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Abstract

Motivation:

Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease
conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping
steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing
that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-
effective strategy of profiling only ˜1,000 carefully selected landmark genes and relying on computational methods to
infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program
is currently based on linear regression, limiting its accuracy since it does not capture complex nonlinear relationship
between expression of genes.

Results:

We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression
of landmark genes. We used the microarray-based GEO dataset, consisting of 111K expression profiles, to train our
model and compare its performance to those from other methods. In terms of mean absolute error averaged across
all genes, deep learning significantly outperforms linear regression with 15.33% relative improvement. A gene-wise
comparative analysis shows that deep learning achieves lower error than linear regression in 99.97% of the target
genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which
consists of 2,921 expression profiles. Deep learning still outperforms linear regression with 6.57% relative improvement,
and achieves lower error in 81.31% of the target genes.

Availability:

D-GEX is available at https://github.com/uci-cbcl/D-GEX.

Contact:

xhx@ics.uci.edu

1 Introduction

A fundamental problem in molecular biology is to characterize the gene expression patterns of cells under various biological
states. Gene expression profiling has been historically adopted as the tool to capture the gene expression patterns in
cellular responses to diseases, genetic perturbations and drug treatments. The Connectivity Map (CMap) project was
launched to create a large reference collection of such patterns and has discovered small molecules that are functionally
connected using expression pattern-matching (e.g., HDAC inhibitors and estrogen receptor modulators) [1].

Although recent technological advances, whole-genome gene expression profiling is still too expensive to be used by
typical academic labs to generate a compendium of gene expression over a large number of conditions, such as large
chemical libraries, genome-wide RNAi screening and genetic perturbations. The initial phase of the CMap project
produced only 564 genome-wide gene expression profiles using Affymetrix GeneChip microarrays [1].

Despite the large number of genes (˜22,000) across the whole human genome, most of their expression profiles are
known to be highly correlated. Systems biologists have leveraged this idea to construct gene regulatory networks and
to identify regulator and target genes [2]. Researchers from the LINCS program (http://www.lincsproject.org/)
analyzed the gene expression profiles from the CMap data using principal component analysis. They found that a set of
˜1,000 carefully chosen genes can capture approximately 80% of the information in the CMap data (http://support.
lincscloud.org/hc/en-us/articles/202092616-The-Landmark-Genes). Motivated by this observation, researchers
have developed the L1000 Luminex bead technology to measure the expression profiles of these ˜1,000 genes, called
the landmark genes (http://support.lincscloud.org/hc/en-us/articles/202092616-The-Landmark-Genes), with
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a much lower cost (˜$5 per profile) [3]. Therefore, researchers can use the expression signatures of landmark genes to
characterize the cellular states of samples under various experimental conditions. If researchers are interested in the
expression of a specific gene other than landmark genes, the expression profiles of the remaining ˜21,000 genes, called the
target genes, can be then computationally inferred based on landmark genes and existing expression profiles. With the
L1000 technology, the LINCS program has generated ˜1.3 million gene expression profiles under a variety of experimental
conditions.

However, computationally inferring the expression profiles of target genes based on landmark genes is challenging. It
is essentially a large scale multi-task machine learning problem, with the target dimension (˜21,000) significantly greater
than the feature dimension (˜1,000). The LINCS program currently adopts linear regression as the inference method,
which trains regression models independently for each target gene based on the Gene Expression Omnibus (GEO) [4]
data. While linear regression is highly scalable, it inevitably ignores the nonlinearity within gene expression profiles that
has been observed [5]. Kernel machines can represent dexterous nonlinear patterns and have been applied to similar
problems [6]. Unfortunately, they suffer from poor scalability to growing data size. Thus, a machine learning method
enjoying both scalability and rich representability is ideal for large scale multi-task gene expression inference.

Recent successes in deep learning on many machine learning tasks have demonstrated its power in learning hierarchical
nonlinear patterns on large scale datasets [7]. Deep learning in general refers to methods that learn a hierarchical
representation of the data through multiple layers of abstraction (e.g. multi-layer feedforward neural networks). A
number of new techniques have been developed recently in deep learning, including the deployment of General-Purpose
Computing on Graphics Processing Units (GPGPU) [8, 9], new training methodologies, such as dropout training [10, 11]
and momentum method [12]. With these advances, deep learning has achieved state-of-the-art performances on a wide
range of applications, both in traditional machine learning tasks such as computer vision [13], natural language processing
[14], speech recognition [15], and in natural science applications such as exotic particles detection [16], protein structure
prediction [17], RNA splicing prediction [18] and pathogenic variants identification [19].

Here we present a deep learning method for gene expression inference (D-GEX). D-GEX is a multi-task multi-layer
feedforward neural network. We evaluated the performances of D-GEX, linear regression (with and without different
regularizations) and k-nearest neighbor (KNN) regression on two types of expression data, the microarray expression
data from the GEO and the RNA-Seq expression data from the Genotype-Tissue Expression (GTEx) project [20, 21].
GPU computing was used to accelerate neural network training so that we were able to evaluate a series of neural networks
with different architectures. Results on the GEO data show that D-GEX consistently outperforms other methods in terms
of prediction accuracy. Results on the GTEx data further demonstrate D-GEX, combined with the dropout regularization
technique, achieves the best performance even where training and prediction were performed on datasets obtained from
different platforms (microarray verse RNA-Seq). Such cross platforms generalizability implies the great potential of D-
GEX to be applied to the LINCS program where training and prediction were also done separately on the microarray
data and the L1000 data. Finally, we attempted to explore the internal structures of the learned neural networks with
two different strategies and tried to interpret the advantages of deep learning compared to linear regression.

2 Methods

In this section, we first introduce three expression datasets we used in this study and formulate gene expression inference
as a supervised learning problem. We then present D-GEX for this problem and explain a few key deep learning techniques
to train D-GEX. Finally, we introduce several common machine learning methods that we used to compare with D-GEX.

2.1 Datasets

1. The GEO expression data was curated by the Broad Institute from the publicly available GEO database. It consists
of 129,158 gene expression profiles from the Affymetrix microarray platform. Each profile comprises of 22,268 probes,
corresponding to the 978 landmark genes and the 21,290 target genes. The original GEO data was accessed from the
LINCS Cloud (http://www.lincscloud.org/), which has been quantile normalized into a numerical range between 4 and
15. Some of the expression profiles in the GEO dataset are biological or technical replicates. To avoid complications in
the learning procedure, we removed duplicated samples (see Supplementary), leaving 111,009 profiles in the end.

2. The GTEx expression data consists of 2,921 gene expression profiles of various tissue samples obtained from the
Illumina RNA-Seq platform [21]. The expression level of each gene was measured based on Gencode V12 annotations
[21] in the format of Reads Per Kilobase per Million (RPKM).

3. The 1000 Genomes expression data consists of 462 gene expression profiles of lymphoblastoid cell line samples
from the Illumina RNA-Seq platform [22]. The expression level of each gene was also measured based on Gencode V12
annotations [22] in the format of RPKM.

Since the gene expression values of the microarray platform and the RNA-Seq platform were measured in different units
(probes vs Gencode annotations) and different numerical scales, we quantile normalized the three expression datasets
jointly to retain the maximum information cross platforms. Because one Gencode annotation may include multiple
microarray probes, 943 landmark genes and 9,520 target genes in terms of Gencode annotations were left after joint
quantile normalization. Details of joint quantile normalization are given in Supplementary. Finally, all the datasets were
standardized by subtracting the mean and dividing by the standard deviation of each gene.
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2.2 Gene expression inference as multi-task regression

Assume there are L landmark genes, T target genes, and N training samples (i.e. profiles); the training dataset is
expressed as {xi,yi}Ni=1, where xi ∈ RL denotes the expression values of landmark genes and yi ∈ RT denotes the
expression values of target genes in the i-th sample. Our goal is to infer the functional mapping F : RL → RT that fits
{xi,yi}Ni=1, which can be viewed as a multi-task regression problem.

We use Mean Absolute Error (MAE) to evaluate the predictive performance at each target gene t,

MAE(t) =
1

N ′

N ′∑
i=1

∣∣yi(t) − ŷi(t)
∣∣ (1)

where N ′ is the number of testing samples and ŷi(t) is the predicted expression value for target gene t in sample i. We
define the overall error as the average MAE over all target genes, and use it to evaluate the general predictive performance.

For the microarray platform, we used the GEO data for training, validation and testing. Specifically, we randomly
partitioned the GEO data into ˜80% for training (88,807 samples denoted as GEO-tr), ˜10% for validation (11,101
samples denoted as GEO-va) and ˜10% for testing (11,101 samples denoted as GEO-te). The validation data GEO-va
was used to do model selection and parameter tuning for all the methods.

For the RNA-Seq platform, we used GEO-tr for training, the 1000 Genomes data for validation (denoted as 1000G-va),
and the GTEx data for testing (denoted as GTEx-te). The validation data 1000G-va was used to do model selection and
parameter tuning for all the methods.

2.3 D-GEX

D-GEX is a multi-task multi-layer feedforward neural network. It consists of one input layer, one or multiple hidden
layers, and one output layer. All the hidden layers have the same number of hidden unites. Units between layers are all
fully connected. A hidden unit j in layer l takes the sum of weighted outputs plus the bias from the previous layer l− 1
as the input, and produces a single output olj using a nonlinear activation function f .

olj = f(
H∑
i=1

wl−1
i,j ol−1

i + bl−1
j ) (2)

H is the number of hidden units. {wl−1
i,j , bl−1

j }Hi=1 are the weights and the bias associated with unit j that need to be
learned. We adopt the hyperbolic tangent (TANH) activation function to hidden units, which naturally captures the
nonlinear patterns within the data. Linear activation function is applied to output units for the regression purpose. The
loss function for training is the sum of mean squared error at each output unit, namely,

L =
T∑

t=1

[
1

N

N∑
i=1

(
yi(t) − ŷi(t)

)2]
(3)

D-GEX contains 943 units in the input layer corresponding to the 943 landmark genes. Ideally, we should also
configure D-GEX with 9,520 units in the output layer corresponding to the 9,520 target genes. However, each of our
GPUs has only 6 GB of memory, thus we cannot configure hidden layers with sufficient number of hidden units if all
the target genes are included in one output layer. Therefore, we randomly partitioned the 9,520 target genes into 2 sets
that each contains 4,760 target genes. We then built 2 separate neural networks with each output layer corresponding to
one half of the target genes. With this constraint, we were able to build a series of different architectures containing 1˜3
hidden layers each and each hidden layer contains 3,000, 6,000 or 9,000 hidden units. Supplementary Figure S1 shows an
example architecture of D-GEX with 3 hidden layers.

Training D-GEX follows the standard back-propagation algorithm [23] and mini-batch gradient descent, supplemented
with advanced deep learning techniques. Detailed parameter configurations are given in Supplementary Table S1. For
more descriptions about neural networks and their background please see [24]. We discuss a few key training techniques
as follows:

1. Dropout is a technique to perform model averaging and regularization [10] for neural networks. At the training
time, each unit along with its edges is temporarily dropped out with probability p for each training sample. Then the
forward- and back-propagation are performed on a particularly “thinned” network. For an architecture with n units

performing dropout, there are O
(

1
(1−p)n

)
such thinned networks. At the testing time, all the units are retained with

weights multiplied by 1 − p. Therefore, dropout can be seen as model averaging of exponentially many different neural
networks in an approximate but efficient framework. Dropout has been shown to suppress co-adaptation among units
and force each unit to learn patterns that are more generalizable [25]. The dropout rate p serves as a tuning parameter
that controls the intense of regularization. We applied dropout to all the hidden layers of D-GEX except for the outgoing
edges from the input layer. The dropout rate was set to [0%, 10%, 25%] to compare the effect of different degrees of
regularization.

2. Momentum method is a technique to accelerate gradient-based optimization. It accumulates a velocity in directions
of gradients of the loss function across iterations and uses the velocity instead of the gradient to update parameters [12].
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Given a loss function L with respect to the parameters Θ of the neural network, the momentum is given by

V (k+1) = µV (k) − η(k)∇L(Θ(k))

Θ(k+1) = Θ(k) + V (k+1) (4)

where µ ∈ [0, 1] is the momentum coefficient, η is the learning rate, V is the velocity, and ∇L(Θ) is the gradient of the
loss function. Momentum method has been shown to improve the convergence rate particularly for training deep neural
networks [12].

3. Normalized initialization is a technique to initialize the weights of deep neural networks [26]. The weights of a unit
is sampled from a uniform distribution defined by,

W ∼ U

[
−

√
6√

ni + no
,

√
6√

ni + no

]
(5)

where ni, no denote the number of fan-ins and fan-outs of the unit. It is designed to stabilize the variances of activation
and back-propagated gradients during training [26]. The uniform distribution of the output layer of D-GEX was set to
be within a smaller range of [−1× 10−4, 1× 10−4] as it was adopted with the linear activation function.

4. Learning rate was initialized to 5× 10−4 or 3× 10−4 depending on different architectures, and was decreased
according to the training error on a subset of GEO-tr for monitoring the training process. Specifically, the training error
was checked after each epoch, if the training error increased, the learning rate was multiplied by a decay factor of 0.9
until it reached a minimum learning rate of 1× 10−5.

5. Model selection was performed based on GEO-va for the GEO data and 1000G-va for the GTEx data. Training
was run for 200 epochs. The model was evaluated on GEO-va and 1000G-va after each epoch, and the model with the
best performance was saved respectively.

D-GEX was implemented based on two Python libraries, Theano [27] and Pylearn2 [28]. Training was deployed on
an Nvidia GTX TITAN Z graphics card with dual GPUs. The largest architecture of D-GEX (3 hidden layers with 9,000
hidden units in each hidden layer) contains ˜427 million parameters. Training half of the target genes with the largest
architecture took around 6 hours. D-GEX is publicly available at https://github.com/uci-cbcl/D-GEX.

2.4 Linear regression

Linear regression (LR) for multi-task gene expression inference trains a model, F(t)(x) = wT
(t)x+ b(t), independently for

each target gene t. w(t) ∈ RL, b(t) ∈ R are the model parameters associated with each target gene t, and

(
w(t), b(t)

)
= argmin

w,b

1

N

N∑
i=1

(
yi(t) −wT

(t)xi − b(t)

)2

(6)

L1 or L2 penalties can be further introduced for regularization purpose. In these cases,

(
w(t), b(t)

)
= argmin

w,b

1

N

N∑
i=1

(
yi(t) −wT

(t)xi − b(t)

)2

+ λ∥w(t)∥1 (7)

or

(
w(t), b(t)

)
= argmin

w,b

1

N

N∑
i=1

(
yi(t) −wT

(t)xi − b(t)

)2

+ λ∥w(t)∥2 (8)

Linear regression (6) is currently adopted by the LINCS program. In our study, we evaluated both (6) and (7), (8) using
scikit-learn [29]. The regularization parameter λ was tuned based on the performance on GEO-va and 1000G-va.

2.5 K-nearest neighbor regression

K-nearest neighbor (KNN) regression is a non-parametric and instance-based method. In standard KNN regression, a
spatial data structure T such as the KD tree [30] is built for training data in the feature space. Then, for any testing
data, the k nearest training samples based on a certain distance metric are queried from T . The average of their values
is computed as the prediction.

However, the standard KNN regression may be biased when duplicated samples frequently exist in the data, such
as the GEO microarray data. Therefore, in gene expression inference, a commonly adopted alternative is to query the
k nearest genes rather than the k nearest samples. Specifically, for each target gene, its euclidean distances to all the
landmark genes were calculated using the training samples. The k landmark genes with the least euclidean distances are
determined as the k nearest landmark genes of the target gene. Then the average of their expression values in the testing
samples is computed as the prediction for the target gene. Such algorithm is also consistent with the basic assumption of
the LINCS program that, the expression of target genes can be computationally inferred from landmark genes. We call
this algorithm the gene-based KNN (KNN-GE).
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Due to the non-parametric and instance-based nature, KNN-GE does not impose any prior assumptions on the
learning machine. Therefore, it is very flexible to model nonlinear patterns within the data. However, as performing
prediction involves building and querying data structures that have to keep all the training data, KNN-GE suffers from
poor scalability to growing data size and dimension. We evaluated KNN-GE in our study. The optimal k was selected
based on the performance on GEO-va and 1000G-va.

3 Results

We have introduced two types of gene expression data, namely the GEO microarray data and the GTEx/1000G RNA-
Seq data. We have formulated the gene expression inference as a multi-task regression problem, using the GEO data for
training and both the GEO and the GTEx data for testing. We have also described our deep learning method D-GEX,
and another two methods, linear regression and k-nearest neighbour regression, to solve the problem. Next, we show the
predictive performances of the three methods on both the GEO data and the GTEx data.

3.1 Performance on the GEO data

LR
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Figure 1: The overall errors of D-GEX-10% with different architectures on GEO-te. The performance of LR is also
included for comparison.

Table 1: The overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX-10% with different architectures on GEO-
te. Numerics after “±” are the standard deviations of prediction errors over all target genes. The best performance
of D-GEX-10% is shown in bold font. The performance selected using model selection by GEO-va of D-GEX-10% is
underscored.

# of hidden units 3000 6000 9000

#
of

h
id
d
en

la
ye
rs

1 0.3421±0.0858 0.3337±0.0869 0.3300±0.0874
2 0.3377±0.0854 0.3280±0.0869 0.3224±0.0879
3 0.3362±0.0850 0.3252±0.0868 0.3204±0.0879
LR 0.3784±0.0851
LR-L1 0.3782±0.0844
LR-L2 0.3784±0.0851
KNN-GE 0.5866±0.0698

D-GEX achieves the best performance on both GEO-va and GEO-te with 10% dropout rate (denoted as D-GEX-10%).
Figure 1 and Table 1 show the overall performances of D-GEX-10% and the other methods on GEO-te. The complete
performances of D-GEX with other dropout rates on both GEO-va and GEO-te are given in Supplementary Table S2
and S3. The largest architecture of D-GEX-10% (3 hidden layers with 9,000 hidden units in each hidden layer, denoted
as D-GEX-10%-9000×3) achieves the best performance on both GEO-va and GEO-te. The relative improvements of D-
GEX-10%-9000×3 are 15.33% over LR and 45.38% over KNN-GE. Besides D-GEX-10%-9000×3, D-GEX-10% consistently
outperforms LR and KNN-GE on all the other architecture as shown in Figure 1. One possible explanation is that deep
architectures enjoy much richer representability than shallow architectures, thus learning complex features is much easier
from the perspective of optimization [31].

D-GEX also outperforms LR and KNN-GE for almost all of the target genes. Figure 2 shows the density plots of the
predictive errors of all the target genes by LR, KNN-GE and GEX-10%-9000×3. Figure 3 shows a gene-wise comparative
analysis between D-GEX-10%-9000×3 and the other two methods. D-GEX-10%-9000×3 outperforms LR in 99.97% of
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Figure 2: The density plots of the predictive errors of all the target genes by LR, KNN-GE and GEX-10%-9000×3 on
GEO-te.

the target genes and outperforms KNN-GE in all the target genes. These results seem to suggest that D-GEX captured
some intrinsic nonlinear features within the GEO data where LR and KNN-GE didn’t.

Regularization methods do not improve LR significantly. Table 1 shows the relative improvements of LR-L1 and
LR-L2 over LR are 0.05% and 0.00%. Thus, it is most likely that LR is underfitting which means linear model is not
complex enough to represent the data. Therefore, regularization techniques that reduce model complexity are not helpful.

KNN-GE performs significantly worse than the other methods. One possible explanation is that the k nearest landmark
genes for each target gene based on GEO-tr and GEO-te may not be fully consistent.
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D−GEX

LR

9517 dots (99.97%) above diagonal

(a)
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N
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9520 dots (100%) above diagonal

(b)

Figure 3: The predictive errors of each target gene by GEX-10%-9000×3 compared to LR and KNN-GE on GEO-te.
Each dot represents 1 out of the 9,520 target genes. The x-axis is the MAE of each target gene by D-GEX, and the y-axis
is the MAE of each target gene by the other method. Dots above diagonal means D-GEX achieves lower error compared
to the other method. (a)D-GEX verse LR; (b)D-GEX verse KNN-GE.

3.2 Performance on the GTEx data

Results on the GEO data demonstrate the significant improvement of D-GEX over LR and KNN-GE on the microarray
platform. Yet in practice, the LINCS program trains regression models with the GEO data and performs gene expression
inference on the L1000 data, which was generated with a different platform. Whether the significance of D-GEX preserves
cross platforms requires further investigation. To explore the cross platforms scenario, we trained D-GEX with GEO-tr
and evaluated its performances on GTEx-te which was generated with the RNA-Seq platform [20].

However, new challenges arise in this scenario as the intrinsic distributions of the training data and the testing data
may be similar but not exactly equivalent. Particularly in gene expression profiling, discrepancies between microarray
and RNA-Seq data have been systematically studied [32]. Such discrepancies bring specific challenges to deep learning as
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Figure 4: The predictive errors of each target gene by GEX-25%-9000×2 compared to LR and KNN-GE on GTEx-te.
Each dot represents 1 out of the 9,520 target genes. The x-axis is the MAE of each target gene by D-GEX, and the y-axis
is the MAE of each target gene by the other method. Dots above diagonal means D-GEX achieves lower error compared
to the other method. (a)D-GEX verse LR; (b)D-GEX verse KNN-GE.

the complex features it learns in the training data may not generalize well to the testing data, which leads to overfitting
and reduces the prediction power. Therefore, more aggressive regularization may be necessary for deep learning to retain
the maximum commonality cross platforms while avoiding platform-dependent discrepancies.

D-GEX-25%-9000×2 (with 25% dropout rate, two hidden layers with 9000 hidden units in each layer) achieves the best
performance on both 1000G-va and GTEx-te. The relative improvements of D-GEX-25%-9000×2 are 6.57% over LR and
32.62% over KNN-GE. Table 2 shows the overall performances of D-GEX-25% and the other methods on GTEx-te. The
complete performances of D-GEX with other dropout rates on both 1000G-va and GTEx-te are given in Supplementary
Table S4 and S5.

Table 2: The overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX-25% with different architectures on GTEx-
te. Numerics after “±” are the standard deviations of prediction errors over all target genes. The best performance
of D-GEX-25% is shown in bold font. The performance selected using model selection by 1000G-va of D-GEX-25% is
underscored.

# of hidden units 3000 6000 9000

#
o
f

h
id
d
en

la
ye
rs

1 0.4507±0.1231 0.4428±0.1246 0.4394±0.1253
2 0.4586±0.1194 0.4446±0.1226 0.4393±0.1239
3 0.5160±0.1157 0.4595±0.1186 0.4492±0.1211
LR 0.4702±0.1234
LR-L1 0.5667±0.1271
LR-L2 0.4702±0.1234
KNN-GE 0.6520±0.0982

D-GEX still outperforms LR and KNN-GE in most of the target genes. Figure 4 also shows the gene-wise comparative
analysis between D-GEX-25%-9000×2 and the other two methods. D-GEX-25%-9000×2 outperforms LR in 81.31% of
the target genes and outperforms KNN-GE in 95.54% of the target genes. Therefore, the significance of D-GEX on the
microarray platform basically preserves on the RNA-Seq platform. However, unlike the results on the GEO data, there
is a noticeable number of target genes that D-GEX gets higher error than the other methods on the GTEx data. Thus,
the expression patterns of these target genes D-GEX learned on the GEO data may be platform dependent and do not
generalize well to the GTEx data. It is noteworthy that although the general performance of KNN-GE is still poor on
the GTEx data, its errors on some of the target genes are significantly lower than D-GEX (dots in bottom right part
of Figure 4(b)). This is likely due to the gene-based aspect of KNN-GE that the numerical values predicted on target
genes were not computed based on GEO-tr but based on GTEx-te itself. Therefore, the expression patterns captured by
KNN-GE may be cross platforms invariant.
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Figure 5: The overall error decreasing curves of D-GEX-9000×2 on GTEx-te with differant dropout rates. The x-axis is
the training epoch and the y-axis is the overall error. The overall error of LR is also included for comparison.

Dropout regularization effectively improves the performance of D-GEX on the GTEx data as shown in Figure 5.
Without dropout, the overall error of D-GEX-9000×2 on GTEx-te slightly decreases at the beginning of training and
then quickly increases, clearly implying overfitting. However, with 25% dropout rate, D-GEX-9000×2 achieves the best
performance on both 1000G-va and GTEx-te.

3.3 Interpreting the learned neural network

We have demonstrated the performance of our deep learning method D-GEX on both the GEO microarray data and
the GTEx RNA-Seq data. D-GEX outperforms linear regression on both types of expression data. On the other hand,
interpreting the learned linear model from linear regression is straightforward as coefficients with large absolute value
indicate strong dependencies between landmark genes and target genes. But for deep learning, currently there are no
established methods to interpret the neutral networks learned from gene expression data. Next, we attempt to explore
the learned neural networks with two strategies, a) visualizing the major weights of the learned neural networks and b)
examining the nonlinearity captured by the hidden layers.

1. Visualizing the major weights is a strategy inspired by the method of interpreting linear model that coefficients
with large absolute value indicate strong dependencies between inputs and targets. Similarly, we examined the weights
of the learned neural network of D-GEX-10%-3000×1 that was trained based on half of the target genes of GEO-tr and
GEO-va. The weights from input to hidden units were randomly initialized with dense connections. However, after
learning, the connections became so sparse that each input unit was primarily connected to only a few hidden units with
the weights to the rest of hidden units decayed to near zero. Similar patterns were also observed for connections from the
hidden to the output layer. Therefore, we created a visualization map of the learned connections by removing those with
weights near zeros. Specifically, for each input unit (landmark gene), we calculated the mean and the standard deviation
of the weights of the connections between the input unit and the 3,000 hidden units. Then we only retained the major
weights that were 4 standard deviations away from the mean. Likewise, we used a threshold of 5 standard deviations to
retain the major weights of the connections between the output units (target genes) and the hidden units. We colored
the weights differently so that red indicates positive weights and blue indicates negative weights. Supplementary Figure
S3 shows the final visualization map. From the visualization map, we noticed two interesting observations: a) Most of
the units in the input layer and the output layer have connections to the hidden layer. In contrast, only a sparse number
of units in the hidden layer have connections to the input and the output layer. Specially, the connections to the output
layer are dominated by a few hidden units, which we refer to as the “hub units”. b) Lots of the “hub units” seem to have
only one type of connections to the output layer, e.g. some of them only have positive connections (red edges), while
some other units only have negative connections (blue edges). It seems that these “hub units” may have captured some
strong local correlations between the landmark genes and target genes.

2. Examining the nonlinearity is a strategy to show that the intermediate hidden layers have captured some nonlinear-
ity within the raw expression data. The neural networks we used are quite complex, containing several layers and many
hidden units, each of which is activated through a nonlinear transfer function. To dissect the nonlinear contribution, we
took a relatively simple approach by focusing on the representation (activations) from the last hidden layer. Each of the
hidden unit in that layer can be viewed as a feature generated through some nonlinear transformation of the landmark
genes. We then studied whether a linear regression based on these nonlinear features can achieve better performance
than a linear regression based solely on the landmark genes. For this purpose, we measured the linear correlation be-
tween the activations from the last hidden layer of D-GEX-10%-9000×3 and the final targets (the expression of target
genes), and compared it with the linear correlation between the raw inputs and the final targets. Normally, coefficient
of determination (R2) is used to compare the fitnesses of different linear models. Since the dimensionality has changed
from the raw inputs to the transformed activations, we used adjusted R2 [33] to specifically account for the change in
dimensionality. We calculated the adjusted R2 of both the raw inputs and the transformed activations for each target
gene based on GEO-tr. Supplementary Figure S2 shows the gene-wise comparison of adjusted R2 between the raw inputs
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and the transformed activations. The transformed activations have a larger adjusted R2 than the raw inputs in 99.99% of
the target genes. It seems to indicate that the intermediate hidden layers have systematically captured some nonlinearity
within the raw expression data that would be ignored by simple linear regression. After the nonlinear transformation
through the hidden layers, the activations fit the final targets significantly better than the raw inputs using a simple
linear model. The analysis seems to suggest that most of the target genes benefit from the additional nonlinear features,
although to a different extent as characterized by the adjusted R2.

3.4 Inference on the L1000 data

The LINCS program has used the L1000 technology to measure the expression profiles of the 978 landmark genes under
a variety of experimental conditions. It currently adopts linear regression to infer the expression values of the 21,290
target genes based on the GEO data. We have demonstrated our deep learning method D-GEX achieved significantly
improvement on prediction accuracy over linear regression on the GEO data. Therefore, we have re-trained GEX-10%-
9000×3 using all the 978 landmark genes and the 21,290 target genes from the GEO data and inferred the expression
values of unmeasured target genes from the L1000 data. The full dataset consists of 1,328,098 expression profiles and
can be downloaded at https://cbcl.ics.uci.edu/public_data/D-GEX/l1000_n1328098x22268.gctx. We hope this
dataset will be of great interest to researchers who are currently querying the LINCS L1000 data.

4 Discussion

Revealing the complex patterns of gene expression under numerous biological states requires both cost-effective profiling
tools and powerful inference frameworks. While the L1000 platform adopted by the LINCS program can efficiently profile
the ˜1,000 landmark genes, the linear-regression-based inference does not fully leverage the nonlinear features within
gene expression profiles to infer the ˜21,000 target genes. We presented a deep learning method for gene expression
inference that significantly outperforms linear regression on the GEO microarray data. With dropout as regularization,
our deep learning method also preserves cross platforms generalizability on the GTEx RNA-Seq data. In summary, deep
learning provides a better model than linear regression for gene expression inference. We believe it achieves more accurate
predictions for target gene expressions of the LINCS dataset generated from the L1000 platform.

Interpreting the internal representation of deep architectures is notoriously difficult. Unlike other machine learning
tasks such as computer vision, where we can visualize the learned weights of hidden units as meaningful image patches,
interpreting the deep architectures learned by biological data requires novel thinking. We attempted to interpret the
internal structures of the neural networks learned from gene expression data using strategies that were inspired by linear
model. Yet, more systematic studies may require advanced computational frameworks that are specifically designed for
deep learning. Unsupervised feature learning methods, such as autoencoder [34] and restricted Boltzmann machine [35]
may provide some insights on this problem.

In the current setting, target genes were randomly partitioned into multiple sets, and each set was trained separately
using different GPUs due to hardware limitations. Alternatively, we could first cluster target genes based on their
expression profiles, and then partition them accordingly rather than randomly. The rationale is that target genes sharing
similar expression profiles share weights in the context of multi-task neural networks. Ultimately, the solution is to
jointly train all target genes, either by using GPUs with larger memory such as the more recent Nvidia Tesla K80, or by
exploiting multi-GPU techniques [9].
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