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ABSTRACT. Hypothesis weighting is a powerful approach for improving the power of data analyses that employ
multiple testing. However, in general it is not evident how to choose the weights. We describe IHW, a method for
data-driven hypothesis weighting that makes use of informative covariates that are independent of the test statistic
under the null, but informative of each test’s power or prior probability of the null hypothesis. Covariates can be
continuous or categorical and need not fulfill any particular assumptions. The method increases statistical power
in applications while controlling the false discovery rate (FDR) and produces additional insight by revealing
the covariate-weight relationship. Independent hypothesis weighting is a practical approach to discovery of
associations in large datasets.

INTRODUCTION

Multiple testing is an important part of many high-throughput data analysis workflows. A common
objective is control of the FDR, i. e., the expected fraction of false positives among all positives. Algorithms
exist that achieve this objective by working solely off the list of p-values from the hypothesis tests [1–
5]. However, such an approach tends to be suboptimal when the individual tests differ in their statistical
properties, such as sample size, true effect size, signal-to-noise ratio, or prior probability of being false.

For example, in RNA-seq differential gene expression analysis, each hypothesis is associated with a
different gene, and because of differences in the number of reads mapped per gene they may greatly differ
in their signal-to noise ratio. In genome-wise association studies (GWAS), associations are sought between
genetic polymorphisms and phenotypic traits; however, the power to detect an association is lower for rarer
polymorphisms (all else being equal). In GWAS of gene expression phenotypes (eQTL), cis-effects are a
priori more likely than associations between a gene product and a distant polymorphism.

To take into account the different statistical properties of the tests, one can associate each test with a
weight, a non-negative number as a measure of its importance. The weights fulfil a budget criterion, com-
monly that they sum up to the total number of hypotheses. Hypotheses with higher weights get priori-
tized [6]. The procedure of Benjamini and Hochberg (BH) [1] can be modified to allow weighting simply by
replacing the original p-values pi with their weighted versions pi/wi (where wi is the weight of hypothesis
i) [7]. However, FDR control of this approach is guaranteed only if the weights are pre-specified and thus
independent of the data. In practice, the optimal choice of weights is rarely known, and a data-driven method
would be desirable [8–11]. However, a method that is generally applicable, shows good performance and
ensures type-I error control has been lacking.

RESULTS

Independent hypothesis weighting (IHW) is a multiple testing procedure that applies the weighted BH
method [7] using weights derived from the data. The input to IHW is a two-column table of p-values
and covariates. The covariate can be any continuous-valued or categorical variable that is thought to be
informative on the statistical properties of each hypothesis test, while it is independent of the p-value under
the null hypothesis [10].
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We consider multiple testing as a resource allocation problem [7]: given a “budget” of acceptable FDR,
how can it be distributed among the hypotheses in such a way as to obtain the best possible power overall?
The first idea is to use information in available covariates. For instance, in differential expression analysis,
a suitable covariate is the sum of read counts for the gene across all samples [10, 12, 13]; in expression-
QTL or ChIP-QTL analysis, eligible covariates are the distance between the genetic variant and the genomic
location of the phenotype, or measures of their comembership in a topologically associated domain [14].
Such covariates exist in many multiple testing applications. Therefore we assume that it is beneficial to
assign hypothesis weights as a function of the covariate. Hypotheses with the same value of the covariate
will be assigned the same weight. Furthermore, in our implementation we assume that the function can be
approximated by a step-wise constant function, and note that no further assumptions (e. g., monotonicity)
are needed.

The second idea is that the number of rejections of the weighted BH procedure with given weights is
an empirical indicator of the method’s power. Therefore, a good choice of the covariate-to-weight mapping
should lead to a high number of rejections.

Our first, naive implementation of IHW is easy to explain. Our algorithm divides the hypothesis tests
into G different groups based on the covariate. Then, we associate each group with a weight, so that all
hypotheses within one group g are assigned the same weight wg . For each possible weight vector w =
(w1, . . . , wG) we apply the weighted BH procedure at level α and calculate the total number of rejections.
We choose the weight vector w∗ that maximizes the number of rejections and report the corresponding
result.

In many applications, this naive approach is already satisfactory, but it has two shortcomings: First, the
underlying optimization problem is difficult and does not easily scale to problems with millions of hypothesis
tests. Second, in certain situations, described below, this algorithm leads to loss of type I error control. These
problems are overcome with three extensions of the naive algorithm:

E1. We find the optimal weight vector under a convex relaxation of the above optimization task, which
in statistical terms corresponds to replacing the empirical cumulative distribution function (ECDF) of the p-
values with the Grenander estimator (least concave majorant of the ECDF). The resulting problem is convex
and can be efficiently solved even for large numbers of hypotheses.

E2. We randomly split the hypotheses into k folds. For each fold, we apply convex IHW to the other k−1
folds and assign the learned weights to the remaining fold. Thus the weight assigned to a given hypothesis
does not directly depend on its p-value, but only on its covariate.

E3. The performance of the algorithm can be further improved by ensuring that the weights learned with
k − 1 folds generalize to the held-out fold. Therefore, we introduce a regularization parameter λ ≥ 0, and
the optimization is done over a constrained subset of the weights. For an ordered covariate, we require that∑G
g=2 |wg − wg−1| ≤ λ, i. e., weights of successive groups should not be too different. For an unordered

covariate, we use instead the constraint
∑G
g=1 |wg − 1| ≤ λ, i. e., deviations from 1 are penalized. In the

limit case λ = 0, all weights are the same, so IHW with λ = 0 is just the BH method. IHW with λ→∞ is
the unconstrained version. Choice of λ is a model selection problem, so within each split in E2 we apply a
second nested layer of cross-validation. E3 is optional; whether or not to apply it will depend on the data. It
will be most beneficial if the number of hypotheses per group is relatively small.

Theoretical justification and an efficient computational implementation of the optimization task is de-
scribed in the supplement.

IHW is more powerful than the BH procedure. We illustrate this claim on three exemplary appli-
cations. The first one, by Bottomly et al. [15, 16] , is a RNA-seq dataset used to detect differential gene
expression between mouse strains. p-values were calculated using DESeq2 [12]. Here we used the mean of
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normalized counts for each gene, across samples, as the informative covariate. We saw an increased num-
ber of rejections compared to BH (Figure 1a). In addition, we observed that the learned weight function
prioritized genes with higher mean normalized counts (Figure 1b).

Second, we used a quantitative mass-spectrometry (SILAC) experiment in which yeast cells treated with
rapamycin were compared to yeast treated with DMSO (2×6 biological replicates) [17]. Differential protein
abundance of 2666 proteins was evaluated using Welch’s t-test [17]. As a covariate we used the total number
of peptides which were quantified across all samples for each protein. IHW again showed increased power
compared to BH (Figure 1c), and proteins whose peptides were quantified more often were assigned a higher
weight, as expected (Figure 1d).

In a third example, we searched for associations between SNPs and histone modification marks (H3K27ac)
[14] on human Chromosome 21. This yielded 180 million tests. As a covariate we used the linear genomic
distance between the SNP and the ChIP-seq signal. As shown in Figure 1e, the power increase compared
to BH and to independent filtering was dramatic. IHW automatically assigned most weight to small dis-
tances (Figure 1f). Thus IHW acted similarly to the common practice in eQTL-analysis of searching for
associations only within a certain distance – but with the advantage that no arbitrary choice of distance
threshold is needed, and that the weights are more nuanced than a hard distance threshold. IHW does not
exclude SNP-phenotype pairs far away, and these can still be detected as long as they have a sufficiently
small p-value.

The extensions to naive IHW are needed to ensure type I error control. Naive IHW, as well as pre-
vious approaches to data-driven hypothesis weighting or filtering, do not maintain FDR control in situations
where all hypotheses are true (Figure 2a) or where there is insufficient power to detect the false hypotheses
(Figure S1a). In addition, the local fdr methods (Clfdr and FDRreg) often show strong deviations from the
target FDR in a direction (conservative or anti-conservative) that is not apparent a priori (Figure 2b,c,e).
Thus, among all methods benchmarked across these scenarios, only BH, IHW and LSL-GBH generally
control the FDR. The results of our method comparisons are summarised in Table 1.

IHW can apply a size investing strategy. The term size investing refers to the notion that most of the
type I error budget (’size’) of a multiple testing decision should be invested where it might make most of
a difference: i. e., not into tests that are likely not to be rejected anyway, however high the weight they are
given; nor into tests with very high power, so that rejections will be made anyway, even with a low weight;
but rather, in the middle ground, where some additional weight might make the difference between rejection
or not [18]. Size investing is provided by IHW but not by LSL-GBH and FDRreg, and as shown in Figure 2f,
the latter might even lose power compared to the BH method because of that. A reason is that in the latter,
weight differences are driven only by differences in π1 and not by the alternative distribution. This is further
elaborated in the supplement. Also note that independent filtering [10] and stratified BH [19] cannot capture
such a size-investing dynamic (Figure S1d).

Relationship between IHW and local true discovery rates. Recall the motivation for IHW as a resource
allocation problem. This was triggered by the observation that p-values lose information [20], in the sense
that they do not capture important statistical properties of each test. Indeed, a better representation of these
properties is provided by the concept of the local true discovery rate (tdr) [4]. The tdr of the ith hypothesis
is [4]

(1) tdri(p) = π1,i
f1,i(p)

fi(p)
.

A schematic explanation is given in Figure 3a (see also Figure S2). fi is the density of the distribution
of the p-value p. It is a mixture of two conditional distributions, fi = π0,if0 + π1,if1,i, where the densities
f0 and f1,i are conditional on the null or the alternative being true, respectively, and π0,i and π1,i (which
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sum up to 1) are the corresponding prior probabilities. The null distribution of a properly calibrated test is
uniform, therefore we can set f0(p) = 1 irrespective of p and i. In Figure 3b-d three hypotheses are shown
with different tdr curves corresponding to different power profiles.

It can now be shown that to maximize power at a given FDR, one should reject the hypotheses with the
highest tdri(pi) [21, 22]. In other words, if we knew the functions tdri and could use tdri(pi) as our test
statistics, then without any further effort we would have a method for FDR control with optimal power.

Similarly to the central idea of IHW, one can now assume that the many different, unknown univariate
functions tdri(p), one for each hypothesis i, can be usefully approximated by a single bivariate function
tdr(p, x), where x is the covariate. Then contour lines of the joint density of tdr and x are as illustrated in
Figure 3f. We can see how in such a scenario the rejection region of the BH method tends to be suboptimal.
As it is defined solely in terms of p-values (Figure 3e), it differs from the optimal region, whose boundary is
a vertical line of constant tdr (Figure 3f).

However, in practice, we do not usually know the quantities in Equation (1) or the bivariate function
tdr(p, x) and have to estimate them [23]. Unfortunately, this estimation problem is difficult, and even with
the use of additional approximations, such as splines [24] or piecewise constant functions [25], there does
not seem to be a practical implementation.

On the other hand, with IHW we circumvent explicit estimation of the bivariate tdr function and instead
derive a powerful testing procedure by assigning data-driven hypothesis weights.

DISCUSSION

We have introduced a weighted multiple testing method that learns the weights from the data. Its appeal
lies in its generic applicability. It does not require assumptions about the relationship between the covariate
and the power of the individual tests, such as monotonicity, which is necessary for independent filtering. It
can apply size investing strategies, since it does not assume that the alternative distributions are the same
across the different hypotheses. It is computationally robust and scales to millions of hypotheses.

The idea to use informative covariates for hypothesis weighting or for shaping optimal rejection bound-
aries is not new (Table 1; [26, 27]). In this work, we provide a general and practical approach. Most
importantly, we show how to overcome two major limitations of previous approaches: type I error control
and stability. To retain FDR control, we introduced a strategy reminiscent of Tibshirani’s and Efron’s pre-
validation procedure [28], in which we randomly split the hypotheses into folds and then assign weights to a
given hypothesis based on training on the other folds. To ensure convexity of the optimisation problem and
computational scalability, we replaced the empirical distribution function by the Grenander estimator. We
have observed that this extension alone already reduces the overoptimism of naive IHW to a large extent,
even without the splitting scheme (E2).

Various approaches to increasing power compared to BH have focused on estimating the value of π0,
the fraction of true nulls among all hypotheses, in cases where it is less than 1, as the BH method uses the
conservative upper limit [2, 29]. In practice, this tends to have limited impact, since in the most interesting
situations the number of true discoveries is small compared to all tests, so that π0 is close to 1 [30] and no
substantial power increase is gained. On the other hand, for IHW this situation could be changed, since often
the groups that get assigned a high weight also have an increased π1.

In our method we have explicitly avoided estimating the densities in Equation (1). Nevertheless, the local
tdr is an interesting quantity in its own right, since it provides a posterior probability for each individual
hypothesis. Our weighted p-values do not provide this information. Thus, development of stable estimation
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procedures for the local tdr that incorporate informative covariates is needed and would be complementary
to our work [23, 24, 31].

Software availability The package is available from github and can be installed into R ≥ 3.2 via
library("devtools") # available from CRAN
install_github("vladchimescu/lpsymphony", subdir="lpsymphony")
install_github("nignatiadis/IHW")

Executable documents (Rmarkdown) reproducing all analyses shown here can be downloaded at
https://github.com/nignatiadis/ihwPaper.

We plan for all these packages to be available at Bioconductor before the publication of this paper.
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FIGURE 1. Comparison between IHW and BH. a) Benchmark based on Bottomly dataset [15], analyzed with DESeq2.
IHW with the normalized mean of the counts for each gene as a covariate increases rejections compared to BH at different
nominal significance levels. b) Learned weights at α = 0.1 for the Bottomly example. Genes with low counts get
assigned low weight. Note that for each value of the covariate, five different weights have been learned because of the
splitting scheme (E2). The trend is consistent. c) Rejections of IHW and BH for the SILAC dataset [17], plotted against
the nominal significance level α. As a covariate we use the total number of peptides detected for each protein by the
proteomics experiment. d) Weights learned by IHW at α = 0.1 as a function of the total number of peptides quantified
for each protein. e) Rejections of IHW, independent filtering with different thresholds and BH for Chromosome 21 of the
hQTL dataset [14], plotted against the nominal significance level α. As a covariate we use the linear genomic distance
between SNPs and ChIP-seq signals. IHW drastically increases the number of rejections. f) Weights learned by IHW at
α = 0.1 as a function of genomic distance.
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FIGURE 2. Assessment of methods’ performance in three different scenarios. Panels a, b) benchmark type I error
control if all null hypotheses are true. Shown is the true FDR against the nominal significance level α; the dashed lines
indicates the identity function. Brief descriptions of each method shown are in Table 1. a) Greedy independent filtering,
SBH, TST GBH and naive IHW lose type I error control and make too many rejections. b) BH, FDRreg, and IHW control
α, but for example note that FDRreg is too conservative in this case. LSL-GBH and Clfdr are slighly anticonservative,
but a lot less than the methods in panel a). Panels c, d) look at implications of different effect sizes. The two-sample
t-test was applied to Normal samples (n = 2 × 5, σ=1) with either the same mean (true nulls) or means differing by the
effect size indicated on the x-axis (true alternatives). The fraction of true alternatives was 0.05. The pooled variance was
used as the covariate. Rejections were made at the nominal level α = 0.1 (dotted line). c) The y-axis shows the actual
FDR. Clfdr and FDRreg are strongly biased, and this bias depends on the true effect size. d) Power analysis. All methods
show improvement over BH. Panels e, f) highlight size-investing. Data were simulated as in [8]: p-values were computed
from the one-sided z-test, with Zi ∼ N (0, 1) under the null and Zi ∼ N (ξi, 1) under the alternative, with the covariate
ξi ∼ U [1, ξmax]. The fraction of alternatives was 0.1. e) The y-axis shows the actual FDR. In this case, Clfdr and FDRreg
are slightly anticonservative. f) The logarithm of the power increase compared to BH is shown as a function of ξmax.
Large values of ξmax necessitate a size-investing strategy. Methods which cannot apply such a strategy, such as LSL-GBH
and FDRreg, have power even lower than BH.
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FIGURE 3. True discovery rate and informative covariates. a) Schematic representation of the mixture density fi,
which is composed of the alternative density f1,i weighted by its prior probability π1,i and the uniform null distribution
weighted by π0,i. b-d) The true discovery rate (tdr) of individual tests can vary for different reasons. In b), the test has
high power, and the prior probability of the null is well below 1. In c), the test has equally high power, but the the prior
probability of the null is higher, leading to a reduced tdr. In d), the prior probabilities are like in b), but the test has little
power, again leading to a reduced tdr. e) If an informative covariate is associated with each test, the distribution of the
p-values from multiple tests is different for different values of the covariate. The contours schematically represent the
joint two-dimensional density of p-values and covariate. The rejection boundaries of the BH procedure do not take into
account covariates and only depend on the p-values (dashed red line). In contrast, the decision boundary of IHW is a
step function; each step corresponds to one group, i. e., to one weight. f) By virtue of Equation (1), the density of the tdr
also depends on the covariate. The decision boundary of the BH procedure is shown by the dashed red line; it leads to a
suboptimal set of rejections, in this example with lower than optimal tdr for small and large values of the covariate, and
higher than optimal tdr for intermediate values. In contrast, the decision boundary of IHW approximates a line of constant
tdr, implying a near-optimal use of the type I error budget to make as many rejections as possible. An important feature of
the IHW method is that it does not require explicit estimation of the two-dimensional densities, but instead works directly
on the p-values and the covariate.
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Method Short description Type I error control Gain in power Comment

π0=1 t-test t-test
(vs BH)

size
investing

BH Method of Benjamini and
Hochberg [1] to control false-
discovery rate (FDR) for multiple
exchangeable hypotheses.

3 3 − −

IHW Independent hypothesis weighting,
as proposed here. 3 3 3 3

Naive
IHW

Naive independent hypothesis
weighting, as proposed here. 7 7 3 3

Greedy in-
dependent
filtering

The independent filtering proce-
dure [32] modified to use a data-
driven filter threshold which maxi-
mizes the number of rejections.

7 7 3 7
The covariate-
weights function
is a binary step,
monotonic.

SBH Stratified Benjamini-Hochberg
[19]: Apply the BH procedure at
level α within each stratum, then
combine the rejections across the
strata.

7 7 3 7

TST-GBH The Group BH procedure [11]:
An adaptive weighted BH proce-
dure applied with weights propor-
tional to π1

π0
within each group. π0

is estimated using the TST estima-
tor [29].

7 7 3 7

LSL-GBH The Group BH procedure [11],
where π0 is estimated using the
LSL estimator [2].

3 3 3 7

Clfdr In the CLfdr procedure [21], the
local fdr is estimated separetely
within each group and the esti-
mates are pooled together. For
the fdr estimation here we use the
modified Grenander estimator [5].

3 7 3 3

FDRreg The FDRregression method [24]
estimates the local fdr by assum-
ing all hypotheses have the same
alternative density and π0 varies
smoothly as a function of the co-
variate.

3 7 3 7
Requires z-scores.

TABLE 1. Short description of the different methods benchmarked and summary of the
results of Figure 2 and Figure S1.
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