues with
common mean, and showed that this can yield substantial reductions in loss for estimates
of both ΣG and ΣE, the residual covariance matrix. Subsequent simulations (Meyer et al.,
2011; Meyer, 2011) examined the scope for penalties based on different functions of the pa-
rameters to be estimated and prior distributions for them and found them to be similarly
effective, depending on the population values for the covariance matrices to be estimated.

A central component of the success of regularized estimation is the choice of how much
to penalize. A common practice is to scale the penalty by a so-called ‘tuning factor’
to regulate stringency of penalization. Various studies (again for a single covariance
matrix; see above for references) demonstrated that this can be estimated reasonably well
from the data at hand using cross-validation techniques. Adopting these suggestions
for genetic analyses and using k−fold cross-validation (for k = 3 or 5), Meyer (2011)
estimated the appropriate tuning factor as that which maximised the average, unpenalized
likelihood in the validation sets. However, this procedure was laborious and afflicted
by problems in locating the maximum of a fairly flat likelihood surface for analyses
involving many traits and not so large data sets. These technical difficulties all but
prevented practical applications. Moreover, it was generally less successful than reported
for studies considering a single covariance matrix. This led to the suggestion of imposing
a mild penalty, determining the tuning factor as the largest value which did not cause
a decrease in the (unpenalized) likelihood equivalent to a significant change in a single
parameter. This pragmatic approach yielded reductions in loss which were generally of
comparable magnitude to those achieved using cross-validation (Meyer, 2011). However,
it still required multiple analyses and thus considerably increased computational demands
compared to standard, unpenalized estimation.

Simple penalties

In the Bayesian framework, the influence of the prior and thus the amount of regularization
is generally specified through the so-called hyperparameters of the prior distribution
which determine its shape, scale or location. This suggests that an alternative, tuning
factor-free formulation for the penalty on the likelihood can be obtained by expressing
it in terms of the distribution-specific (hyper)parameters which are not dependent on
the covariance matrices. For instance, when assuming a Normal prior for canonical
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eigenvalues, the regulating parameter is the variance of the Normal distribution, with
more shrinkage induced the lower its value. This may lend itself to applications employing
default values for these parameters. Furthermore, such formulation may facilitate direct
estimation of the regulating parameter, denoted henceforth as ν, simultaneously with the
covariance components to be estimated (de los Campos 2013; pers. comm.). In contrast,
in a setting involving a tuning factor the penalized likelihood is, by definition, highest for
a factor of zero (i.e. no penalty), and thus does not provide this opportunity.

This paper examines the scope for REML estimation imposing penalties regulated by
choosing the parameters of the selected prior distribution. The focus is on penalties
involving scale-free functions of covariance components which fall into defined intervals
and may thus be better suited to a choice of default regulating parameters than functions
which are not. We begin with the description of suitable penalties together with a brief
review of pertinent literature and outline the adaptation of standard REML algorithms.
This is followed by a large-scale simulation study showing that the penalties proposed can
yield substantial reductions in loss of estimates for a wide range of population parameters.
We conclude with a discussion and recommendations on selection of default parameters
for routine use in multivariate analyses.

PENALIZED MAXIMUM LIKELIHOOD ESTIMATION

Consider a simple mixed, linear model for q traits with covariance matrices ΣG and ΣE

due to additive genetic and residual effects, respectively, to be estimated. Let logL(θ)
denote the log likelihood in a standard, unpenalized maximum likelihood (or REML)
analysis and θ the vector of parameters, comprised of the distinct elements of ΣG and ΣE

or equivalent. The penalized likelihood is then (Green, 1987)

logLP(θ) = logL(θ) −
1
2
ψP(θ) (1)

with the penalty P(θ) a non-negative function of the parameters to be estimated and ψ
the so-called tuning factor which modulates the strength of penalization (the factor of
½ is used for algebraic consistency and could be omitted). In the following, we assume
ψ = 1 throughout and regulate the amount of penalization instead via the parameters of
the distribution from which the penalty is derived.

Functions to be penalized

We consider two types of scale-free functions of the covariance matrices to be estimated
as the basis for regularization.

Canonical eigenvalues: Following Hayes and Hill (1981), the first comprises the canon-
ical eigenvalues of ΣG and ΣP = ΣG + ΣE.

Multivariate theory shows that for two symmetric, positive definite matrices of the same
size there is a transformation which yields TT′ = ΣP and TΛT′ = ΣG, with Λ the diagonal
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Figure 1: Probability densities (left) and corresponding penalties (including a factor of
½; right) for a variable with Beta distribution on [0, 1] with mode of m = 0.3 for effective
sample sizes of ν = 4 ( ), ν = 8 ( ) and ν = 16 ( ).

matrix of canonical eigenvalues with elements λi (Anderson, 1984). This can be thought
of as transforming the traits considered to new variables which are uncorrelated and have
phenotypic variance of unity, i.e. the canonical eigenvalues are equal to heritabilities on
the new scale and fall in the interval [0, 1] (Hayes and Hill, 1980). It is well known that
estimates of eigenvalues of covariance matrices are systematically biased – the largest val-
ues are overestimated and the smallest are underestimated – while their mean is expected
to be estimated correctly (Lawley, 1956). Moreover, a major proportion of the sampling
variation of covariance matrices can be attributed to this over-dispersion of eigenvalues
(Ledoit and Wolf, 2004). Hence there have been various suggestions to modify the eigen-
values of sample covariance matrices in some way to reduce the loss in estimates; see
Meyer and Kirkpatrick (2010) for a more detailed review.

Correlations: The second type of functions comprises correlations between traits, in
particular genetic correlations. A number of Bayesian approaches to the estimation of
covariance matrices decompose the problem into variances (or standard deviations) and
correlations with separate priors, thus alleviating the inflexibility of the widely used
conjugate prior given by an Inverse Wishart distribution (Barnard et al., 2000; Daniels
and Kass, 2001; Zhang et al., 2006; Daniels and Pourahmadi, 2009; Hsu et al., 2012; Bouriga
and Féron, 2013; Gaskins et al., 2014). On the whole, however, few suitable families of
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prior density functions for correlation matrices have been considered and estimation
using Monte Carlo sampling schemes has been hampered by difficulties arising from the
constraints of positive definiteness and unit diagonals.

Most statistical literature concerned with Bayesian or penalized estimation of correlation
matrices considered shrinkage towards an identity matrix, i.e. shrinkage of individual
correlations towards zero, though other, simple correlation structures have been pro-
posed (Schäfer and Strimmer, 2005). As outlined above, the motivation for ‘bending’
(Hayes and Hill, 1981) included the desire to ‘borrow’ strength from the estimate of the
phenotypic covariance matrix. Similar arguments may support shrinkage of the genetic
towards the phenotypic correlation matrix. This dovetails with what has become known
as ‘Cheverud’s conjecture’: Reviewing a large body of literature Cheverud (1988), found
that estimates of genetic correlations were generally close to their phenotypic counter-
parts, and thus proposed that phenotypic values should be substituted when genetic
correlations could not be estimated. Subsequent studies reported similar findings for a
range of traits in laboratory species, plants and animals (e.g. Roff, 1995; Waitt and Levin,
1998; Koots et al., 1994).

Partial correlations

Often a reparameterisation can transform a constrained matrix problem to an uncon-
strained one. For instance, it is common practice in REML estimation of covariance
matrices to estimate the elements of their Cholesky factors, coupled with a logarithmic
transformation of the diagonal elements, to remove constraints on the parameter space
(Meyer and Smith, 1996). Pinheiro and Bates (1996) examined various transformations
for covariance matrices and their impact on convergence behaviour of maximum like-
lihood analyses, and corresponding forms for correlation matrices have been described
(Rapisarda et al., 2007). Joe (2006) proposed a reparameterisation of correlations to par-
tial correlations which vary independently over the interval [−1, 1], with a one-to-one
transformation between partial and standard correlations. This implies, that it is possible
to sample a random correlation matrix which is positive definite by sampling individ-
ual partial correlations. Daniels and Pourahmadi (2009) referred to these quantities as
partial auto-correlations (PAC), interpreting them as correlations between traits i and j
conditional on the intervening traits, i + 1 to j − 1.

Consider a correlation matrix R of size q × q with elements ρi j (for i , j) and ρii = 1. As
R is symmetric, let i < j. For j = i + 1, the PAC are equal to the standard correlations,
πi,i+1 = ρi,i+1, as there are no intervening variables. For j > i + 1, partition the submatrix of
R comprised of rows and columns i to j as 1 r′1 ρi j

r1 R2 r3

ρi j r′3 1

 (2)

with r1 and r3 vectors of length j− i− 1, with elements ρik and ρ jk, respectively, and R2 the
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corresponding matrix with elements ρkl for k, l = i + 1, . . . , j − 1. This gives PAC

πi j =
ρi j − r′1R−1

2 r3√
(1 − r′1R−1

2 r1)(1 − r′3R−1
2 r3)

(3)

and the reverse transformation is

ρi j = r′1R−1
2 r3 + πi j

√
(1 − r′1R−1

2 r1)(1 − r′3R−1
2 r3) (4)

(Joe, 2006).

Penalties

We derive penalties on canonical eigenvalues and correlations or partial auto-correlations
assuming independent Beta distributions as priors.

Beta distribution: The Beta distribution is a continuous probability function that is widely
used in Bayesian analyses and encompasses functions with many different shapes, deter-
mined by two parameters, α and β. While the standard Beta distribution is defined for
the interval [0, 1], it is readily extended to a different interval. The probability density
function for a variable x ∈ [a, b] following a Beta distribution is of the form

p(x) = B
(
α, β

)−1 (b − a)−(α+β−1) (x − a)α−1 (b − x)β−1 (5)

(Johnson et al., 1995; Chapter 25) with B
(
α, β

)
= Γ (α) Γ

(
β
)
/Γ

(
α + β

)
and B (·) and Γ (·)

denoting the Beta and Gamma function, respectively.

When employing a Beta prior in Bayesian estimation, the sum of the shape parameters,
ν = α + β, is commonly interpreted as the effective sample size (ESS) of the prior (Morita
et al., 2008). It follows that we can specify the parameters of a Beta distribution with mode
m as a function of the ESS (ν ≥ 2) as

α = 1 +
m − a
b − a

(ν − 2) and β = 1 +
b −m
b − a

(ν − 2) (6)

For ν > 2, this yields a unimodal distribution, and for m = (b − a)/2 the distribution is
symmetric, with α = β. For given m, this provides a mechanism to regulate the strength
of penalization through a single, intuitive parameter, the ESS ν.

Figure 1 shows the probability density of a variable with a standard Beta distribution on
the interval [0, 1] with mode of 0.3 together with the resulting penalty, for three values
of ESS. For ν = 2, the density function would be a uniform distribution, depicted by
a horizontal line at height of 1, resulting in no penalty. With increasing values of ν,
the distribution becomes more and more peaked and the penalty on values close to the
extremes of the range becomes more and more severe. Conversely, in spite of substantial
differences in point mass around the mode, penalty values in proximity of the mode differ
relatively little for different values of ν. While P(θ) in (1) was considered non-negative,
penalty values close to the mode can be negative – this does not affect suitability of the
penalty and can be overcome by adding a suitable constant.
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Penalty on canonical eigenvalues: Canonical eigenvalues fall in the interval [0, 1]. For q
traits, there are likely to be q different values λi and attempts to determine a mode may
be futile. Hence we propose to substitute the mean canonical eigenvalue, λ̄, for the mode.
Taking minus logarithmic values of (5) and assuming the same mode and ESS for all q
eigenvalues then gives penalty

Pλ = C − (ν − 2)

λ̄ q∑
i=1

log(λi) + (1 − λ̄)
q∑

i=1

log(1 − λi)

 (7)

with C = q log[B(1 + λ̄(ν − 2), 1 + (1 − λ̄)(ν − 2))]. This formulation results in shrinkage of
all eigenvalues towards λ̄.

Penalty on correlations: For (standard) correlations and PAC, we assume independent
shifted Beta distributions on [−1, 1].

Both Joe (2006) and Daniels and Pourahmadi (2009) considered such Beta priors for
PAC with α = β, i.e. shrinkage of all πi j towards zero. We generalize this by allowing
for different shrinkage targets τi j – and thus different shape parameters αi j and βi j – for
individual values πi j. This gives penalty

Pπ =
q(q − 1)

2
(ν − 1) log(2) +

q∑
i=1

q∑
j=i+1

Ci j −
ν − 2

2

[
(τi j + 1) log(πi j + 1) + (1 − τi j) log(1 − πi j)

]
(8)

with Ci j = log[B(1 + (τi j + 1)(ν− 2)/2, 1 + (1− τi j)(ν− 2)/2)]. Again, this assumes equal ESS
for all values, but could of course readily be expanded to allow for different values νi j for
different PAC. For all τi j = 0, (8) reduces to

Pπ(0) =
q(q − 1)

2

[
(ν − 1) log(2) + C0

]
−
ν − 2

2

q∑
i=1

q∑
j=i+1

log(1 − π2
i j) (9)

with C0 = log[B(1 + (ν − 2)/2, 1 + (ν − 2)/2)]. Corresponding penalties on standard corre-
lations, Pρ(P) and Pρ(0), are obtained by substituting ρi j for πi j in (8) and (9).

Daniels and Pourahmadi (2009) considered several Bayesian priors for correlation ma-
trices formulated via PAC, suggesting uniform distributions for individual πi j, i.e. πi j ∼

Beta(1, 1). In addition, they showed that the equivalent to the joint uniform prior for
R proposed by Barnard et al. (2000), p(R) ∝ 1, is obtained by assuming Beta priors
for PAC with shape parameters depending on the number of intervening variables, i.e.
αi,i+k = βi,i+k = 1 + (q − 1 − k)/2. Similarly, priors proportional to higher powers of the
determinant of R, p(R) ∝ |R|t−1, are obtained for αi,i+k = t + (q − 1 − k)/2 (Daniels and
Pourahmadi, 2009). Gaskins et al. (2014) extended this framework to PAC based pri-
ors with more aggressive shrinkage towards zero for higher lags, suitable to encourage
sparsity in estimated correlation matrices for longitudinal data.
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Maximizing the penalized likelihood

REML estimation in quantitative genetics usually relies on algorithms exploiting deriva-
tives of the log likelihood function to locate its maximum. In particular, the so-called
average information algorithm (Gilmour et al., 1995) is widely used due to its relative
computational ease, good convergence properties and implementation in several REML
software packages. It can be described as Newton(-Raphson) type algorithm where the
Hessian matrix is approximated by the average of observed and expected information.
To adapt the standard, unpenalized algorithm for penalized estimation we need to adjust
first and second derivatives of logL(θ) for derivatives of the penalties with respect of
the parameters, θk, to be estimated. These differ if we choose fixed values to determine
the modes of the assumed Beta priors (e.g. τi j = 0 or the mean λi from a preliminary,
unpenalized analysis) and or employ penalties which derive these from the parameter
estimates.

Consider the penalty on canonical eigenvalues. If λ̄ is estimated from the data, its deriva-
tives are non-zero. This gives

∂Pλ
∂θk

=
∂C
∂θk

+ (ν − 2)

 ∂λ̄∂θk

q∑
i=1

log
(1 − λi

λi

)
+

q∑
i=1

∂λi

∂θk

(
1 − λ̄
1 − λi

−
λ̄
λi

) (10)

and

∂2
Pλ

∂θk∂θm
=

∂2C
∂θk∂θm

+ (ν − 2)
q∑

i=1

∂2λ̄
∂θk∂θm

log
(1 − λi

λi

)
−

(
∂λ̄
∂θk

∂λi

∂θm
+
∂λi

∂θk

∂λ̄
∂θm

) ( 1
λi

+
1

1 − λi

)
+

∂2λi

∂θk∂θm

(
1 − λ̄
1 − λi

−
λ̄
λi

)
+
∂λi

∂θk

∂λi

∂θm

(
λ̄

λ2
i

+
1 − λ̄

(1 − λi)2

) (11)

Derivatives of C involve the Digamma and Trigamma functions, e.g.

∂C
∂θk

= (ν − 2)
∂λ̄
∂θk

[
ψ(1 + (ν − 2)λ̄) − ψ(1 + (ν − 2)(1 − λ̄))

]
with ψ the Digamma function. Derivatives of λi required in (10) and (11) are easiest to
evaluate if the analysis is parameterised to the canonical eigenvalues and the elements
of the corresponding transformation matrix T (see Meyer and Kirkpatrick, 2010), so
that ∂λi/λi = 1 and ∂λ̄/λi = 1/q and all other derivatives of λ̄ and λi are zero. A
possible approximation is to ignore contributions of derivatives of λ̄, arguing that the
mean eigenvalue is expected to be unaffected by sampling over-dispersion and thus
should change little.
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Analogous arguments hold for penalties involving correlations. This gives

∂Pπ
∂θk

=

q∑
i=1

q∑
j=i+1

∂Ci j

∂θk
+
ν − 2

2

[
log

(
1 − πi j

1 + πi j

)
∂τi j

∂θk
+2

πi j − τi j

1 − π2
i j

 ∂πi j

∂θk

 (12)

∂2
Pπ

∂θk∂θm
=

q∑
i=1

q∑
j=i+1

∂2Ci j

∂θk∂θm
+
ν − 2

2

[
log

(
1 − πi j

1 + πi j

)
∂2τi j

∂θk∂θm

−
2

1 − π2
i j

(
∂τi j

∂θk

∂πi j

∂θm
+
∂τi j

∂θm

∂πi j

∂θk

)
+ 2

πi j − τi j

1 − π2
i j

 ∂2πi j

∂θk∂θm

−2

1 − τ2
i j + (πi j − τi j)2

(1 − π2
i j)

2

 ∂πi j

∂θk

∂πi j

∂θm


(13)

with obvious simplifications if shrinkage targets are fixed or treated as such, so that
derivatives of τi j are zero. As shown in the appendix, derivatives of correlations and
PACs are readily calculated from the derivatives of covariance components for any of
the parameterizations commonly utilised in (unpenalized) REML algorithms for variance
component estimation.

SIMULATION STUDY

A large scale simulation study, considering a wide range of population parameters, was
carried out to examine the efficacy of the penalties proposed above.

Set-up

Data were sampled from multivariate normal distributions for q = 9 traits, assuming a
balanced paternal half-sib design comprised of s unrelated sire families with 10 progeny
each. Sample sizes considered were s = 100, 400 and 1000, with records for all traits for
each of the progeny but no records for sires.

Population values for genetic and residual variance components were generated by com-
bining 13 sets of heritabilities with six different types of correlation structures to generate
78 cases. Details are summarized in the appendix and population canonical eigenvalues
for all sets are shown in Supplement S1. To assess the potential for detrimental effects
of penalized estimation, values were chosen deliberately to generate both cases which
approximately matched the priors assumed in deriving the penalties and cases where
this was clearly not the case. The latter included scenarios where population canonical
eigenvalues were widely spread and in multiple clusters and cases where genetic and phe-
notypic correlations were highly dissimilar. A total of 500 samples per case and sample
size were obtained.

10

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 15, 2015. ; https://doi.org/10.1101/034447doi: bioRxiv preprint 

https://doi.org/10.1101/034447
http://creativecommons.org/licenses/by-nc-nd/4.0/


Analyses

REML estimates of ΣG and ΣE for each sample were obtained without penalization and
imposing different penalties, namely a penalty on canonical eigenvalues Pλ, as given in
(7) and a penalties on partial auto-correlations shrinking all values towards zero (Pπ(0),
see (9)) and with shrinkage targets for each value equal to the corresponding phenotypic
counterpart (Pπ(P), see (8)). For the latter two, penalties on genetic PAC only and both
genetic and residual values were examined. In addition, penalties on standard corre-
lations, shrinking towards zero (Pρ(0)) or phenotypic values (Pρ(P)) were considered for
comparison.

Analyses were carried out considering fixed values for the effective sample size, ranging
from ν = 2.5 to 24. For penalties on both genetic and residual correlations/PAC, either
the same value was used for both or the ESS for residual correlation/PAC was fixed at
ν = 8. In addition, direct estimation of a suitable ESS for each replicate was attempted. As
shown in (1), penalties were subtracted from the standard log likelihood incorporating a
factor of 1/2.

The model of analysis was a simple animal model, fitting means for each trait as the only
fixed effects. A Method of Scoring algorithm together with simple derivative-free search
steps was used to locate the maximum of the (penalized) likelihood function. To facili-
tate easy computation of derivatives of Pλ, this was done using a parameterisation to the
elements of the canonical decomposition (see Meyer and Kirkpatrick, 2010), restraining
estimates of λi to the interval of [0.0001, 0.9999]. For penalties on correlations, a param-
eterisation to the elements of the Cholesky factors of ΣG and ΣE was used, constraining
estimates of diagonal elements to a minimum of 0.0001.

Direct estimation of ν was performed by evaluating points on the profile likelihood for ν
(i.e. maximizing logLP(θ) with respect to the covariance components to be estimated for
selected, fixed values of ν), combined with quadratic approximation steps of the profile to
locate its maximum using Powell’s (2006) Fortran subroutine NEWUOA. To avoid numerical
problem, estimates of ν were constrained to the interval [2.01, 50].

Summary statistics

For each sample and analysis, the quality of estimates was evaluated through their entropy
loss (James and Stein, 1961)

L1

(
ΣX, Σ̂X

)
= tr

(
Σ−1

X Σ̂X

)
− log

∣∣∣Σ−1
X Σ̂X

∣∣∣ − q (14)

for X = G, E and P, with ΣX denoting the matrix of population values for genetic, residual
and phenotypic covariances, and Σ̂X the corresponding estimate. As suggested by Lin
and Perlman (1985), the percentage reduction in average loss (PRIAL) was used as the
criterion to summarize the effects of penalization

100
[
1 − L̄1

(
ΣX, Σ̂νX

)
/L̄1

(
ΣX, Σ̂0

X

)]
(15)
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Figure 2: Distribution of percentage reduction in average loss for estimates of genetic,
residual and phenotypic covariance matrices, together with corresponding change in log
likelihood (∆L) for penalties on canonical eigenvalues (Pλ) and genetic, partial auto-
correlations, shrinking towards zero (Pπ(0)) or phenotypic values (Pπ(P)). Central circles
give mean values. Numeric values on the x-axis are fixed, effective sample sizes while
“E” denotes the use of a value estimated from the data for each replicate.

where L̄1(·) denotes the entropy loss averaged over replicates, and Σ̂νX and Σ̂0
X represent

the penalized and corresponding unpenalized REML estimate of ΣX, respectively.

In addition, the average reduction in logL(θ) due to penalization, ∆L, was calculated as
the mean difference across replicates between the unpenalized likelihood for estimates Σ̂νX
and the corresponding value for estimates Σ̂0

X.

RESULTS

Distributions of PRIAL across the 78 sets of population values together with the corre-
sponding change in likelihood are shown in Figure 2 for two sample sizes, with penalties
Pπ(0) andPπ(P) applied to genetic PAC only. Distributions given are trimmed, i.e. the range
shown reflects the minimum and maximum values observed. Selected mean and mini-
mum values are also reported in Table 1. More detailed results, including distributions
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Table 1: Selected mean and minimum values for percentage reduction in average loss for
estimates of genetic (ΣG), residual (ΣE) and phenotypic (ΣP) covariance matrices together
with mean change in unpenalised log likelihood from the maximum (∆L) for penalties on
canonical eigenvalues (Pλ) and genetic correlations, shrinking partial auto-correlations
towards zero (Pπ(0)) or phenotypic values (Pπ(P)) and standard correlations towards
phenotypic values (Pρ(P)).

Penalty νa 100 sires 400 sires 1000 sires

ΣG ΣE ΣP ∆L ΣG ΣE ΣP ∆L ΣG ΣE ΣP ∆L

Mean values
Pλ 4 41 43 1 -0.6 31 19 0 -0.2 21 9 0 -0.1

6 49 46 1 -1.2 38 22 0 -0.5 27 12 0 -0.2
8 54 50 1 -1.9 42 24 0 -0.7 30 13 0 -0.4

12 58 51 1 -3.0 45 25 0 -1.4 33 13 0 -0.7
E 18 10 0 -0.2 22 7 0 -0.1 16 4 0 -0.1

Pπ(0) 4 47 13 1 -0.9 37 5 0 -0.3 27 2 0 -0.2
6 53 21 1 -1.8 43 9 0 -0.7 31 4 0 -0.4
8 56 26 2 -2.9 44 12 0 -1.1 32 6 0 -0.6

12 58 31 2 -5.1 45 16 1 -2.1 34 8 0 -1.1
E 56 29 3 -8.5 46 12 1 -1.9 35 5 0 -0.5

Pπ(P) 4 46 9 0 -0.7 37 3 0 -0.3 26 1 0 -0.2
6 52 15 0 -1.4 42 6 0 -0.7 31 2 0 -0.4
8 55 21 0 -2.0 44 8 0 -1.0 32 3 0 -0.6

12 57 28 1 -3.1 45 11 0 -1.6 33 5 0 -1.0
E 60 47 2 -8.7 50 22 1 -3.5 36 10 0 -1.7

Pρ(P) 4 8 11 0 -0.3 13 5 0 -0.2 11 2 0 -0.1
8 20 21 0 -1.3 24 10 0 -0.9 20 5 0 -0.6

12 28 26 0 -2.1 29 12 0 -1.7 23 6 0 -1.2
E 42 38 0 -4.9 39 19 0 -2.9 29 6 0 -1.8

Minimum values
Pλ 8 12 26 0 -2.9 5 7 0 -1.7 2 2 0 -1.1

12 1 13 0 -4.7 -11 11 -1 -3.0 -14 4 -1 -2.2
E 0 4 0 -0.7 1 1 0 -0.6 1 0 0 -0.4

Pπ(0) 8 16 11 0 -5.0 2 2 0 -3.0 1 0 0 -1.9
12 14 11 0 -8.7 -7 2 -1 -5.4 -13 0 -1 -3.4
E 18 7 -1 -16.4 1 3 -1 -11.6 1 1 0 -2.8

Pπ(P) 8 18 7 0 -3.5 4 1 0 -2.9 1 0 0 -2.6
12 16 12 0 -5.4 -1 2 0 -4.7 -5 0 0 -4.3
E 3 12 -1 -12.4 -34 7 0 -8.8 -54 3 0 -5.6

Pρ(P) 8 -27 7 -1 -3.6 -7 1 0 -3.9 1 0 0 -3.4
12 -36 10 -1 -5.2 -15 -5 -1 -7.2 -3 -9 -1 -6.2
E -33 6 -2 -8.6 -21 1 -1 -7.3 -27 -13 -2 -5.3

aEffective sample size of the Beta distribution; numerical values are ‘fixed’ values used while E denotes
values estimated from the data for each replicate, with means of 3.1, 5.9 and 8.5 (for 100, 400 and 1000 sires,
respectively) forPλ, 31.2, 16.0, 13.9 forPπ(0) and 45.4, 36.4 and 34.8 forPπ(P) and 34.0, 33.6. and 32.2 forPρ(P)
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Table 2: Selected mean and minimum values for percentage reduction in average loss for
estimates of genetic (ΣG), residual (ΣE) and phenotypic (ΣP) covariance matrices together
with mean change in unpenalised log likelihood from the maximum (∆L) for penalties
on both genetic and residual partial auto-correlations, shrinking towards zero (Pπ(0)) or
phenotypic values (Pπ(P))

Penalty νa 100 sires 400 sires 1000 sires

νG νE ΣG ΣE ΣP ∆L ΣG ΣE ΣP ∆L ΣG ΣE ΣP ∆L

Mean values
Pπ(0) 4 4 48 38 1 -0.9 37 16 0 -0.4 27 7 0 -0.2

8 4 56 43 2 -2.9 45 20 0 -1.1 33 10 0 -0.6
8 8 57 48 2 -2.8 45 23 1 -1.1 33 12 0 -0.6
E 4 57 46 3 -6.6 48 21 1 -1.3 35 10 0 -0.5
E νG 61 55 3 -5.3 50 27 1 -1.8 37 14 0 -0.8
E E 53 43 3 -9.1 47 24 1 -1.9 35 13 0 -0.5

Pπ(P) 4 4 47 37 0 -0.8 37 15 0 -0.4 27 7 0 -0.2
8 4 55 43 1 -2.2 44 19 0 -1.0 32 9 0 -0.6
8 8 56 47 1 -2.3 44 22 0 -1.1 32 11 0 -0.6
E 4 60 57 1 -8.2 51 31 1 -3.5 36 14 0 -1.6
E νG 61 60 2 -10.8 46 31 1 -6.5 33 18 0 -3.0
E E 61 60 2 -10.7 51 33 1 -4.9 36 15 0 -2.3

Minimum values
Pπ(0) 4 4 17 11 0 -1.5 2 1 0 -0.9 0 0 0 -0.6

8 4 17 17 1 -4.8 3 3 0 -2.9 1 1 0 -1.9
8 8 16 21 0 -4.6 3 4 0 -2.9 1 1 0 -2.0
E 4 16 11 0 -12.8 5 4 0 -5.9 1 2 0 -2.9
E νG 17 21 -1 -10.6 3 6 0 -6.2 2 2 0 -3.0
E E -70 -139 -5 -17.7 6 -69 -2 -12.3 2 -5 0 -2.9

Pπ(P) 4 4 20 10 0 -1.3 2 1 0 -1.0 0 0 0 -0.8
8 4 21 20 0 -3.7 4 3 0 -3.0 1 1 0 -2.7
8 8 20 23 0 -3.8 5 5 0 -3.1 1 1 0 -2.7
E 4 5 24 -1 -10.8 -28 9 0 -7.9 -48 3 0 -4.9
E νG -3 10 -1 -17.0 -32 -28 -3 -16.0 -65 1 -1 -8.5
E E -1 10 -2 -17.4 -30 -6 -2 -9.4 -64 -18 -2 -6.7

aEffective sample size of the Beta distribution for genetic (νG) and residual (νE) correlations; numbers
given are ‘fixed’ values used while E denotes values estimated from the data for each replicate
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Figure 3: Distribution of mean estimates of selected canonical eigenvalues comparing
results from unpenalized analyses and analyses imposing penalties on canonical eigen-
values (Pλ) and genetic, partial auto-correlations, shrinking towards phenotypic values
(Pπ(P)), with population values in the simulation. Both penalties employ a fixed, effective
sample size of ν = 8; results shown are for samples with 400 sire families. Central circles
give mean values across the 78 cases considered.

for penalties Pρ(P) and Pρ(0) and values for individual cases, are reported in Supplement
S1.

Genetic covariances

Overall, for fixed ESS there were surprisingly little differences between penalties Pλ,
Pπ(P) and Pπ(0), in mean PRIAL values achieved, especially for estimates of the genetic
covariance matrix. Correlations between PRIAL for Σ̂G from the three different penalties
ranged from 0.9 to unity, suggesting similar modes of action.

However, corresponding values for penalties on standard correlations were consistently
lower and, more importantly, some minimum values were negative, even for small values
of the ESS. As demonstrated in more detail in Supplement S1, this was due to marked
mismatches between population values and shrinkage targets (a.k.a. priors) for one of the
six correlation structures, which was deliberately included to test the robustness of the
penalties proposed. Transformation to partial auto-correlations produced a better match
and thus yielded penalties markedly less likely to have detrimental effects. While easier
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to interpret than PAC, penalties on standard correlations should just be used cautiously.
In the following, we consider only penalties on canonical eigenvalues and PAC.

Even for small values of ν there were worthwhile reduction in loss for estimates of ΣG,
especially for the smallest sample (s = 100). Means increased with increasing stringency
of penalization along with an increasing spread in results for individual cases, especially
for the largest sample size. This pattern was due to the range of population values for
genetic parameters used.

Moreover, for small samples or low ESS, it did not appear to be all that important whether
the priors on which the penalties were based approximately matched population values or
not: ’any’ penalty proved beneficial, i.e resulted in positive PRIAL for Σ̂G (except penalties
on standard correlations for some cases). For more stringent penalization, however, there
was little improvement (or even adverse effects) for the cases where there was a clear
mismatch. For instance, for Pλ for ν = 24 and s = 100 sires, there were two cases
with negative PRIAL for Σ̂G. Both of these had a cluster of high and low population
values for λi so that the assumption of a unimodal distribution invoked in deriving Pλ
was inappropriate and led to sufficient over-shrinkage to be detrimental. On the whole,
however, unfavourable effects of penalization were few and restricted to the most extreme
cases considered.

Paradoxically, PRIAL for Σ̂G were also low for cases where heritabilities were approxi-
mately the same and genetic and phenotypic correlations were similar, so that canonical
eigenvalues differed little from their mean (see S1). This could be attributed to the shape
of the penalty function, as illustrated in Figure 1, resulting in little penalization for values
close to the mode. In other words, these were cases were the prior did not quite match the
population values: while the assumption of a common mean for canonical eigenvalues
clearly held, that of a distribution on the interval [0, 1] did not. This can be rectified by
specifying a more appropriate interval. As the unpenalized estimates of λi are expected
to be overdispersed, their extremes may provide a suitable range to be used. Additional
simulations (not shown) for Pλ replaced values of a = 0 and b = 1 used to derive Pλ in
7) with a = max(0, λ̂9 − 0.05) and b = min(1, λ̂1 + 0.05) for each replicate, where λ̂1 and
λ̂9 represented the largest and smallest canonical eigenvalue estimate from a preliminary,
unpenalized analysis, respectively. This increased PRIAL for both Σ̂G and Σ̂E substantially
for these cases. However, as the proportion of such cases overall was low (see S1), overall
results were little affected.

Residual covariances

Some differences between penalties were apparent for ΣE. Pλ involved terms log(1 − λi)
(see (7)), i.e. the canonical eigenvalues of ΣE and ΣP. Hence, Pλ yielded substantial PRIAL
for estimates of both ΣG and ΣE, especially for the smaller samples where sampling vari-
ances and losses were high. Conversely, applying penalties on genetic PAC resulted in
some, but lower improvements in ΣE (except for large ν), but only as a by-product due
to negative sampling correlations between ΣG and ΣE. As shown in Table 2, imposing a
corresponding penalty on residual PACs in addition could increase the PRIAL in estimates
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of ΣE markedly without reduction in the PRIAL for ΣG, provided the ESS chosen corre-
sponded to a relatively mild degree of penalization. Shrinking towards phenotypic PAC
yielded somewhat less spread in PRIAL for ΣE than shrinking towards zero, accompanied
by smaller changes in logL(θ).

Phenotypic covariances

We argued above that imposing penalties based on the estimate of ΣP would allow us to
‘borrow strength’ because it typically is estimated more precisely than any of its compo-
nents. Doing so, we would hope to have little – and certainly no detrimental – effect on the
estimates of ΣP as, loosely speaking, we would expect penalized estimation to redress, to
some extent at least, any distortion in partitioning of ΣP due to sampling correlations. As
demonstrated in Figure 2, this was generally the case for fixed values of the ESS less than
about ν = 10 or 12, with negative PRIAL for estimates of ΣP for higher values flagging
over-penalization where population values for genetic parameters did not sufficiently
match the assumptions on which the penalties were based.

Canonical eigenvalues

Figure 3 shows the distribution of the largest and smallest canonical eigenvalues, contrast-
ing population values with mean estimates from unpenalized and penalized analyses for
a medium sample size and a fixed ESS of ν = 8. Results clearly illustrate the upwards bias
in estimates of the largest and downwards bias of the smallest eigenvalues. As expected,
imposing penaltyPλ reduced the mean of the largest and increased the mean of the small-
est eigenvalues, with some over-shrinkage, especially of the largest eigenvalue, evident.
In contrast, for the small value of ν = 8 chosen, the distribution of the largest values from
penalized and unpenalized analyses differed little for penaltyPπ(P), i.e. penalizing genetic
PAC did not affect the leading canonical eigenvalues markedly, acting predominately on
the smaller values. For more stringent penalties, however, some shrinkage of the leading
eigenvalues due to penaltiesPπ(P) andPπ(0) was evident; detailed results for selected cases
are given in Supplement S1.

Estimating ESS

Overall, attempts to estimate the appropriate value of ν from the data were not all that
successful. For Pλ, numerous cases yielded an estimate of ν close to the lower end of
the range allowed, i.e. virtually no penalty. Conversely, for Pπ(0) and Pπ(P) a substantial
number of cases resulted in estimates of ν close to the upper bound allowed. This increased
PRIAL (compared to fixed values for ν) for cases which approximately matched the priors
but caused reduced or negative PRIAL and substantial changes in logL(θ) otherwise. A
possible explanation was that the penalized likelihood and thus the estimate of ν, might
be dominated by ΣE. However, as shown in Table 2, neither estimating a value for ΣG (νG)
while fixing the ESS for ΣE (νE) or estimating a value for both (either separately or jointly,
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νG = νE) improved results greatly. Moreover, it yielded more cases for which penalization
resulted in substantial, negative PRIAL, especially for Pπ(P). Repeating selected analyses
using a sequential grid search to determine optimal values of ν gave essentially the same
results, i.e. results could not be attributed to inadequacies in the quadratic approximation
procedure.

DISCUSSION

Sampling variation is the bane of multivariate analyses in quantitative genetics. While
nothing can replace large numbers of observations with informative data and appropri-
ate relationship structure, we often need to obtain reasonably trustworthy estimates of
genetic parameters from relatively small data sets. This holds especially for data from
natural populations but is also relevant for new or expensive to measure traits in livestock
improvement or plant breeding schemes. We have shown that regularized estimation in
a maximum likelihood framework through penalization of the likelihood function can
provide ‘better’ estimates of covariance components, i.e. estimates that are closer to the
population values than those from standard, unpenalized analyses. This is achieved
through penalties targeted at reducing sampling variation.

Moreover, we have demonstrated that it is feasible to choose default values for the strength
of penalization which yield worthwhile reductions in loss for a wide range of scenarios
and are robust, i.e. are unlikely to result in penalties with detrimental effects, and are
technically simple. While such tuning-free approach may not yield a maximum reduction
in loss, it appears to achieve a substantial proportion thereof in most cases with modest
changes in the likelihood compared to the maximum of logL(θ) (without penalization).
In contrast to attempts to estimate a tuning factor, it does not require multiple additional
analyses to be carried out, and effects of penalization on computational requirements are
thus mostly unimportant. In addition, we can again make the link to Bayesian estima-
tion, where the idea of mildly or weakly informative priors has been gaining popularity.
Discussing priors for variance components in hierarchical models, Gelman (2006) advo-
cated a half-t or half-Cauchy prior with large scale parameter. Huang and Wand (2013)
extended this to prior distributions for covariance matrices which resulted in half-t priors
for standard deviations and marginal densities of correlations ρ proportional to a power of
(1 − ρ2). Chung et al. (2015) proposed a prior distribution for covariance matrices propor-
tional to a Wishart distribution with diagonal scale matrix and low degrees of belief and
used this to obtain a penalty on the likelihood function which ensured non-degenerate
estimates of variance components.

Results suggest that penalties on canonical eigenvalues or PAC assuming a Beta prior
with a conservative choice of ESS of ν = 4 to 10 will result in substantial improvements
in estimates of genetic covariance components for many cases, with little chance of detri-
mental effects for cases where the prior does not match the underlying population values.
Reanalyzing a collection of published heritability estimates from Mousseau and Roff
(1987), Kirkpatrick (2013; pers. comm.) suggested that their empirical distribution could
be modelled as Beta(1.14, 1.32), corresponding to v = 2.46 and mode of 0.3.
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We have presented two types of suitable penalties which fit well within the standard
framework of REML estimation. Both achieved overall comparable reductions in loss
but acted slightly differently, with penalties on correlations mainly affecting the smallest
eigenvalues of the covariance matrices while penalties on canonical eigenvalues acted on
both the smallest and largest values. Clearly it is the effect on the smallest eigenvalues
which have the largest sampling variances which contributes most to the overall reduction
in loss for a covariance matrix. An advantage of the penalty on correlations is that is
readily implemented for the parameterizations commonly employed in REML estimation,
and that it is straightforward to extend it to models with additional random effects and
covariance matrices to be estimated or cases where traits are recorded on distinct subsets
of individuals so that some residual covariances are zero. It also lends itself to scenarios
where we may be less interested in a reduction in sampling variance but may want to
shrink correlations towards selected target values.

Obviously, there are many other options. Mean reductions in loss obtained in a previ-
ous study, attempting to estimate tuning factors and using penalties derived assuming
a Normal distribution of canonical eigenvalues or Inverse Wishart distributions of co-
variance or correlation matrices, again were by and large of similar magnitude (Meyer,
2011). Additional simulations in this study (not shown) using the penalty of Chung et al.
(2015) again yielded comparable, if somewhat lower PRIAL to our penalties but required
that penalties were imposed on both ΣG and ΣE simultaneously. In addition, like that on
standard correlations such penalty was less robust, with more incidences of undesirable,
negative PRIAL.

REML estimates of covariance components are biased even if no penalty is applied,
as estimates are constrained to the parameter space, i.e. the smallest eigenvalues are
truncated at zero or, in practice, at a small positive value to ensure estimated matrices are
positive definite. As shown in Figure 3, penalization tended to increase the lower limits
for the smallest canonical eigenvalues and thus also for the corresponding values of the
genetic covariance matrix, thus adding to the inherent bias. Previous work examined
the bias due to penalization on specific genetic parameters in more detail (Meyer and
Kirkpatrick, 2010; Meyer, 2011), showing that changes from unpenalized estimates were
usually well within the range of standard errors. Employing a mild penalty with fixed ESS,
changes in logL(θ) from the maximum value in an unpenalized analysis were generally
small and well below significance levels (for the 90 parameters estimated in our simulation
study, minus twice the change would have needed to exceedχ2

0.05,90 = 113.1 to be significant
in a likelihood ratio test with an error probability of 5%). This suggests that additional
bias in REML estimates due to a mild penalty on the likelihood is of minor concern and
far outweighed by the benefits of a reduction in sampling variance.

Other opportunities to reduce sampling variation arise through more parsimonious mod-
elling, e.g. by estimating ΣG at reduced rank or assuming a factor-analytic structure.
Future work should examine the scope for penalization in this context and consider the
effects on model selection.
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IMPLEMENTATION

Penalized estimation for the penalties proposed for fixed values of ν has been imple-
mented in our mixed model package wombat1 (Meyer, 2007). For Pλ a parameterisation
to the elements of the canonical decomposition is used for ease of implementation, while
penalties on correlations use the standard parameterisation to elements of the Cholesky
factors of the covariance matrices to be estimated. Maximization of the likelihood is car-
ried out using the average information algorithm, combined with derivative-free search
steps where necessary to ensure convergence. Example runs for a simulated data set are
shown in Supplement S1.

Limited experience with applications so far has identified small to moderate effects
of penalization on computational requirements compared with an unpenalized analy-
sis using the same parameterisation, with the bulk of extra computations arising from
derivative-free search steps used to check for convergence. Future work should consider
an expectation-maximization algorithm for this purpose (Green, 1990). The parameter-
isation to the elements of the canonical decomposition, however, tended to increase the
number of iterations required even without penalization. Detrimental effects on conver-
gence behaviour when parameterising to eigenvalues of covariance matrices have been
reported previously (Pinheiro and Bates, 1996).

Convergence rates of iterative maximum likelihood analyses are dictated by the shape of
the likelihood function. Newton-Raphson type algorithms, including the average infor-
mation algorithm, involve a quadratic approximation of the likelihood. When this is not
the appropriate shape, the algorithm may become ‘stuck’ and fail to locate the maximum.
This happens quite frequently for (unpenalized) multivariate analyses comprising more
than a few traits when covariance matrices have eigenvalues close to zero, i.e. estimates
are at the boundary of the parameter space. For such cases, additional maximisation
steps using alternative schemes, such as expectation maximization type algorithms or a
derivative-free search, are usually beneficial. For small data sets, we expect the likeli-
hood surface around the maximum to be relatively flat. Adding additional ‘information’
through the assumed prior distribution (a.k.a. the penalty) then can improve convergence
by adding curvature to the surface and creating a more distinct maximum. Conversely,
too stringent a penalty may alter the shape of the surface sufficiently so that a quadratic
approximation may not be successful. Careful checking of convergence should be an
integral part of any multivariate analysis, penalized or not.

CONCLUSIONS

We propose a simple but effective modification of standard multivariate maximum like-
lihood analyses to ‘improve’ estimates of genetic parameters: Imposing a penalty on the
likelihood designed to reduce sampling variation will yield estimates that are on average
closer to the population values than unpenalized values. There are numerous choices

1available from http://didgeridoo.une.edu.au/km/wombat.php
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for such penalties. We demonstrate that those derived under the assumption of a Beta
distribution for scale-free function of the covariance components to be estimated, namely
generalized heritabilities (a.k.a canonical eigenvalues) and genetic correlations, are well
suited and tend not to distort estimates of the total, phenotypic variance. In addition,
this allows the stringency of penalization to be regulated by a single parameter, known
as effective sample size of the prior in a Bayesian context. Aiming at moderate rather
than optimal improvements in estimates, suitable default values for this parameters can
be identified which yield a mild penalty. This allows us to abandon the laborious quest
to identify tuning factors suited to particular analyses. Choosing the penalty to be suffi-
ciently mild can all but eliminate the risk of detrimental effects, and results in only minor
changes in the likelihood, compared to unpenalized analyses. Mildly penalized estima-
tion is recommended for multivariate analyses in quantitative genetics considering more
than a few traits to alleviate the inherent effects of sampling variation.
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APPENDIX

Derivatives of partial auto-correlations

Partial auto-correlations (see (3)) can be written as

πi j = ci j/
√

v1v3

with

ci j = ri j − r1
′R−1

2 r3

vx = 1 − r′xR−1
2 rx for x = 1, 3

This gives partial derivatives of πi j with respect to parameters θk and θm
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Derivatives of the components are
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Decompose the correlation matrix as R = S−1ΣS−1 with S = Diag{si} the diagonal matrix
of standard deviations for covariance matrix Σ. This gives the required derivatives of the
correlation matrix
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Finally, assuming derivatives of variances σii are available, the required derivatives of
standard deviations si =
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When estimating elements of Σ directly, only ∂σii/∂σii = 1 are nonzero. Derivatives of
covariance matrices when employing a parameterisation to the elements of their Cholesky
factors are given by Meyer and Smith (1996).

Population values

Population values for the 13 sets of heritabilities used are summarized in Table 3. The six
constellations of genetic (rG ij) and residual (rE ij) correlations between traits i and j (i , j)
were obtained as:

I) rG ij = rE ij = 0,
II) rG ij = 0.5 and rE ij = 0.3,

III) rG ij = 0.7|i− j| and rE ij = 0.5 + 0.05i (−1) j,
IV) rG ij = −0.7|i− j| + 0.02i and rE ij = 0.5 + (−0.2)|i− j|,
V) rG ij = rE ij = 0.7 for i, j ∈ [3, 7] and rG ij = rE ij = 0.3 otherwise, and
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VI) rG ij = rE ij = 0.6 for |i − j| = 1, and rG ij = rE ij computed from (4) with πi j = 0.4
otherwise.

Phenotypic variances were equal to 1 throughout for I) and set to 2, 1, 3, 2, 1, 2, 3, 1 and 2
for traits 1 to 9 otherwise.

Table 3: Population values (×100) for sets of heritabilities

Set Trait number

1 2 3 4 5 6 7 8 9

A 40 40 40 40 40 40 40 40 40
B 60 55 50 45 40 35 30 25 20
C 90 60 50 50 30 30 20 20 10
D 75 70 60 50 40 30 20 10 5
E 70 70 70 40 40 40 10 10 10
F 20 20 20 20 20 20 20 20 20
G 35 30 25 20 20 20 15 10 5
H 60 50 10 10 10 10 10 10 10
I 50 50 20 15 15 10 10 5 5
J 80 40 10 10 10 10 10 5 5
K 30 30 25 25 20 15 15 10 10
L 35 30 30 20 20 15 15 15 10
M 10 10 10 30 30 30 50 50 50
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