In silico identification of metabolic enzyme drug targets in Burkholderia pseudomallei

3 Jean F. Challacombe 1*

4 ¹ Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545; jchalla@lanl.gov

5 * Correspondence: jchalla@lanl.gov; Tel.: +1-505-665-1485

6 Abstract: The intracellular pathogen Burkholderia pseudomallei, which is endemic to parts of 7 southeast Asia and northern Australia, causes the disease melioidosis. Although acute infections 8 can be treated with antibiotics, melioidosis is difficult to cure, and some patients develop chronic 9 infections or a recrudescence of the disease months or years after treatment of the initial infection. 10 B. pseudomallei strains have a high level of natural resistance to a variety of antibiotics, and with 11 limited options for new antibiotics on the horizon, new alternatives are needed. The aim of the 12 present study was to characterize the metabolic capabilities of *B. pseudomallei*, identify metabolites 13 crucial for pathogen survival, understand the metabolic interactions that occur between pathogen 14 and host cells, and determine if metabolic enzymes produced by the pathogen might be potential 15 antibacterial targets. This aim was accomplished through genome scale metabolic modeling under 16 different external conditions: 1) including all nutrients that could be consumed by the model, and 17 2) providing only the nutrients available in culture media. Using this approach, candidate 18 chokepoint enzymes were identified, then knocked out in silico under the different nutrient 19 conditions. The effect of each knockout on the metabolic network was examined. When five of the 20 candidate chokepoints were knocked out in silico, the flux through the B. pseudomallei network was 21 decreased, depending on the nutrient conditions. These results demonstrate the utility of genome-22 scale metabolic modeling methods for drug target identification in *B. pseudomallei*.

23

. .

24 Keywords: Burkholderia, pathogen, metabolism, metabolic network, nutrients, infection

- 25
- 26

27 1. Introduction

28 The intracellular pathogen Burkholderia pseudomallei, which causes the disease melioidosis, is 29 acquired from the environment in parts of southeast Asia and northern Australia [1,2]. Although 30 acute infections can be treated with antibiotics, melioidosis is difficult to cure, requiring lengthy 31 treatment in two phases for a duration of ~20 weeks [3,4]. Despite antibiotic therapy, some patients 32 have persistent cases that develop into chronic infections, and others experience a recrudescence of 33 the disease months or years after treatment of the initial infection with antibiotics [5]. B. pseudomallei 34 strains have a high level of natural resistance to a variety of antibiotics [6-8], and with limited options 35 for new antibiotics on the horizon, alternatives are desperately needed.

The availability of many *B. pseudomallei* genomes and advances in computational analysis methods make possible the rapid identification of novel antibacterial targets by selecting the most likely targets from complete sets of protein coding genes. Previous studies have demonstrated that essential genes present in pathogen genomes, but not in the host, make the best therapeutic targets [9]. Many known antibacterial compounds are enzyme inhibitors [10,11], so metabolic enzymes specific to pathogenic bacteria represent promising drug targets [9].

42 Enzyme targets in key metabolic pathways have been identified in *B. pseudomallei* and other 43 bacterial pathogens; these pathways include fatty acid biosynthesis [12-14], the glyoxalate shunt 44 [15,16], the chorismate pathway for biosynthesis of aromatic amino acids [17], purine, histidine, 4-

45 aminobenzoate, and lipoate biosynthesis [18,19], leucine, threonine, p-aminobenzoic acid, aromatic

compound biosynthesis [20], branched chain amino acid biosynthesis [21], purine metabolism [22].
Other enzyme targets have been identified that are not in pathways - alanine racemase (interconverts)

48 L- and D-alanine) [23], superoxide dismutase [24] and cyclic di-GMP phosphodiesterase [25].

49 Drugs acting on pathogen targets that are not present in the host should not cause significant 50 side effects. However, before the human genome was available, the process of identifying bacterial 51 pathogen-specific drug targets was labor intensive, involving comparison of candidate pathogen 52 targets against all known eukaryotic sequences to filter out targets likely to occur in the human [9]. 53 Since then, various software tools have made the process of *in silico* target identification in pathogen 54 genomes easier. Available in silico tools encompass various cheminformatic [26] and bioinformatic 55 [27,28] approaches to identify new protein targets. Among the bioinformatic tools, metabolic 56 pathway/metabolic network analysis has emerged as an efficient in silico method to identify 57 candidate metabolic enzyme targets in pathogen genomes.

- 58 Several software packages are available to facilitate genome-scale metabolic network analyses 59 [29]. Starting with an annotated pathogen genome, the components of metabolic pathways are 60 identified, curated and refined [30]. The resulting genome-scale metabolic model can be used to 61 integrate omics datasets and to perform various analyses to determine the most likely drug targets 62 [10]. Perhaps the most important task with respect to finding good candidate targets is metabolic 63 chokepoint identification. By definition, a chokepoint enzyme either consumes a unique substrate or 64 produces a unique product in the pathogen metabolic network [31]. Inhibition of chokepoint 65 enzymes may disrupt crucial metabolic processes in the pathogen, so chokepoints that are essential 66 to the pathogen represent good potential drug targets [32-34].
- 67 The aim of the present study was to characterize the metabolic capabilities of *B. pseudomallei*, 68 identify metabolites and aspects of the metabolic network crucial for pathogen survival, understand 69 the metabolic interactions that occur between pathogen and host cells, and determine if any of the 70 metabolic enzymes produced by the pathogen might be potential antibacterial targets. This aim was 71 accomplished through genome scale metabolic modeling of B. pseudomallei under different external 72 conditions, including all nutrients that could be consumed by the model and only the nutrients 73 available in culture media. Using this approach, candidate chokepoints were identified, then knocked 74 out the genes encoding chokepoint enzymes in silico under the different nutrient conditions, and 75 examined the effect of each knockout on the metabolic network. The result of this analysis was five 76 candidate antibacterial targets, demonstrating the utility of genome-scale metabolic modeling 77 methods for in silico studies of pathogen metabolism and for drug target identification in B. 78 pseudomallei.

79 2. Materials and Methods

80 2.1 Metabolic pathway reconstructions and annotation curation

81 Pathway genome databases (PGDBs) for B. pseudomallei strains MSHR668 and K96243 were 82 obtained through the Pathway Tools software (version 18.5) from the PGDB registry [35]. We found 83 that the original annotation of B. pseudomallei K96243 identified many fewer coding sequences than 84 that of MSHR668, so we re-annotated the original complete genome sequences of both strains using 85 the RAST system [36] to better compare them [37]. The RAST-annotated genome sequences were 86 loaded into Pathway Tools, using the PathoLogic component to predict the metabolic pathways [38]. 87 For each genome, the set of protein coding sequences from the original annotation was compared to 88 those from the RAST annotation, using blast to identify coding sequences in common between the 89 two annotations, and to identify coding sequences that were missing from each annotation. For the 90 MSHR668 genome, RAST annotation identified 247 fewer coding sequences than the original 91 annotation. However, there were some predicted coding sequences with annotated functions in the 92 RAST annotation that were not present in the original, so these were added to the original PGDB for 93 MSHR668. The RAST annotation of the K96243 genome identified 1,317 more protein coding 94 sequences than the original annotation, so the PGDB created from the RAST annotation was used as 95 the starting point. Coding sequences from the original annotation that were not present in the RAST

96 annotation of K96243 were added to the PGDB that was created from the RAST annotated genome.

3 of 33	
---------	--

98 2.2 Chokepoint Identification

99 Chokepoints were identified in each PGDB using the chokepoint reaction finder in Pathway100 Tools. All reactions were included except those found in human.

102 2.3 Flux balance analysis

97

101

103 For each metabolic network reconstruction, flux balance analysis (FBA) was performed using 104 the MetaFlux module within the Pathway Tools [39]. Development FBA models were constructed 105 iteratively to determine the compounds that each model could use and produce. This was 106 accomplished by trying all compounds in the PGDB as biomass metabolites, nutrients and secretions 107 in the various compartments (cytosol, periplasmic space and extracellular). Each model was refined 108 iteratively, first identifying the specific biomass components that could be produced, then trying all 109 compounds as nutrients and secretions, then specifying the biomass metabolites and nutrients and 110 trying all compounds as secretions.

111 Once the nutrients, secretions and biomass components that could be consumed or produced by 112 the metabolic networks were determined, the log file produced by MetaFlux was examined and 113 problematic reactions were fixed, if possible. Most of the problematic reactions were unbalanced due 114 to missing chemical formulas of one or more metabolites. A few of these reactions were corrected by 115 copying the missing structures from other PGDBs. For example, the structures of D-ribose, D-116 glucuronate, D-glucose and some other compounds were copied from the more highly curated 117 Escherichia coli K12 substr. MG1655 PGDB. Many of the reactions with compounds that were lacking 118 chemical formulas were generic so no suitable chemical structure could be found or created. 119 Reactions involving starch, glycogen, and glucans with variable lengths and non-numeric 120 stoichiometries, could not be balanced. Other reactions were missing H⁺ or H₂O on one side or the 121 other, and the addition of the missing compound balanced the reaction. However, there were a small 122 number of reactions that could not be fixed and these were marked as unbalanced. Once all reactions 123 that could be fixed were corrected in the PGDB, MetaFlux was run again in development mode to 124 identify additional biomass metabolites, nutrients, and secretions. Once the set of biomass 125 metabolites was constant, the nutrients that could be consumed by the model were determined, 126 followed by identification of the secretions produced by the model. The result of this process was a 127 final unconstrained FBA model.

128 To mimic the nutrient conditions in culture, only the estimated set of ingredients present in LB 129 medium were included as nutrients in the FBA model. LB medium includes as its main ingredients 130 tryptone [40] and yeast extract [41]. Tryptone provides peptides and peptones, which are good 131 sources of amino acids (http://www.sigmaaldrich.com/analytical-132 chromatography/microbiology/basic-ingredients/protein-sources.html); yeast extract provides 133 vitamins, nitrogenous compounds, carbon, sulfur, trace elements and minerals [42]. The LB media 134 composition reported in a Bacillus subtilis modeling study [43] was used as a starting point for this 135 study. Starting with the nutrient set that mimicked LB media [43], all compounds were included in 136 the try-biomass set for the cytosol and periplasmic cellular compartments to see which biomass 137 metabolites could be produced given only the nutrients present in LB media. Once a stable set of 138 nutrients was determined, iterations were performed to determine the stable set of biomass 139 metabolites that could be produced. Then all compounds were tried as secretions in the cytosol and 140 periplasmic compartments to determine the compounds that could be secreted by the model.

A list of nutrients that might be available to *B. pseudomallei* while residing inside host cells during infection was compiled by searching the literature for infection studies involving *B. pseudomallei* and host cells. Gene expression studies of other intracellular pathogens and host cells during infection were also considered. A development FBA model mimicking infection conditions was constructed as described above for the LB media model.

146

147 2.4 Essential gene and candidate drug target identification

4 of 33

148 To reduce the set of potential drug targets, candidate chokepoint enzymes were compared 149 against the list of essential genes and all of the drug targets in DrugBank. Essential genes in the 150 MSHR668 genome were determined by blasting all protein coding sequences (amino acid format) 151 against the Database of Essential Genes [44] using the blastp program with an E-value cut-off of 1e -152 10 and 70% identity as thresholds. Candidate drug target sequences were determined by blasting all 153 protein coding sequences in the MSHR668 genome (as both nucleotide and amino acid formats) 154 against the complete set of DrugBank targets [45], using an E-value cutoff of 0.005 and a threshold 155 identity of 70% to select likely targets.

156

157 2.5 In silico knockout experiments

158 Knockout experiments were performed *in silico* through the Pathway Tools MetaFlux module 159 [39]; the chokepoint genes were knocked out one at a time and the effects on total biomass flux 160 through the metabolic network were noted.

- 161
- 162 2.6 Network visualization
- 163 For each PGDB, an .sbml file was exported from the Pathway Tools and loaded into Cytoscape [46]
- 164 version 3.1.1 for visualization and comparison of network features.

165 **3. Results**

166 3.1. General features of B. pseudomallei genomes and metabolic networks

167 The general characteristics of each PGDB and metabolic network for B. pseudomallei MSHR668 and

168 K96243 are listed in Table 1.

Genome	Curated MSHR668	Curated K96243	
(Pathway Tools PGDB)	(original + RAST)	(RAST + original)	
Coding sequences	7133	7045	
Pathways	339	387	
Enzymatic reactions	1870	1995	
Transport reactions	144	82	
Enzymes	1666	1685	
Transporters	292	38	
Compounds	1397	1578	
Metabolic Network			
Nodes (metabolites)	4295	4219	
Edges (reaction steps)	10860	9747	
Chokepoints			
Producing	444	506	
Consuming	419	498	
Candidate	479	348	
Dead-end reactants	166	217	
Dead-end products	72	118	

169 **Table 1.** Features of *B. pseudomallei* PGDBs and metabolic networks

170

171The B. pseudomalleiMSHR668 and K96243 genomes contained similar numbers of coding172sequences, pathways, enzymatic reactions and enzymes. Differences between the PGDBs were noted173in the numbers of transporters, transport reactions and compounds. The K96243 PGDB contained174fewer transporters and transport reactions and more compounds than MSHR668. In terms of the175metabolic network characteristics, both networks contained similar numbers of nodes (representing176metabolites), while the MSHR668 network had more edges (reaction steps) than K96243. This is likely

177 due to the more extensive curation of the MSHR668 network that was performed during refinement178 of the metabolic network models (see Methods).

179 In a metabolic network, chokepoints are reactions that either uniquely produce or uniquely 180 consume a metabolite. Inhibiting an enzyme that consumes a unique substrate may cause that 181 metabolite to accumulate, and it may be toxic to the cell; inhibiting an enzyme that produces a unique 182 product may starve the cell of an essential metabolite [31]. Identifying chokepoint enzymes in 183 pathogens is a promising in silico approach to recognize potential metabolic drug targets. For 184 example, analysis of *Plasmodium falciparum* metabolism revealed that 87.5% of proposed drug targets 185 supported by evidence are chokepoint reactions [31]. However, to be a valid chokepoint, the 186 metabolite in question must be balanced by a producing or consuming reaction and not be a dead-187 end metabolite [31]. Table 1 compares the numbers of chokepoint reactions and dead-end metabolites 188 that were identified in each PGDB. Overall the numbers were similar between the two PGDBs, and 189 the lower numbers of dead-ends in the MSHR668 database were likely due to the more extensive 190 curation performed on the MSHR668 PGDB (see Materials and Methods).

191 3.2. Flux balance analysis (FBA)

192 3.2.1. Unconstrained FBA model

193 Given a set of nutrients for consumption, along with secretions and metabolites that can be 194 produced, a FBA model predicts the steady-state flux rates of the metabolic reactions in an organism, 195 and provides an estimate of the overall biomass flux. FBA was conducted on each metabolic network 196 as described in the Materials and Methods section. It took several cycles of refinement to solve an 197 initial unconstrained MSHR668 model. Even after several iterations, the K96243 unconstrained model 198 did not reach a stable solution, likely because there were missing transporter-encoding genes (and 199 possibly other genes) in the PGDB, indicating that the annotation needed more curation. Since the 200 unconstrained MSHR668 model reached a stable solution after performing the initial network 201 curation steps suggested by MetaFlux, only this model was analyzed further. The initial 202 unconstrained FBA model of the MSHR668 metabolic network (Table 2) included all possible biomass 203 compounds that could be produced, all nutrients that could be consumed, and had no weights 204 imposed on the biomass metabolites and no constraints imposed on the nutrients. [Supplementary 205 materials, S1_Final_unconstrained_model_inputs.pdf,

- 206 S2_Final_unconstrained_model_solution.pdf].
- 207 3.2.2. LB media FBA model

To mimic the conditions that *B. pseudomallei* experiences in culture, only the nutrients present in LB media [43] plus glycerol were included as inputs to the LB media FBA model (Table 2). In this model, constraints were included on some of the nutrients (ADP, Pi, proton and glycerol). [Supplementary materials, S3_Final_LB_model_inputs.pdf and S4_Final_LB_model_solution.pdf].

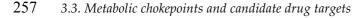
- 212
- 213
- 214

215 **Table 2.** Characteristics of the MSHR668 unconstrained and LB media models

Model	Total rxns	Rxns carrying flux	Biomass metabolites produced	Nutrients consumed	Secre- tions	Biomass flux
Unconstrained	3193	1619	1403	667	10	15000.00
LB media	3213	1025	282	47	0	0.079412

216

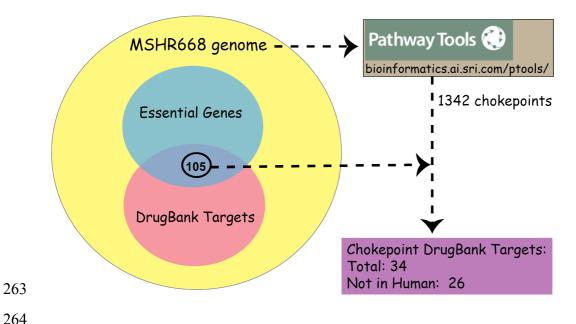
217 3.2.3. Host cell infection model


218 In addition to the unconstrained and LB media models, the original plan for this study included 219 the development of a model of B. pseudomallei metabolism that mimics infection conditions. 220 However, there was very little information available on the growth requirements of *B. pseudomallei* 221 inside human macrophages. In addition, no comprehensive studies have been performed to identify 222 the complete list of host cell nutrients that are available to B. pseudomallei during infection. Most 223 studies of the nutritional requirements of intracellular pathogens growing inside host cells have been 224 performed on Legionella pneumophila [47,48], which can grow and replicate similarly in human 225 macrophages and amoebae [49]. Growing in both human macrophages and amoebae, L. pneumophila 226 utilizes amino acids as its main sources of carbon, nitrogen and energy; L. pneumophila obtains amino 227 acids from the host through proteasomal degradation [48]. However, glucose is also used to feed 228 central metabolism under both culture and infection conditions [50].

Comparing the nutrients provided by the LB media model to the nutrients used by *L. pneumophila* in culture and during infection of amoebae [47], the only difference was the carbohydrate carbon source: glycerol (*B. pseudomallei* LB media [51]) vs. glucose (*L. pneumophila* AYE media [50] and in amoebae [47,50]). When glycerol was replaced by glucose in the LB media model of *B. pseudomallei*, no FBA solution was found [data not shown]. Several possible explanations for this result are presented in the Discussion.

235 While the specific carbon requirements of *B. pseudomallei* in either human macrophages or 236 amoebae have not been determined, one study produced whole-genome tiling array expression data 237 to assess *B. pseudomallei* transcriptional responses under 82 different conditions, including infection 238 [52]. From their supplemental table S2, a list of metabolic genes expressed in the infection conditions 239 was used to infer the potential nutrients consumed by B. pseudomallei during infection. Additional 240 candidate host cell nutrients were identified from the literature, focusing on studies of intracellular 241 pathogen-mammalian host infections. The nutrients identified as potential carbon sources for 242 intracellular survival of various pathogens included aromatic compounds, such as benzoate and 243 phenylacetic acid and related derivatives [53], sugar acids like gluconate, galactonate, glucuronate, 244 and galacturonate [54], ribo- and deoxyribonucleosides, hexuronates [55], glutathione [56], glucose 245 6-phosphate [57,58], glycerol-3-phosphate [59]. The complete list of potential host cell nutrients is in 246 the [Supplementary material, S5_Nutrients_infection_model.pdf] file.

FBA was performed for a *B. pseudomallei* MSHR668 model that included the list of candidate host cell nutrients identified as above. However, some of the nutrients were not present in any reactions in the MSHR668 PGDB. When the rest of the compounds were included as nutrients in addition to glycerol, none of them were consumed by the model, but glycerol was consumed and biomass was produced. When glycerol was excluded from the nutrient list, none of the other nutrients were consumed and the model was not solvable [data not shown].


- 253 254
- 201
- 255
- 256

To narrow down the list of metabolic chokepoints, which represented candidate drug targets, essential genes and genes with sequence homology to existing DrugBank targets were identified in the MSHR668 genome. This analysis identified 34 chokepoint genes that were also essential genes and DrugBank targets (Figure 1, Table 3).

262

7 of 33

- 264
- 265 Figure 1. Process for identifying candidate metabolic enzyme drug targets (chokepoints) in the B. 266 pseudomallei MSHR668 genome.

267 Table 3. Chokepoint genes that encode candidate metabolic enzyme drug targets in B. pseudomallei 268 MSHR668

Locus_tag	Gene symbol	Enzyme name	E.C. number	DrugBank target (drug IDs)	Human target?	Choke- point in K96243?	Bp Mutant(s) exist?
BURPS668 _0305	argG+	argininosucc inate synthase	6.3.4.5	P0A6E4 Argininosuccina te synthase (DB00536; DB04077)	no	yes	no*
BURPS668 _0328	folB+	dihydroneo pterin aldolase	4.1.2.25	P56740 Dihydroneopteri n aldolase (DB01778; DB01906; DB02119; DB02489; DB03231; DB03571; DB04168; DB04400; DB04425; DB06906)	no	yes	no
BURPS668 _0567	pth⁺	peptidyl- tRNA hydrolase	3.1.1.29	No	yes	yes	no
BURPS668 _0675	aspS⁺	aspartyl- tRNA synthase	6.1.1.12	P36419 Aspartate— tRNA ligase (DB01895)	no	no	no

8 of 33	
---------	--

						0.01	
BURPS668 _0810	RecA+	RecA protein	5.99.1	P62219 RecA (DB01660; DB03222; DB04444; DB04395)	no	yes	no*
BURPS668 _0964	dut*	deoxyuridin e5'- triphosphate nucleotidoh ydrolase	3.6.1.19/ 3.6.1.23	P06968 Deoxyuridine 5'- triphosphate nucleotidohydro lase (DB01965; DB02333; DB03413; DB03800)	no	yes	no
BURPS668 _0967	ileS+	isoleucyl- tRNA synthetase	6.1.1.5	Q9NSE4 Isoleucine tRNA ligase (DB00167)	yes	no	no
BURPS668 _1446	pckG⁺	phosphoeno lpyruvate carboxykina se	4.1.1.32	P35558 Phosphoenolpyr uvate carboxykinase, cytosolic [GTP] (DB01819; DB02008; DB03267; DB03725)	yes	yes	no
BURPS668 _1465	dnaQ⁺	DNA polymerase III subunit epsilon	2.7.7.7	P03007 DNA polymerase III subunit epsilon (DB01643)	no	yes	no
BURPS668 _1544	NA+	alpha- glucosidase	3.2.1.20	O33830 Alpha- glucosidase (DG01769; DB03323)	yes lysosomal	no	no
BURPS668 _1669	valS+	valyl-tRNA synthetase	6.1.1.9	P26640 Valine tRNA ligase (DB00161)	yes	no	no
BURPS668 _1712	thrS⁺	threonyl- tRNA synthetase	6.1.1.3	P0A8M5 Threonine tRNA ligase (DB03355; DB03869; DB04024)	no	no	no
BURPS668 _1750	sucA+	2- oxoglutarate dehydrogen ase E1	1.2.4.2	Q02218 2- oxoglutarate dehydrogenase, mitochondrial (DB00157; DB00313)	yes	yes	no
BURPS668 _1752	lpdA⁺	dihydrolipo amide	1.8.1.4	P14218 Dihydrolipoyl	no	yes	no

						2.01	
		dehydrogen ase		dehydrogenase (DB03147)			
BURPS668 _2178	purA+	adenylosucc inate synthetase	6.3.4.4	Q83P33 Adenylosuccinat e synthetase (DB02954; DB04160; DB04566)	no	yes	no
BURPS668 _2189	hisS⁺	histidyl- tRNA synthetase	6.1.1.21	P60906 HistidinetRNA ligase (DB03811; DB04201)	no	no	no
BURPS668 _2308	pgi⁺	glucose-6- phosphate isomerase	5.3.1.9	P06744 Glucose- 6-phosphate isomerase (DB02007; DB02076; DB02093; DB02548; DB03042; DB03581; DB03581; DB03937; DB04493)	yes	no	no
BURPS668 _2426	lpxD⁺	UDP-3-O-[3- hydroxymyr istoyl] glucosamine N- acyltransfera se	2.3.1.191	O67648 UDP-3- O-[3- hydroxymyristo yl] N- acetylglucosami ne deacetylase (DB01991; DB04257; DB04257; DB04399; DB07355; DB07536; DB07536; DB08231; DB07861)	no	yes	no
BURPS668 _2433	uppS⁺	undecapren yl diphosphate synthase	2.5.1.31	P60472 Ditrans,polycis- undecaprenyl- diphosphate synthase ((2E,6E)- farnesyl- diphosphate specific) (DB04695; DB04714; DB07404; DB07409; DB07410; DB07426; DB07780)	no	yes	no

10 of 33

BURPS668	lpdA+	pyruvate	1.8.1.4	P10802	no	yes	no
_2610	ipuri	dehydrogen	1.0.1.1	Dihydrolipoylly	110	yes	110
_		ase complex		sine-residue			
		E3		acetyltransferase			
		component,		component of			
		dihydrolipo		pyruvate			
		amide		dehydrogenase			
		dehydrogen		complex			
		ase		(DB01846;			
				DB01992;			
DUDDO	(15	a 1	0.0.1.11	DB08120)			
BURPS668	fabF+	3-oxoacyl-	2.3.1.41	Q02054	no	no	no
_2788		ACP		Actinorhodin			
		synthase		polyketide synthase acyl			
				synthase acyl carrier protein			
				(DB08585;			
				DB08586)			
BURPS668	rfbA+	glucose-1-	2.7.7.24	Q9HU22	no	yes	no
_3103		phosphate		~ Glucose-1-		J	
		thymidylyltr		phosphate			
		ansferase		thymidylyltrans			
				ferase (DB01643;			
				DB02452;			
				DB02843;			
				DB03723;			
				DB03751;			
				DB04272;			
				DB04485;			
				DB02452; DB04355)			
BURPS668	tgt⁺	queuine	2.4.2.29	P28720 Queuine	no	VOC	no
_3328	ıgı	tRNA-	2.4.2.2)	tRNA-	110	yes	110
_0020		ribosyltransf		ribosyltransferas			
		erase		e (DB01825;			
				DB02041;			
				DB02441;			
				DB02599;			
				DB03074;			
				DB03304;			
				DB03505;			
				DB03780;			
				DB04004;			
				DB04169;			
				DB04239; DB04543;			
				DB04343; DB07012;			
				DB07452;			
				DB07481;			
				DB07564;			
				DB07704;			

11 of 33

				DB08268; DB08511; DB08512; DB08514)			
BURPS668 _3366	ruvB⁺	Holliday junction DNA helicase RuvB	3.1.22.4	Q5SL87 Holliday junction ATP- dependent DNA helicase RuvB (DB00173)	no	no	no
BURPS668 _3464	aroQ⁺	3- dehydroqui nate dehydratase	4.2.1.10	P15474 3- dehydroquinate dehydratase (DB02786; DB02801; DB04347; DB04656; DB08485)	no	yes	no
BURPS668 _3525	murG⁺	undecapren yldiphospho - muramoylpe ntapeptide beta-N- acetylglucos aminyltransf erase	2.4.1.227	P17443 UDP-N- acetylglucosami neN- acetylmuramyl- (pentapeptide)p yrophosphoryl- undecaprenol N- acetylglucosami ne transferase (DB02196)	no	yes	no
BURPS668 _3561	ung+	uracil-DNA glycosylase	3.2.2.27	Q8X444 Uracil- DNA glycosylase (DB03419)	no	yes	no
BURPS668 _3668	murA+	UDP-N- acetylglucos amine 1- carboxyviny ltransferase		P33038 UDP-N- acetylglucosami ne 1- carboxyvinyltra nsferase (DB01879; DB02435; DB02995; DB03089; DB03089; DB04174; DB04474)	no	yes	no
BURPS668 _A0384	acnD⁺	aconitate hydratase	4.2.1.3	Q99798 Aconitate hydratase, mitochondrial (DB01727; DB03964; DB04072; DB04351;	yes	yes	no

12 of 33

				DB04562);			
				P36683			
				Aconitate			
				hydratase 2			
				(DB04351)			
BURPS668	ileS+	isoleucyl-	6.1.1.5	P41972	no	no	no
_A1869		tRNA		isoleucyl-tRNA			
		synthetase		synthetase			
				(DB00410)			
BURPS668	NA ⁺	putative	6.3.4.14	P24182 Biotin	no	yes	no
_A2053		acetyl-CoA		carboxylase			
		carboxylase,		(DB08074;			
		biotin		DB08075;			
		carboxylase		DB08076;			
		2		DB08144;			
				DB08145;			
				DB08146;			
				DB08314;			
				DB08315;			
				DB08316;			
				DB08317;			
				DB08318)			
BURPS668	leuB+	3-	1.1.1.85	Q56268 3-	no	yes	no
_A2451		isopropylma		isopropylmalate		2	
		late		dehydrogenase			
		dehydrogen		(DB04279)			
		ase		. , ,			
BURPS668	polA+	DNA	2.7.7.7	P00582 DNA	no	yes	no
_A2546	-	polymerase I		polymerase I		-	
				(DB00548;			
				DB08432)			
BURPS668	lpdA+	dihydrolipo	1.8.1.4	P09063	no	yes	no
_A3190	-	amide		Dihydrolipoyl		-	
		dehydrogen		dehydrogenase			
		ase		(DB03147)			

269 * mutants exist in other Burkholderia species, +essential gene in B. pseudomallei K96243 and MSHR668

Eight of the targets in Table 3 were also DrugBank targets in human; DrugBank was searched for theremaining twenty-six targets, showing that they also occur in other bacteria.

In silico knockout experiments were performed with the MetaFlux module of Pathway Tools to test the effect of inhibiting each chokepoint enzyme on *B. pseudomallei* growth in both the unconstrained and LB media models. Results (Table 4) show that knockout of BURPS668_3328 (*tgt*) and BURPS668_A2451 (*leuB*), eliminated the biomass flux in the unconstrained model, while knockout of BURPS668_2426 (*lpxD*), BURPS668_2433 (*uppS*), and BURPS668_3525 (*murG*) eliminated the biomass flux in the LB media model. Knockout of BURPS668_2433 (*uppS*), and BURPS668_3525 (*murG*) decreased the biomass flux in the unconstrained model, but did not eliminate it.

279

Table 4. Results of *in silico* knockout experiments on twenty-six chokepoint reactions in *B. pseudomallei*

13 of 33

locus_tag	Gene	Reaction(s)	Biomass flux	Biomass flux	
	name		(unconstrained model)	(LB media model)	
BURPS668_0305	argG	ARGSUCCINSYN-RXN	15000.000000	0.079412	
BURPS668_0328	folB	H2NEOPTERINALDOL-RXN	15000.000000	0.079412	
BURPS668_0675	aspS	ASPARTATETRNA-LIGASE- RXN-ASP-tRNAs/L- ASPARTATE/ATP/PROTON//Char ged-ASP-tRNAs/AMP/PPI.60	15000.000000	0.079412	
BURPS668_0810	recA	RXN0-5100	15000.000000	0.079412	
BURPS668_0964	dut	DUTP-PYROP-RXN	15000.000000	0.079412	
BURPS668_1465	dnaQ	DNA-DIRECTED-DNA- POLYMERASE-RXN	15000.000000	0.079412	
BURPS668_1712	thrS	THREONINETRNA-LIGASE- RXN-THR- tRNAs/THR/ATP/PROTON//Charg ed-THR-tRNAs/AMP/PPI.52	15000.000000	0.079412	
BURPS668_1752	lpdA	RXN-9718	15000.000000	0.079412	
BURPS668_2178	purA	ADENYLOSUCCINATE- SYNTHASE-RXN	15000.000000	0.079412	
BURPS668_2189	hisS	HISTIDINETRNA-LIGASE-RXN- HIS- tRNAs/HIS/ATP/PROTON//Charge d-HIS-tRNAs/AMP/PPI.52	15000.000000	0.079412	
BURPS668_2426	lpxD	UDPHYDROXYMYRGLUCOSAM NACETYLTRANS-RXN-R-3- hydroxymyristoyl-ACPs/UDP- OHMYR-GLUCOSAMINE//OH- MYRISTOYL/ACP/PROTON.73	15000.000000	0.000000	
BURPS668_2433	uppS	RXN-8999	14545.454545	0.000000	
BURPS668_2610	lpdA	1.8.1.4-RXN	15000.000000	0.079412	
BURPS668_2788	fabF	3-OXOACYL-ACP-SYNTH-RXN /3- OXOACYL-ACP-SYNTH-BASE- RXN /2.3.1.41-RXN / many other reactions	15000.000000	0.079412	
BURPS668_3103	rfbA	DTDPGLUCOSEPP-RXN	15000.000000	0.079412	
BURPS668_3328	tgt	QUEUOSINE-TRNA- RIBOSYLTRANSFERASE-RXN; RXN0-1321	0.000000	0.079412	
BURPS668_3366	ruvB	3.1.22.4-RXN	15000.000000	0.079412	
BURPS668_3464	aroQ	3-DEHYDROQUINATE- DEHYDRATASE-RXN	15000.000000	0.079412	
BURPS668_3525	murG	RXN-11346, RXN-8976, NACGLCTRANS-RXN, RXN-11029	10000.000000	0.000000	
BURPS668_3561	ung	RXN0-2584	15000.000000	0.079412	

				14 of 33
BURPS668_3668	murA	UDPNACETYLGLUCOSAMENOL PYRTRANS-RXN	15000.000000	0.079412
BURPS668_A1869	ileS	ISOLEUCINETRNA-LIGASE- RXN	15000.000000	0.079412
BURPS668_A2053	acc	BIOTIN-CARBOXYL-RXN	15000.000000	0.079412
BURPS668_A2451	leuB	RXN-13158; 3- ISOPROPYLMALDEHYDROG- RXN	0.000000	0.079412
BURPS668_A2546	polA	DNA-DIRECTED-DNA- POLYMERASE-RXN	15000.000000	0.079412
BURPS668_A3190	lpdA	1.8.1.4-RXN/RXN0-1132/RXN-8629	15000.000000	0.079412

282 The overall biomass fluxes were different in the two models. The unconstrained model had a much

greater total biomass flux than the LB media model. This is likely because the unconstrained model

included more nutrient inputs than the LB media model.

285 4. Discussion

286 4.1 Links between metabolism and virulence

287 In order to colonize the host, establish an infection, and proliferate, pathogens employ various 288 strategies, often involving links between metabolic pathways and virulence genes. Although current 289 knowledge regarding the connections between metabolism and virulence is limited [60], this topic is 290 becoming an increasing focus for host-pathogen studies. Some general links between metabolism and 291 virulence include regulatory connections between specific metabolites and virulence gene expression 292 [61-65], metabolic requirements for adaptation of the pathogen to the host niche [59,60,66,67], and 293 carbon catabolite repression [68]. More detailed information on the topic of metabolism and virulence 294 can be found in reviews [59,60,66,67,69-74].

295 Inside host cells, the survival of pathogenic bacteria depends on their acquisition of nutrients 296 and carbon sources, such as carbohydrates, lipids, glycolipids, dicarboxylic acids and amino acids, 297 from their host environment [59,60,66,67,71,75]. Preferred carbon sources vary among intracellular 298 pathogens, and the types of nutrients available in the host cell cytosol may determine the cell-type 299 specificities of different intracellular pathogens [76]. For example, many bacteria prefer hexoses, like 300 glucose, as sources of carbon and energy. These sugars are catabolized through glycolysis, the 301 pentose phosphate and Entner-Doudoroff pathways [75]. Some bacteria lack the glycolysis pathway 302 and preferentially metabolize glucose via the Entner-Doudoroff pathway [77], while others lack both 303 glycolysis and Entner-Doudoroff pathways and live on pyruvate that they obtain from the host cell

304 cytosol [78].

305 4.2 Metabolic potential of B. pseudomallei MSHR668

We previously reported that *B. pseudomallei* MSHR668, K96243 and 1106a have abundant capabilities to metabolize hexoses, including the complete sets of genes encoding the glycolysis, pentose phosphate cycle, and Entner-Doudoroff pathways. They also have several pathways for metabolism of pyruvate to acetyl-CoA, acetate and ethanol [37]. In general, *B. pseudomallei* as a species has a very diverse set of metabolic capabilities, likely a reflection of its ability to live both in the natural environment and in hosts.

The metabolic power of *B. pseudomallei* has been targeted in mutation studies to address the roles of various metabolic genes in virulence. Mutation of various metabolic genes that affect cell growth results in attenuation of *B. pseudomallei* virulence; these genes include 315 phosphoribosylformylglycinamidine cyclo-ligase (purM) [79], aspartate- & semialdehyde 316 dehydrogenase (asd) [80], acetolactate synthase (ilvI) [21], dehydroquinate synthase (aroB) [20], 317 chorismate synthase (aroC) [17], phosphoserine aminotransferase (serC) [81]. 318 phosphoribosylglycinamide formyltransferase 1 (purN) and phosphoribosylformylglycinamide 319 cyclo-ligase (purM) [18], two phospholipase C enzymes [82], disulfide oxidoreductase (dsbA) [83]. 320 Targeted mutation of *purM*, which encodes aminoimidazole ribotide, a precursor of de novo adenine 321 and thiamine biosynthesis, predictably causes a deficiency in adenine and thiamine biosynthesis [79]. 322 Aspartate-desemialdehyde dehydrogenase (asd) mutants cannot synthesize diaminopimelate for cell 323 wall biosynthesis [80], while acetolactate synthase (ilv1) mutants cannot synthesize the branched 324 chain amino acids isoleucine, valine, and leucine [21]. Dehydroquinate synthase (aroB) mutants are 325 defective in the shikimate pathway for chorismate biosynthesis, and addition of the aromatic 326 compounds tyrosine, tryptophan, phenylalanine, PABA, and 2,3-dihydroxybenzoate is required to 327 restore the growth in minimal medium [20]. Chorismate synthase (aroC) mutants are also defective 328 in aromatic compound synthesis and cannot grow without the addition of aromatic compounds to 329 the media [17]. Phosphoserine aminotransferase (serC) mutants are defective in serine and pyridoxal 330 5-phosphate biosynthesis and require minimal medium supplemented with serine for normal growth 331 [81].

332 *4.3 Vaccine studies*

333 Using live attenuated bacteria as vaccines can be effective in preventing disease, as attenuated 334 bacteria may still be able to replicate in the host and may contain immune-stimulatory epitopes that 335 are not found in subunit or heat-inactivated vaccines [84]. Many of the B. pseudomallei mutants 336 described above have already been tried as attenuated vaccines with mixed results. Vaccination with 337 the attenuated asd mutant protected BALB/c mice against acute melioidosis, but did not protect 338 against chronic melioidosis [80]. Vaccination with the attenuated *ilvI* mutant of *B. pseudomallei* 339 protected BALB/c mice against a challenge with a virulent strain [21]. In mice vaccinated with the 340 aroB mutant, the time to death following challenge with the virulent K96243 strain was a bit longer 341 than in unvaccinated mice, but all mice eventually died [20]. The aroC mutant was unable to persist 342 in vaccinated BALB/c mice long enough to elicit protective immunity, however C57BL/6 mice were 343 protected against challenge with a virulent strain [17]. Intraperitoneal vaccination of BALB/c mice 344 with a serC mutant resulted in higher levels of survival after challenge with K96243 virulent strain 345 [81]. While immunization of mice with attenuated B. pseudomallei mutants has resulted in the 346 induction of protective immunity in some cases, sterile immunity was rarely reported (reviewed by 347 [85]). Also, the live attenuated vaccine model may not be the best solution for the prevention of 348 melioidosis, because an attenuated mutant might revert to virulence, and might also establish a latent 349 infection [85].

350 4.4 Identification of antimicrobial therapeutics

351 An alternative avenue to combat melioidosis is through the development of novel antimicrobial 352 therapeutics. Regardless of the specific metabolic capabilities possessed by a pathogen, essential 353 nutrient acquisition and utilization mechanisms are proving to be good potential therapeutic targets, 354 as inhibition of these targets might deprive the pathogen of needed substrates for growth and 355 replication inside host cells [31]. There are currently 699 B. pseudomallei genomes available at the 356 National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/genome/476). 357 While some of these entries represent re-annotations of previous submissions, and some genomes 358 represent colony morphology variants of the same strain, an impressive number of individual 359 genomes are available to use with computational approaches to identify new therapeutic targets. 360 With this large number of available genomes, a core genome approach [86,87] could be used to 361 identify potential metabolic enzyme targets that are present in all sequenced *B. pseudomallei* genomes. 362 In silico methods for the identification of therapeutic targets in bacterial pathogens include 363 comparative genomics-based approaches, such as identification of essential genes specific to the

16 of 33

364 pathogen, and techniques based on metabolic pathway analysis and metabolic network modeling. 365 The more robust approaches use a combination of comparative genomics and metabolic pathway 366 analysis. These approaches have been used to identify essential gene targets in *Mycoplasma genitalium* 367 [88] and Mycobacterium ulcerans [89]. Another method, subtractive target identification, involves 368 identification of enzymes in the metabolic pathways of the pathogen, and comparing them to human 369 proteins to identify pathogen enzymes that are not found in human. A list of likely targets is compiled 370 by focusing on enzymes in pathways that are usually essential for pathogen growth and survival, 371 like lipid metabolism, carbohydrate metabolism, amino acid metabolism, energy metabolism, 372 vitamin and cofactor biosynthetic pathways and nucleotide metabolism. This approach has been used 373 to identify putative targets in M. tuberculosis [90], MRSA [91-93], as well as a collection of other 374 bacterial pathogens [94].

375 Methods for therapeutic target discovery based on metabolic pathway analysis and metabolic 376 network modeling have become very popular in the last ten years. Numerous studies have identified 377 candidate drug targets in various bacterial [27,34,95-106], fungal [106] and protosoan [31,106-109] 378 pathogens using a variety of methods to analyze metabolic pathways and networks. One method 379 employs chokepoint analysis to identify metabolic enzymes that are critical to the pathogen, because 380 they uniquely consume and/or produce certain metabolites. Chokepoint analysis has been used to 381 identify candidate metabolic enzyme targets in various pathogen genomes 382 [27,31,34,99,107,108,110,111]. However, no studies to date have used this approach to identify 383 potential drug targets in *B. pseudomallei* metabolic networks.

384 4.4.1 Identification of metabolic chokepoints

385 For this study, metabolic chokepoints were identified in the curated B. pseudomallei MSHR668 386 metabolic network using the Pathway Tools software [35]. Table 3 lists the chokepoint enzymes 387 identified in the metabolic networks of B. pseudomallei MSHR668 and K96243. Twenty-four of the B. 388 pseudomallei chokepoints were not indicated as human targets in DrugBank, and therefore 389 represented good candidate therapeutic targets against melioidosis. Six of the chokepoints in Table 3 390 were aminoacyl-tRNA synthetases, which are likely good targets as they are critical enzymes 391 involved in protein translation. These chokepoints included aspartyl-, threonyl-, histidyl-, valyl- and 392 isoleucyl-tRNA synthetase (2 copies). Aspartyl-tRNA synthase (aspS) is an essential gene target in M. 393 tuberculosis [112]. Threonyl-tRNA synthetase (thrS) inhibitors have been identified [113] and shown 394 to have anti-malarial activity against *Plasmodium falciparum* [114]. Isoleucyl-tRNA synthetase (*ileS*) is 395 a well-documented bacterial target [115-117]. The antimicrobial drug, mupirocin (pseudomonic acid), 396 selectively inhibits bacterial isoleucyl-tRNA synthetase without inhibiting its human homolog [114]. 397 However, resistance is seen in bacteria that possess an isoleucyl-tRNA synthetase that is similar to 398 eukaryotic versions [118]. Histidyl-tRNA synthetase (hisS) has been explored as a target in 399 *Trypanosoma cruzi* [119]. The chokepoint enzyme queuine tRNA-ribosyltransferase (*tgt*) incorporates 400 the wobble base queuine into tRNA, and is also a target in *Zymomonas mobilis* and *Shigella* [120,121]

401 Several B. pseudomallei chokepoint enzymes are likely involved in DNA-related processes. Two 402 of these enzymes, encoded by the recA and dnaQ genes, are involved in the SOS pathway [122], which 403 mediates the bacterial response to DNA damage. Activation of the SOS response by ciprofloxacin 404 induces mutations, which can lead to fluoriquinolone resistance [123]. The RecA protein is a target 405 for antibacterial drug discovery in M. tuberculosis [124] and Mycoplasma hyopneumoniae [96], and has 406 been proposed as a specific target for reducing the evolution of antimicrobial resistance [125]. The 407 chokepoint enzyme deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) prevents 408 incorporation of uracil into DNA and is important for DNA integrity [126]. dUTPase is a potential 409 antimalarial drug target against P. falciparum [127,128]. Holliday junction DNA helicase (ruvB) 410 participates in homologous recombination and repair of replication forks, and is therefore essential 411 for bacterial growth. Holliday junction processing components were previously identified as targets 412 for antimicrobials in E. coli [129] and Neisseria gonorrhoeae [130]. The chokepoint enzyme uracil-DNA 413 glycosylase (ung) has a role in uracil excision repair, and is a candidate anti-malarial drug target [131], 414 as well as a potential target to control growth of GC-rich bacteria such as *Pseudomonas aeruginosa* and 415 *Mycobacterium smegmatis* [132]. DNA polymerase I was identified as a chokepoint in *B. pseudomallei*.

416 Putative inhibitors of DNA polymerase I (*polA*), and subsequently DNA synthesis, have been 417 explored as possible antimicrobials [133,134].

418 Some chokepoint enzymes in *B. pseudomallei* have annotated functions in the biosynthesis of cell 419 wall components. One of these, UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase 420 (*lpxD*), catalyzes the third step in the lipid A biosynthesis pathway [135]. The lipid A component of 421 bacterial LPS is of particular interest because it is essential for cell viability and is highly conserved 422 [136]. This pathway is a target for new antibacterial therapeutics in *Escherichia coli* [137]. Another 423 chokepoint involved in cell wall synthesis is undecaprenyl diphosphate synthase (uppS), which 424 catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and cell wall teichoic 425 acid synthesis. UppS is a critical enzyme required for bacterial survival, and is an antibacterial target 426 in Staphylococcus aureus [138], Bacteroides fragilis, Vibrio vulnificus, E. coli [139] and H. pylori [140]. 427 Several classes of compounds that inhibit UppS function have been discovered [138,141,142]. Two 428 additional B. pseudomallei chokepoints, undecaprenyldiphospho-muramoylpentapeptide beta-N-429 acetylglucosaminyltransferase (murG), and UDP-N-acetylglucosamine 1-carboxyvinyltransferase 430 (murA) are likely involved in peptidoglycan biosynthesis. MurG is the target of the antibiotic 431 ramoplanin in Staphylococcus aureus [143]. Other potential inhibitors of MurG have been identified by 432 high throughput screening [144]. A small molecule inhibitor of MurG that augments the activity of 433 β -lactams against methicillin-resistant *Staphylococcus aureus* was recently identified [145]. MurA has 434 been a popular target for the design of novel antibiotics, and several inhibitors of MurA have been 435 identified that are active against various bacterial species [91,146-151]. The chokepoint enzyme 436 glucose-1-phosphate thymidylyltransferase (*rfbA/rmlA*), involved in O antigen biosynthesis, is also a 437 target in Streptococcus pneumoniae [152] and Pseudomonas aeruginosa [153].

438 The rest of the chokepoint enzymes in Table 3 are components of various biosynthesis pathways. 439 These enzymes include argininosuccinate synthase (*argG*), which catalyzes the second to last step in 440 L-arginine biosynthesis, and is associated with pathogenesis in the parasite Leishmania donovani [154], 441 Streptococcus pneumoniae [155], and B. cenocepacia [156]. The chokepoint enzyme 3-isopropylmalate 442 dehydrogenase (*leuB*) is the third enzyme specific to leucine biosynthesis in microorganisms [157], 443 and has been investigated as an antibacterial target in M. tuberculosis [158]. The B. pseudomallei 444 chokepoint dihydroneopterin aldolase (folB) is part of the tetrahydrofolate biosynthesis process, and 445 is essential for growth and biomass production in Acinetobacter baylyi, Bacillus anthracis, Francisella 446 tularensis, F. tularensis subsp. novicida strain U112, Mycobacterium tuberculosis, Helicobacter pylori, 447 Pseudomonas aeruginosa, Salmonella enterica serovar Typhi and Yersinia pestis [95]. Three of the 448 chokepoint genes identified in *B. pseudomallei* encoded lipoamide dehydrogenase, a component of the 449 pyruvate dehydrogenase complex, which converts pyruvate to acetyl-CoA as part of central 450 metabolism [159]. Lipoamide dehydrogenase is also a target in *M. tuberculosis*, where deletion 451 drastically impaired the pathogen's ability to establish infection in the mouse [160]. The 452 mycobacterial version has only 36% identity with the human homolog. Lipoamide dehydrogenase is 453 a target of drugs against trypanosomal infections [161]. Adenylosuccinate synthetase (purA) is also a 454 chokepoint enzyme and potential therapeutic target that is involved in purine salvage in Leishmania 455 donovani [162]. Chokepoint enzyme 3-dehydroquinate dehydratase (aroQ) is a component of the 456 shikimate pathway for chorismate biosynthesis and is a target of known inhibitors in *M. tuberculosis*, 457 *Enterococcus faecalis* and *Streptomyces coelicolor* [163-167].

458 The B. pseudomallei chokepoint enzyme 3-oxoacyl-ACP synthase (fabF), involved in fatty acid 459 synthesis, is already an antibacterial target in E. coli, and a specific inhibitor, cerulenin, has been 460 identified [168,169]. Another fatty acid synthesis chokepoint enzyme in B. pseudomallei was a biotin-461 dependent acetyl-CoA carbosylase. Biotin dependent carboxylases comprise a large group of 462 enzymes that participate in a variety of cellular processes, including fatty acid metabolism, amino 463 acid metabolism, carbohydrate metabolism, polyketide biosynthesis, urea utilization, etc. (reviewed 464 by [170]). Acetyl-CoA carboxylase is comprised of two enzymes, biotin carboxylase and 465 carboxyltransferase, and catalyzes the first committed step in fatty acid synthesis [171]. Acetyl-CoA 466 carboxylase is an antimicrobial target in M. tuberculosis [172], E. coli [173,174], other bacteria and most

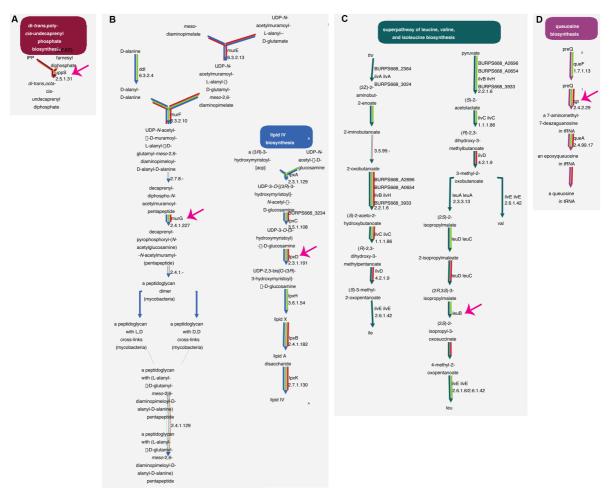
18 of 33

living organisms (reviewed by [175]). All of the chokepoints in Table 3 are essential genes in *B. pseudomallei* MSHR668 and K96243, as determined by blasting the chokepoint enzyme sequences against essential gene sequences in the Database of Essential Genes [176] and by comparing to the list of essential genes previously identified in K96243 [177].

To determine if *B. pseudomallei* deletion mutants were available for each of the chokepoints in Table 3, searches of the internet, PubMed, and the Burkholderia Genome Database (http://burkholderia.com) were performed. Based on these searches, none of the chokepoint enzymes in Table 3 had a mutant available; however, a *B. cenocepacia argG* mutant has attenuated virulence [178], and *recA* mutants have been identified in *B. cepacia* [179].

Additional metabolic enzymes, not identified as chokepoints in this study, and pathways critical
for bacterial growth and survival have been mentioned with respect to target identification. These
include anaplerotic pathways that turned on by limiting carbon sources [180], the glyxoalate shunt
enzyme isocitrate lyase [16,181,182], involved in the metabolism of fatty acids [15,181], enoyl-ACP
reductase (FabI) in the type II fatty acid biosynthesis pathway [183], and alanine racemase [23].

481 4.4.2 Flux balance analysis


482 To gain an understanding of the metabolic processes in *B. pseudomallei* MSHR668 that are active 483 under different environmental conditions, and to test the effect of deletion of each chokepoint enzyme 484 on the growth of B. pseudomallei in silico, metabolic network models were constructed and FBA was 485 performed. The first FBA model, of the unconstrained network in MSHR668, included all possible 486 biomass compounds that could be produced, all nutrients that could be consumed, had no weights 487 imposed on the biomass metabolites and no constraints imposed on the nutrients. [Supplementary 488 material, S1_Final_unconstrained_model_inputs.pdf, S2_Final_unconstrained_model_solution.pdf]. 489 This model likely represents the metabolic potential of *B. pseudomallei* in a soil or water environment 490 where abundant carbon and nitrogen sources are available. To mimic the conditions that B. 491 pseudomallei experiences in culture, a separate model was constructed that provided only the 492 nutrients present in LB media plus glycerol [43]. Constraints were included on some of the nutrients 493 this model (ADP, Pi, proton and glycerol). [Supplementary material, in 494 S3_Final_LB_model_inputs.pdf, S4_Final_LB_model_solution.pdf]. A third model was attempted, to 495 mimic infection conditions using only the nutrients present in the host cell cytosol. However, no 496 comprehensive studies have identified a complete list of host cell nutrients that are available to B. 497 pseudomallei during infection. Also, the specific carbon requirements of B. pseudomallei in either 498 human macrophages or amoebae have not been determined. After trying to compile a list of nutrients 499 that mimic the content of the host cytosol, from the literature and from gene expression studies of B. 500 pseudomallei during infection, this model did not produce a solution so it was abandoned. However, 501 the LB media model contained a similar set of nutrients to those used by the intracellular pathogen 502 L. pneumophila [47,48,50], so it may in fact be somewhat representative of infection conditions.

In silico knockout experiments were performed, where each chokepoint enzyme was knocked out, one at a time, to assess the effect on the total flux through the unconstrained and LB media models. Five chokepoint enzymes, when knocked out, had an effect on the models (Table 4). Specifically, knocking out BURPS668_3328 (*tgt*) and BURPS668_A2451 (*leuB*), eliminated the biomass flux in the unconstrained model, while knockout of BURPS668_2426 (*lpxD*), BURPS668_2433 (*uppS*), and BURPS668_3525 (*murG*) eliminated the biomass flux in the LB media model. Knockout of BURPS668_2433 (*uppS*), and BURPS668_3525 (*murG*) decreased the biomass flux in the unconstrained

510 model, but did not eliminate it. The metabolic pathways that these enzymes belong to are shown in

511 Figure 2.

19 of 33

512

513 Figure 2. Metabolic pathways in B. pseudomallei MSHR668 that show reduced flux when chokepoint 514 enzymes (indicated by pink arrows) are deleted. A. The mono-trans, poly-cis decaprenyl phosphate 515 biosynthesis pathway that contains the chokepoint enzyme undecaprenyl diphosphate synthase 516 (uppS). B. The two chokepoints UDP-N-acetylglucosamine--N-acetylmuramyl-(pentapeptide) 517 pyrophosphoryl-decaprenol N-acetylglucosamine transferase (murG) and UDP-3-O-(R-3-518 hydroxymyristoyl)-glucosamine N-acyltransferase (lpxD), involved in peptidoglycan and lipid A 519 biosynthesis, respectively. C. The chokepoint enzyme tRNA-guanine transglycosylase (tgt), involved 520 in queosine biosynthesis. D. The 3-isopropylmalate dehydrogenase (leuB) chokepoint enzyme 521 performs the third step in leucine biosynthesis. In silico deletion of UDP-3-O-(R-3-hydroxymyristoyl)-522 glucosamine N-acyltransferase (*lpxD*) reduced flux through the *B. pseudomallei* metabolic network in 523 the LB media model, deletion of undecaprenyl diphosphate synthase (uppS) reduced flux through 524 both unconstrained and LB media models, and deletion of tRNA-guanine transglycosylase (tgt) and 525 3-isopropylmalate dehydrogenase (*leuB*) reduced flux in the unconstrained model. These pathways 526 were rendered by the Cellular Overview feature of Pathway Tools.

527

528 In terms of carbon sources, glucose was utilized as a nutrient in the unconstrained model of B. 529 pseudomallei MSHR668. However, when glycerol was replaced by glucose in the LB media model, no 530 FBA solution was found [data not shown]. This was a somewhat unexpected result, as B. pseudomallei 531 can utilize glucose as a carbon source in culture [184]. One possible explanation for this result is that 532 additional nutrients required for glucose utilization were missing from the input nutrients list. Co-533 metabolism of more than one carbon substrate is a metabolic strategy employed by intracellular 534 bacteria replicating inside host cells to provide carbon for energy and biosynthesis [59]. For example, 535 Listeria monocytogenes can use both glycerol and lactate as carbon sources, [57,185-187]. It has been 536 suggested that during infection by *Listeria*, the host cell may not contain enough glucose to activate 537 bacterial PTS glucose transporters, so alternative carbon sources are important for survival and 538 virulence of the pathogen [57]. M. tuberculosis also relies on glycerol and fatty acids as carbon sources

20 of 33

539 in the macrophage environment [188] As the unconstrained B. pseudomallei model included a much 540 longer list of nutrients than the LB model and also could use glucose as a nutrient, this could be the 541 case. Another explanation for glucose not being utilized by the LB media model is that intracellular 542 bacteria seem to prefer other substrates over glucose during infection [189], and glycerol may be a 543 major carbon source for intracellular bacteria during infection [189,190]. This may also be the 544 situation for B. pseudomallei inside host cells. Glycerol feeds into the second half of the 545 glycolysis/gluconeogenesis pathway through its conversion to dihydroxyacetone phosphate 546 [www.metacyc.org; [191]], by passing the first four steps of glycolysis. We previously determined that 547 the *B. pseudomallei* MSHR668 genome has the full set of genes to perform this conversion [37]. Two 548 studies of *L. monocytogenes* infection support the idea that intracellular pathogens generally may use 549 glycerol rather than glucose as a main carbon source while inside host cells. Transcription profiles of 550 L. monocytogenes grown in mouse macrophages showed reduced expression of genes encoding some 551 of the enzymes involved in glycolysis, in particular phosphoglucose isomerase (*pgi*), which converts 552 glucose-6-phosphate into fructose-6-phosphate, and the five steps involved in the conversion of 553 glyceraldehyde-3-phosphate to pyruvate [189]. Similar transcription profiles were seen during L. 554 monocytogenes infection of Caco-2 epithelial cells [192]. Both studies showed increased expression of 555 genes involved in the uptake and utilization of glycerol [189,192]: these genes were glpF, glpK, glpD 556 and dhaK.

557 To date, no study has determined precisely which carbon substrates are utilized by B. 558 pseudomallei during infection of host cells. In addition to glycerol, there is evidence that B. pseudomallei 559 may utilize aromatic carbon compounds such as benzoate and phenylacetic acid as carbon sources 560 for intracellular survival [53]. One study showed that in B. pseudomallei 1026b, glycolytic pathway 561 and TCA cycle genes were down-regulated during infection of hamster [193], supporting the idea 562 that *B. pseudomallei* may prefer carbon sources other than glucose while inside host cells. Other studies 563 examined genes induced by hypoxia, which is a condition present in infected macrophages [194] and 564 changes in *B. pseudomallei* gene expression during infection of rat lungs {van Schaik, 2008 #194.

565 Complicating the situation even more, the complete nutrient content of a representative 566 mammalian host cell cytosol has not been determined yet, so a consensus set of nutrients present in 567 the cytosol of different host cell types is still out of reach {Eisenreich, 2013 #40}. This is largely due to 568 the challenges in designing appropriate infection models and robust analytical approaches to 569 measure metabolic changes occurring in host cells during infection. Because of these limitations on 570 both the pathogen and host sides, it is difficult to predict which carbon sources pathogens can use to 571 grow inside host cells. While we don't know the exact biochemical composition of a mammalian cell 572 cytosol, we do know some details about mammalian cells in general. For example, the cytosol of a 573 typical cell has low magnesium, sodium and calcium concentrations, and a high potassium 574 concentration at neutral pH [195]. In addition, mammalian cells contain small amounts of amino 575 acids, plus significant amounts of TCA cycle intermediates [196,197]. Once inside host cells, 576 intracellular bacteria may stimulate host cell responses to produce needed nutrients [190]. However, 577 host-pathogen interactions during infection are complicated, as some host defense responses are 578 aimed at inhibiting pathogen survival and proliferation, for instance by decreasing metabolic 579 activities that provide nutrients to the pathogen [180].

580 5. Conclusions

581 This work is the first to use genome scale metabolic modeling to address B. pseudomallei 582 metabolism as a source of new drug targets. While identifying the nutrients available to B. 583 pseudomallei inside host cells was difficult, the effort described here identified a set of twenty-six 584 chokepoint enzyme drug targets; in silico deletion of five of these target enzymes reduced the total 585 biomass flux through the *B. pseudomallei* metabolic network. While a genome-based approach like 586 this can streamline the initial steps of antibacterial target identification, the true utility of this process 587 will be demonstrated when the targets are experimentally verified by performing knockout 588 experiments in culture, followed by efficacy testing of candidate drugs in culture and in animal 589 models of infection.

21 of 33

									www.mdpi.com/link,
591	S1_Final_unconstr	rained_model_	_inputs.	.pdf,S2_Final_	uncon	strained_mo	del_soluti	on.pdf	f,

592 S3_Final_LB_model_inputs.pdf, S4_Final_LB_model_solution.pdf, S5_Nutrients_infection_model.pdf

Acknowledgments: This project was supported by the Defense Threat Reduction Agency (JSTO-CBD Proposal
 # CBCALL12-IS1-1-0283).

- 595 **Conflicts of Interest:** The author declares no conflict of interest. The founding sponsors had no role in the design
- 596 of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
- 597 decision to publish the results.
- 598 References

599

- 600 1. White, N.J. Melioidosis. *Lancet* **2003**, *361*, 1715-1722.
- 601 2. Currie, B.J. Melioidosis: An important cause of pneumonia in residents of and travellers
 602 returned from endemic regions. *Eur Respir J* 2003, *22*, 542-550.
- 603 3. Schweizer, H.P. Mechanisms of antibiotic resistance in *Burkholderia pseudomallei*: Implications
 604 for treatment of melioidosis. *Future Microbiol.* 2012, *7*, 1389-1399.
- 605 4. Dance, D. Treatment and prophylaxis of melioidosis. *Int J Antimicrob Agents*. 2014, 43, 310606 318.
- 6075.Mays, E.E.; Ricketts, E.A. Melioidosis: Recrudescence associated with bronchogenic608carcinoma twenty-six years following initial geographic exposure. *Chest* 1975, 68.
- 6. Thibault, F.M.; Hernandez, E.; Vidal, D.R.; Girardet, M.; Cavallo, J.D. Antibiotic susceptibility
 610 of 65 isolates of *Burkholderia pseudomallei* and *Burkholderia mallei* to 35 antimicrobial agents. *J.*611 *Antimicrob. Chemother.* 2004, 54, 1134-1138.
- 612 7. Jenney, A.W.; Lum, G.; Fisher, D.A.; Currie, B.J. Antibiotic susceptibility of *Burkholderia*613 *pseudomallei* from tropical northern australia and implications for therapy of melioidosis. *Int.*614 *J. Antimicrob. Agents* 2001, 17, 109-113.
- 615 8. Dance, D.A.; Wuthiekanun, V.; Chaowagul, W.; White, N.J. The antimicrobial susceptibility
 616 of *Pseudomonas pseudomallei*. Emergence of resistance in vitro and during treatment. J
 617 *Antimicrob Chemother*. 1989, 24, 295-309.
- 618 9. Galperin, M.Y.; Koonin, E.V. Searching for drug targets in microbial genomes. *Curr Opin*619 *Biotechnol.* 1999, 10, 571-578.
- 620 10. Oberhardt, M.A.; Yizhak, K.; Ruppin, E. Metabolically re-modeling the drug pipeline. *Curr*621 *Opin Pharmacol.* 2013, *13*, 778-785.
- 622 11. Silver, L.L. Challenges of antibacterial discovery. *Clin Microbiol Rev.* **2011**, 24, 71-109.
- Cummings, J.E.; Kingry, L.C.; Rholl, D.A.; Schweizer, H.P.; Tonge, P.J.; Slayden, R.A. The *Burkholderia pseudomallei* enoyl-acyl carrier protein reductase fabil is essential for in vivo
 growth and is the target of a novel chemotherapeutic with efficacy. *Antimicrob Agents Chemother.* 2014, 58, 931-935.
- Lu, H.; Tonge, P.J. Inhibitors of fabi, an enzyme drug target in the bacterial fatty acid
 biosynthesis pathway. *Acc Chem Res.* 2008, *41*, 11-20.
- 629 14. Tong, L.; Harwood, H.J.J. Acetyl-coenzyme a carboxylases: Versatile targets for drug
 630 discovery. *J Cell Biochem* 2006, *99*, 1478-1488.
- 63115.Muñoz-Elías, E.J.; McKinney, J.D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are632jointly required for in vivo growth and virulence. Nat Med. 2005, 11, 638-644.

633	16.	van Schaik, E.J.; Tom, M.; Woods, D.E. Burkholderia pseudomallei isocitrate lyase is a
634		persistence factor in pulmonary melioidosis: Implications for the development of isocitrate
635		lyase inhibitors as novel antimicrobials. Infect Immun. 2009, 77, 4275-4283.
636	17.	Srilunchang, T.; Proungvitaya, T.; Wongratanacheewin, S.; Strugnell, R.; Homchampa, P.
637		Construction and characterization of an unmarked aroc deletion mutant of Burkholderia
638		pseudomallei strain a2. Southeast Asian J Trop Med Public Health 2009 , 40, 123-130.
639	18.	Breitbach, K.; Köhler, J.; Steinmetz, I. Induction of protective immunity against Burkholderia
640		pseudomallei using attenuated mutants with defects in the intracellular life cycle. Trans R Soc
641		Trop Med Hyg 2008 , 102 Suppl 1, S89-94.
642	19.	Pilatz, S.; Breitbach, K.; Hein, N.; Fehlhaber, B.; Schulze, J.; Brenneke, B.; Eberl, L.; Steinmetz,
643		I. Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and
644		in vivo virulence. Infect Immun 2006, 74, 3576-3586.
645	20.	Cuccui, J.; Easton, A.; Chu, K.K.; Bancroft, G.J.; Oyston, P.C.; Titball, R.W.; Wren, B.W.
646		Development of signature-tagged mutagenesis in Burkholderia pseudomallei to identify genes
647		important in survival and pathogenesis. Infect Immun 2007, 75, 1186-1195.
648	21.	Atkins, T.; Prior, R.G.; Mack, K.; Russell, P.; Nelson, M.; Oyston, P.C.; Dougan, G.; Titball,
649		R.W. A mutant of Burkholderia pseudomallei, auxotrophic in the branched chain amino acid
650		biosynthetic pathway, is attenuated and protective in a murine model of melioidosis. Infect
651		Immun 2002 , 70, 5290-5294.
652	22.	Levine, H.B.; Maurer, R.L. Immunization with an induced avirulent auxotrophic mutant of
653		Pseudomonas pseudomallei. J Immunol 1958 , 81, 433-438.
654	23.	Zajdowicz, S.L.; Jones-Carson, J.; Vazquez-Torres, A.; Jobling, M.G.; Gill, R.E.; Holmes, R.K.
655		Alapine recomese mutants of Burkholderia negudomallei and Burkholderia mallei and use of

655Alanine racemase mutants of Burkholderia pseudomallei and Burkholderia mallei and use of656alanine racemase as a non-antibiotic-based selectable marker. PLoS One 2011, 6, e21523.

- Vanaporn, M.; Wand, M.; Michell, S.L.; Sarkar-Tyson, M.; Ireland, P.; Goldman, S.;
 Kewcharoenwong, C.; Rinchai, D.; Lertmemongkolchai, G.; Titball, R.W. Superoxide
 dismutase c is required for intracellular survival and virulence of *Burkholderia pseudomallei*. *Microbiology* 2011, 157, 2392-2400.
- Lee, H.S.; Gu, F.; Ching, S.M.; Lam, Y.; Chua, K.L. Cdpa is a *Burkholderia pseudomallei* cyclic
 di-gmp phosphodiesterase involved in autoaggregation, flagellum synthesis, motility,
 biofilm formation, cell invasion, and cytotoxicity. *Infect Immun* 2010, *78*, 1832-1840.
- 664 26. McPhillie, M.J.; Cain, R.M.; Narramore, S.; Fishwick, C.W.; Simmons, K.J. Computational
 665 methods to identify new antibacterial targets. *Chem Biol Drug Des.* 2015, *85*, 22-29.
- 666 27. Chung, B.K.; Dick, T.; Lee, D.Y. In silico analyses for the discovery of tuberculosis drug
 667 targets. *J Antimicrob Chemother.* 2013, 68, 2701-2709.
- Mobegi, F.M.; van Hijum, S.A.; Burghout, P.; Bootsma, H.J.; de Vries, S.P.; van der Gaast-de
 Jongh, C.E.; Simonetti, E.; Langereis, J.D.; Hermans, P.W.; de Jonge, M.I., *et al.* From microbial
 gene essentiality to novel antimicrobial drug targets. *BMC Genomics* 2014, 15, 958.
- 671 29. Hamilton, J.J.; Reed, J.L. Software platforms to facilitate reconstructing genome-scale
 672 metabolic networks. *Environ Microbiol.* 2014, *16*, 49-59.
- 67330.Thiele, I.; Palsson, B.Ø. A protocol for generating a high-quality genome-scale metabolic674reconstruction. *Nat. Protoc.* 2010, *5*, 93-121.

675	31.	Yeh, I.; Hanekamp, T.; Tsoka, S.; Karp, P.D.; Altman, R.B. Computational analysis of
676		Plasmodium falciparum metabolism: Organizing genomic information to facilitate drug
677		discovery. <i>Genome Res</i> 2004 , 14, 917-924.
678	32.	Duffield, M.; Cooper, I.; McAlister, E.; Bayliss, M.; Ford, D.; Oyston, P. Predicting conserved
679		essential genes in bacteria: In silico identification of putative drug targets. <i>Mol Biosyst.</i> 2010,
680		6, 2482-2489.
681	33.	Sakharkar, K.R.; Sakharkar, M.K.; Chow, V.T. A novel genomics approach for the
682		identification of drug targets in pathogens, with special reference to <i>Pseudomonas aeruginosa</i> .
683		In Silico Biol. 2004 , 4, 355-360.
684	34.	Singh, S.; Malik, B.K.; Sharma, D.K. Metabolic pathway analysis of s. Pneumoniae: An in silico
685		approach towards drug-design. J Bioinform Comput Biol 2007, 5, 135-153.
686	35.	Karp, P.D.; Paley, S.; Romero, P. The pathway tools software. <i>Bioinformatics</i> 2002, 18 Suppl 1,
687		S225-S232.
688	36.	Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes,
689		S.; Glass, E.M.; Kubal, M., et al. The rast server: Rapid annotations using subsystems
690		technology. BMC Genomics 2008, 9, 75.
691	37.	Challacombe, J.F.; Stubben, C.J.; Klimko, C.P.; Welkos, S.L.; Kern, S.J.; Bozue, J.A.; Worsham,
692		P.L.; Cote, C.K.; Wolfe, D.N. Interrogation of the Burkholderia pseudomallei genome to address
693		differential virulence among isolates. PLoS One 2014, 9, e115951.
694	38.	Karp, P.D.; Latendresse, M.; Caspi, R. The pathway tools pathway prediction algorithm.
695		Stand Genomic Sci 2011 , 5, 424-429.
696	39.	Latendresse, M.; Krummenacker, M.; Trupp, M.; Karp, P.D. Construction and completion of
697		flux balance models from pathway databases. Bioinformatics 2102, 28, 388-396.
698	40.	Fraser, D.; Powell, R.E. The kinetics of trypsin digestion. J Biol Chem. 1950, 187, 803-820.
699	41.	Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia
700		coli. J Bacteriol. 1951 , 62, 293-300.
701	42.	Grant, C.L.; Pramer, D. Minor element composition of yeast extract. J Bacteriol. 1962, 84, 869-
702		870.
703	43.	Oh, Y.K.; Palsson, B.O.; Park, S.M.; Schilling, C.H.; Mahadevan, R. Genome-scale
704		reconstruction of metabolic network in Bacillus subtilis based on high-throughput
705		phenotyping and gene essentiality data. J Biol Chem. 2007, 282, 28791-28799.
706	44.	Zhang, R.; Lin, Y. Deg 5.0, a database of essential genes in both prokaryotes and eukaryotes.
707		Nucleic Acids Res. 2009, 37(Database issue), D455-458.
708	45.	Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.;
709		Hassanali, M. Drugbank: A knowledgebase for drugs, drug actions and drug targets. Nucleic
710		Acids Res. 2008 , 36(Database issue), D901-906.
711	46.	Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.;
712		Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of
713		biomolecular interaction networks. Genome Res 2003, 13, 2498-2504.
714	47.	Price, C.T.; Richards, A.M.; Abu Kwaik, Y. Nutrient generation and retrieval from the host
715		cell cytosol by intra-vacuolar Legionella pneumophila. Front Cell Infect Microbiol 2014, 4, 111.
716	48.	Price, C.T.; Abu Kwaik, Y. Amoebae and mammals deliver protein-rich atkins diet meals to
717		Legionella cells. Microbe 2012, 7, 506-513.

718	49.	Gao, L.Y.; Harb, O.S.; Abu Kwaik, Y. Utilization of similar mechanisms by Legionella
719		pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and
720		protozoa. Infect. Immun. 1997 , 65, 4738-4746.

- 50. Eylert, E.; Herrmann, V.; Jules, M.; Gillmaier, N.; Lautner, M.; Buchrieser, C.; Eisenreich, W.;
 Heuner, K. Isotopologue profiling of *Legionella pneumophila*: Role of serine and glucose as
 carbon substrates. *J Biol Chem.* 2010, 285, 22232-22243.
- 51. DeShazer, D. Genomic diversity of *Burkholderia pseudomallei* clinical isolates: Subtractive
 hybridization reveals a *Burkholderia mallei*-specific prophage in *B. pseudomallei* 1026b. *J. Bacteriol.* 2004, 186, 3938-3950.
- 52. Ooi, W.F.; Ong, C.; Nandi, T.; Kreisberg, J.F.; Chua, H.H.; Sun, G.; Chen, Y.; Mueller, C.;
 Conejero, L.; Eshaghi, M., *et al.* The condition-dependent transcriptional landscape of *Burkholderia pseudomallei. PLoS Genet.* 2013, *9*, e1003795.
- 53. Chieng, S.; Carreto, L.; Nathan, S. *Burkholderia pseudomallei* transcriptional adaptation in macrophages. *BMC Genomics* 2012, *13*, 328.
- 54. Eriksson, S.; Lucchini, S.; Thompson, A.; Rhen, M.; Hinton, J.C. Unravelling the biology of
 macrophage infection by gene expression profiling of intracellular *Salmonella enterica*. *Mol Microbiol* 2003, 47, 103-118.
- 735 55. Zdziarski, J.; Brzuszkiewicz, E.; Wullt, B.; Liesegang, H.; Biran, D.; Voigt, B.; Grönberg736 Hernandez, J.; Ragnarsdottir, B.; Hecker, M.; Ron, E.Z., *et al.* Host imprints on bacterial
 737 genomes--rapid, divergent evolution in individual patients. *PLoS Pathog.* 2010, *6*, e1001078.
- 738 56. Reniere, M.L.; Whiteley, A.T.; Hamilton, K.L.; John, S.M.; Lauer, P.; Brennan, R.G.; Portnoy,
 739 D.A. Glutathione activates virulence gene expression of an intracellular pathogen. *Nature*740 2015, *517*, 70-31.
- 57. Eylert, E.; Schär, J.; Mertins, S.; Stoll, R.; Bacher, A.; Goebel, W.; Eisenreich, W. Carbon
 742 metabolism of *Listeria monocytogenes* growing inside macrophages. *Mol Microbiol.* 2008, 69,
 743 1008-1017.
- 58. Chico-Calero, I.; Suárez, M.; González-Zorn, B.; Scortti, M.; Slaghuis, J.; Goebel, W.; Vázquez745 Boland, J.A.; Consortium, E.L.G. Hpt, a bacterial homolog of the microsomal glucose746 phosphate translocase, mediates rapid intracellular proliferation in *Listeria*. *Proc Natl Acad Sci*747 U S A 2002, 99, 431-436.
- 59. Eisenreich, W.; Dandekar, T.; Heesemann, J.; Goebel, W. Carbon metabolism of intracellular
 bacterial pathogens and possible links to virulence. *Nat Rev Microbiol* 2010, *8*, 401-412.
- Fuchs, T.M.; Eisenreich, W.; Heesemann, J.; Goebel, W. Metabolic adaptation of human
 pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. *FEMS Microbiol Rev.* 2012, 36, 435-462.
- 61. Gore, A.L.; Payne, S.M. Csra and cra influence *Shigella flexneri* pathogenesis. *Infect Immun.*2010, 78, 4674-4682.
- Litwin, C.M.; Calderwood, S.B. Role of iron in regulation of virulence genes. *Clin Microbiol Rev.* 1993, *6*, 137-149.
- 75763.Mellies, J.L.; Barron, A.M.; Carmona, A.M. Enteropathogenic and enterohemorrhagic758*Escherichia coli* virulence gene regulation. *Infect Immun* 2007, 75, 4199-4210.

759	64.	Njoroge, J.W.; Nguyen, Y.; Curtis, M.M.; Moreira, C.G.; Sperandio, V. Virulence meets
760		metabolism: Cra and kdpe gene regulation in enterohemorrhagic Escherichia coli. MBio 2012,
761		<i>3,</i> e00280-00212.
762	65.	Porcheron, G.; Dozois, C.M. Interplay between iron homeostasis and virulence: Fur and ryhb
763		as major regulators of bacterial pathogenicity. Vet Microbiol 2015, 179, 2-14.
764	66.	Ray, K.; Marteyn, B.; Sansonetti, P.J.; Tang, C.M. Life on the inside: The intracellular lifestyle
765		of cytosolic bacteria. Nat Rev Microbiol 2009 , 7, 333-340.
766	67.	Rohmer, L.; Hocquet, D.; Miller, S.I. Are pathogenic bacteria just looking for food?
767		Metabolism and microbial pathogenesis. Trends Microbiol. 2011, 19, 341-348.
768	68.	Gorke, B.; Stulke, J. Carbon catabolite repression in bacteria: Many ways to make the most
769		out of nutrients. Nat Rev Microbiol 2008, 6, 613-624.
770	69.	Barel, M.; Charbit, A. Francisella tularensis intracellular survival: To eat or to die. Microbes
771		Infect 2013 , pii, S1286-4579(1213)00206-00202.
772	70.	Kwaik, Y.A. Nutrition-based evolution of intracellular pathogens. Environmental Microbiology
773		<i>Reports</i> 2015 , <i>7</i> , 2-3.
774	71.	Kwaik, Y.A.; Bumann, D. Microbial quest for food in vivo: 'Nutritional virulence' as an
775		emerging paradigm. Cell Microbiol. 2013, 15, 882-890.
776	72.	Meibom, K.L.; Charbit, A. Francisella tularensis metabolism and its relation to virulence. Front
777		Microbiol. 2010 , 1, 140.
778	73.	Olive, A.J.; Sassetti, C.M. Metabolic crosstalk between host and pathogen: Sensing, adapting
779		and competing. Nature Reviews Microbiology 2016, 14, 221-234.
780	74.	Santic, M.; Kwaik, Y.A. Nutritional virulence of Francisella tularensis. Front Cell Infect Microbiol
781		2013 , <i>3</i> , 112.
782	75.	Muñoz-Elías, E.J.; McKinney, J.D. Carbon metabolism of intracellular bacteria. Cell Microbiol.
783		2006 , <i>8</i> , 10-22.
784	76.	Brown, S.A.; Palmer, K.L.; Whiteley, M. Revisiting the host as a growth medium. Nat Rev
785		Microbiol. 2008, 6, 657-666.
786	77.	Fuhrer, T.; Fischer, E.; Sauer, U. Experimental identification and quantification of glucose
787		metabolism in seven bacterial species. J Bacteriol. 2005, 187, 1581-1590.
788	78.	Renesto, P.; Ogata, H.; Audic, S.; Claverie, J.M.; Raoult, D. Some lessons from Rickettsia
789		genomics. FEMS Microbiol Rev 2005, 29, 99-117.
790	79.	Propst, K.L.; Mima, T.; Choi, K.H.; Dow, S.W.; Schweizer, H.P. A Burkholderia pseudomallei
791		deltapurm mutant is avirulent in immunocompetent and immunodeficient animals:
792		Candidate strain for exclusion from select-agent lists. Infect Immun 2010, 78, 3136-3143.
793	80.	Norris, M.H.; Propst, K.L.; Kang, Y.; Dow, S.W.; Schweizer, H.P.; Hoang, T.T. The
794		Burkholderia pseudomallei dasd mutant exhibits attenuated intracellular infectivity and imparts
795		protection against acute inhalation melioidosis in mice. Infect Immun 2011, 79, 4010-4018.
796	81.	Rodrigues, F.; Sarkar-Tyson, M.; Harding, S.V.; Sim, S.H.; Chua, H.H.; Lin, C.H.; Han, X.;
797		Karuturi, R.K.; Sung, K.; Yu, K., et al. Global map of growth-regulated gene expression in
798		<i>Burkholderia pseudomallei</i> , the causative agent of melioidosis. <i>J Bacteriol</i> 2006 , <i>188</i> , 8178-8188.
799	82.	Korbsrisate, S.; Tomaras, A.P.; Damnin, S.; Ckumdee, J.; Srinon, V.; Lengwehasatit, I.; Vasil,
800		M.L.; Suparak, S. Characterization of two distinct phospholipase c enzymes from Burkholderia
801		pseudomallei. Microbiology 2007 , 153, 1907-1915.

802	83.	Ireland, P.M.; McMahon, R.M.; Marshall, L.E.; Halili, M.; Furlong, E.; Tay, S.; Martin, J.L.;
803		Sarkar-Tyson, M. Disarming Burkholderia pseudomallei: Structural and functional
804		characterization of a disulfide oxidoreductase (DsbA) required for virulence in vivo. Antioxid
805		Redox Signal 2014 , 20, 606-617.
806	84.	Drabner, B.; Guzmán, C.A. Elicitation of predictable immune responses by using live
807		bacterial vectors. <i>Biomol Eng</i> 2001, 17, 75-82.
808	85.	Peacock, S.J.; Limmathurotsakul, D.; Lubell, Y.; Koh, G.C.; White, L.J.; Day, N.P.; Titball, R.W.
809		Melioidosis vaccines: A systematic review and appraisal of the potential to exploit biodefense
810		vaccines for public health purposes. PLoS Negl Trop Dis 2012, 6, e1488.
811	86.	Sim SH, Y.Y., Lin CH, Karuturi RKM, Wuthiekanun V, Tuanyok A. The core and accessory
812		genomes of Burkholderia pseudomallei: Implications for human melioidosis. PLoS Pathog 2008,
813		4, e1000178.
814	87.	Sahl, J.W.; Vazquez, A.J.; Hall, C.M.; Busch, J.D.; Tuanyok, A.; Mayo, M.; Schupp, J.M.;
815		Lummis, M.; Pearson, T.; Shippy, K., et al. The effects of signal erosion and core genome
816		reduction on the identification of diagnostic markers. <i>mBio</i> 2016 , 7, e00846-00816.
817	88.	Butt, A.M.; Tahir, S.; Nasrullah, I.; Idrees, M.; Lu, J.; Tong, Y. Mycoplasma genitalium: A

- comparative genomics study of metabolic pathways for the identification of drug and vaccine
 targets. *Infect Genet Evol* 2012, 12, 53-62.
- 89. Butt, A.M.; Nasrullah, I.; Tahir, S.; Tong, Y. Comparative genomics analysis of *Mycobacterium ulcerans* for the identification of putative essential genes and therapeutic candidates. *PLoS*822 *One* 2012, 7, e43080.
- 823 90. Anishetty, S.; Pulimi, M.; Pennathur, G. Potential drug targets in *Mycobacterium tuberculosis*824 through metabolic pathway analysis. *Comput Biol Chem* 2005, *29*, 368-378.
- Yadav, P.K.; Singh, G.; Singh, S.; Gautam, B.; Saad, E.I. Potential therapeutic drug target
 identification in community acquired-methicillin resistant *Staphylococcus aureus* (ca-mrsa)
 using computational analysis. *Bioinformation* 2012, *8*, 664-672.
- 828 92. Uddin, R.; Saeed, K. Identification and characterization of potential drug targets by
 829 subtractive genome analyses of methicillin resistant *Staphylococcus aureus*. *Comput Biol Chem*830 2014, 48, 55-63.
- 831 93. Uddin, R.; Saeed, K.; Khan, W.; Azam, S.S.; Wadood, A. Metabolic pathway analysis
 832 approach: Identification of novel therapeutic target against methicillin resistant
 833 *Staphylococcus aureus. Gene* 2015, 556, 213-226.
- 834 94. Barh, D.; Tiwari, S.; Jain, N.; Ali, A.; Santos, A.R.; Misra, A.N.; Azevedo, V.; Kumar, A. In
 835 silico subtractive genomics for target identification in human bacterial pathogens. *Drug Dev.*836 *Res.* 2011, 72, 162-177.
- 837 95. Ahn, Y.Y.; Lee, D.S.; Burd, H.; Blank, W.; Kapatral, V. Metabolic network analysis-based
 838 identification of antimicrobial drug targets in category a bioterrorism agents. *PLoS One* 2014,
 839 9, e85195.
- 840 96. Damte, D.; Suh, J.W.; Lee, S.J.; Yohannes, S.B.; Hossain, M.A.; Park, S.C. Putative drug and
 841 vaccine target protein identification using comparative genomic analysis of kegg annotated
 842 metabolic pathways of *Mycoplasma hyopneumoniae*. *Genomics* 2013, 102, 47-56.

843	97.	Fang, K.; Zhao, H.; Sun, C.; Lam, C.M.; Chang, S.; Zhang, K.; Panda, G.; Godinho, M.; Martins
844		dos Santos, V.A.; Wang, J. Exploring the metabolic network of the epidemic pathogen
845		Burkholderia cenocepacia j2315 via genome-scale reconstruction. BMC Syst Biol. 2011, 5, 83.
846	98.	Lee, D.S.; Burd, H.; Liu, J.; Almaas, E.; Wiest, O.; Barabási, A.L.; Oltvai, Z.N.; Kapatral, V.
847		Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple
848		Staphylococcus aureus genomes identify novel antimicrobial drug targets. J Bacteriol. 2009, 191,
849		4015-4024.
850	99.	Rahman, S.A.; Schomburg, D. Observing local and global properties of metabolic pathways:
851		'Load points' and 'choke points' in the metabolic networks. <i>Bioinformatics</i> 2006, 22, 1767-1774.
852	100.	Baths, V.; Roy, U.; Singh, T. Disruption of cell wall fatty acid biosynthesis in Mycobacterium
853		tuberculosis using a graph theoretic approach. Theor Biol Med Model 2011, 8, 5.
854	101.	Chaudhury, S.; Abdulhameed, M.D.; Singh, N.; Tawa, G.J.; D'haeseleer, P.M.; Zemla, A.T.;
855		Navid, A.; Zhou, C.E.; Franklin, M.C.; Cheung, J., et al. Rapid countermeasure discovery
856		against Francisella tularensis based on a metabolic network reconstruction. PLoS One 2013, 8,
857		e63369.
858	102.	Heinemann, M.; Kümmel, A.; Ruinatscha, R.; Panke, S. In silico genome-scale reconstruction
859		and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng 2005, 92, 850-
860		864.
861	103.	Herrgård, M.J.; Fong, S.S.; Palsson, B.Ø. Identification of genome-scale metabolic network
862		models using experimentally measured flux profiles. PLoS Comput Biol 2006, 2, e72.
863	104.	Kim, H.U.; Kim, S.Y.; Jeong, H.; Kim, T.Y.; Kim, J.J.; Choy, H.E.; Yi, K.Y.; Rhee, J.H.; Lee, S.Y.
864		Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and
865		discovery. <i>Mol Syst Biol</i> 2011 , 7, 460.
866	105.	Raghunathan, A.; Shin, S.; Daefler, S. Systems approach to investigating host-pathogen
867		interactions in infections with the biothreat agent Francisella. Constraints-based model of
868		Francisella tularensis. BMC Syst Biol 2010 , 4, 118.
869	106.	Chavali, A.K.; D'Auria, K.M.; Hewlett, E.L.; Pearson, R.D.; Papin, J.A. A metabolic network
870		approach for the identification and prioritization of antimicrobial drug targets. Trends
871		Microbiol. 2012 , 20, 113-123.
872	107.	Fatumo, S.; Plaimas, K.; Mallm, J.P.; Schramm, G.; Adebiyi, E.; Oswald, M.; Eils, R.; König, R.
873		Estimating novel potential drug targets of <i>Plasmodium falciparum</i> by analysing the metabolic
874		network of knock-out strains in silico. Infect Genet Evol 2009, 9, 351-358.
875	108.	Guimerà, R.; Sales-Pardo, M.; Amaral, L.A. A network-based method for target selection in
876		metabolic networks. <i>Bioinformatics</i> 2007, 23, 1616-1622.
877	109.	Chavali, A.K.; Whittemore, J.D.; Eddy, J.A.; Williams, K.T.; Papin, J.A. Systems analysis of
878		metabolism in the pathogenic trypanosomatid <i>Leishmania major</i> . <i>Mol Syst Biol</i> 2008 , 4, 177.
879	110.	Perumal, D.; Lim, C.S.; Sakharkar, M.K. A comparative study of metabolic network topology
880		between a pathogenic and a non-pathogenic bacterium for potential drug target
881		identification. Summit on Translat Bioinforma. 2009, 2009, 100-104.
882	111.	Taylor, C.M.; Wang, Q.; Rosa, B.A.; Huang, S.C.; Powell, K.; Schedl, T.; Pearce, E.J.;
883		Abubucker, S.; Mitreva, M. Discovery of anthelmintic drug targets and drugs using
884		chokepoints in nematode metabolic pathways. <i>PLoS Pathog</i> 2013 , <i>9</i> , e1003505.

885	112.	Ioerger, T.R.; O'Malley, T.; Liao, R.; Guinn, K.M.; Hickey, M.J.; Mohaideen, N.; Murphy, K.C.;
886		Boshoff, H.I.; Mizrahi, V.; Rubin, E.J., et al. Identification of new drug targets and resistance
887		mechanisms in <i>Mycobacterium tuberculosis</i> . PLoS One 2013 , 8, e75245.
888	113.	Orelle, C.; Szal, T.; Klepacki, D.; Shaw, K.J.; Vázquez-Laslop, N.; Mankin, A.S. Identifying the
889		targets of aminoacyl-trna synthetase inhibitors by primer extension inhibition. Nucleic Acids
890		<i>Res</i> 2013 , <i>41</i> , e144.
891	114.	Novoa, E.M.; Camacho, N.; Tor, A.; Wilkinson, B.; Moss, S.; Marín-García, P.; Azcárate, I.G.;
892		Bautista, J.M.; Mirando, A.C.; Francklyn, C.S., et al. Analogs of natural aminoacyl-trna
893		synthetase inhibitors clear malaria in vivo. <i>Proc Natl Acad Sci U S A</i> . 2014 , 111, E5508-5517.
894	115.	Schimmel, P.; Tao, J.; Hill, J. Aminoacyl trna synthetases as targets for new anti-infectives.
895		FASEB [1998 , 12, 1599-1609.
896	116.	Kim, S.; Lee, S.W.; Choi, E.C.; Choi, S.Y. Aminoacyl-trna synthetases and their inhibitors as a
897		novel family of antibiotics. <i>Appl Microbiol Biotechnol.</i> 2003 , 61, 278-288.
898	117.	Hurdle, J.G.; O'Neill, A.J.; Chopra, I. Prospects for aminoacyl-trna synthetase inhibitors as
899		new antimicrobial agents. <i>Antimicrob Agents Chemother.</i> 2005 , <i>49</i> , 4821-4833.
900	118.	Thomas, C.M.; Hothersall, J.; Willis, C.L.; Simpson, T.J. Resistance to and synthesis of the
901		antibiotic mupirocin. <i>Nat Rev Microbiol</i> 2010 , <i>8</i> , 281-289.
902	119.	Koh, C.Y.; Siddaramaiah, L.K.; Ranade, R.M.; Nguyen, J.; Jian, T.; Zhang, Z.; Gillespie, J.R.;
903		Buckner, F.S.; Verlinde, C.L.; Fan, E., <i>et al.</i> A binding hotspot in <i>Trypanosoma cruzi</i> histidyl-
904		trna synthetase revealed by fragment-based crystallographic cocktail screens. Acta Crystallogr
905		D Biol Crystallogr 2015 , 71, 1684-1698.
906	120.	Biela, I.; Tidten-Luksch, N.; Immekus, F.; Glinca, S.; Nguyen, T.X.; Gerber, H.D.; Heine, A.;
907		Klebe, G.; Reuter, K. Investigation of specificity determinants in bacterial trna-guanine
908		transglycosylase reveals queuine, the substrate of its eucaryotic counterpart, as inhibitor.
909		PLoS One 2013 , 8, e64240.
910	121.	Grädler, U.; Gerber, H.D.; Goodenough-Lashua, D.M.; Garcia, G.A.; Ficner, R.; Reuter, K.;
911		Stubbs, M.T.; Klebe, G. A new target for shigellosis: Rational design and crystallographic
912		studies of inhibitors of trna-guanine transglycosylase. J Mol Biol 2001 , 306, 455-467.
913	122.	Pohlhaus, J.R.; Long, D.T.; O'Reilly, E.; Kreuzer, K.N. The epsilon subunit of DNA
914		polymerase iii is involved in the nalidixic acid-induced sos response in Escherichia coli. J
915		Bacteriol 2008, 190, 5239-5247.
916	123.	Cirz, R.T.; Chin, J.K.; Andes, D.R.; de Crécy-Lagard, V.; Craig, W.A.; Romesberg, F.E.
917		Inhibition of mutation and combating the evolution of antibiotic resistance. <i>PLoS Biology</i>
918		2005 , 3, e176.
919	124.	Nautiyal, A.; Patil, K.N.; Muniyappa, K. Suramin is a potent and selective inhibitor of
920		<i>Mycobacterium tuberculosis</i> reca protein and the sos response: Reca as a potential target for
921		antibacterial drug discovery. J Antimicrob Chemother 2014 , 69, 1834-1843.
922	125.	Culyba, M.J.; Mo, C.Y.; Kohli, R.M. Targets for combating the evolution of acquired antibiotic
923		resistance. <i>Biochemistry</i> 2015 , <i>54</i> , 3573-3582.
924	126.	Tye, BK.; Lehman, I.R. Excision repair of uracil incorporated in DNA as a result of a defect
925	•	in dutpase. J. Mol. Biol. 1977 , 117, 293–306.
926	127.	Nguyen, C.; Kasinathan, G.; Leal-Cortijo, I.; Musso-Buendia, A.; Kaiser, M.; Brun, R.; Ruiz-
927		Pérez, L.M.; Johansson, N.G.; González-Pacanowska, D.; Gilbert, I.H. Deoxyuridine

29	of	33

928 triphosphate nucleotidohydrolase as a potential antiparasitic drug targe929 48, 5942-5954.	et. J Med Chem 2005,
	Duran día I.A. Daria
	0
932 evaluation of 5'-diphenyl nucleoside analogues as inhibitors of the <i>Pla</i>	ismodium falciparum
933 dutpase. <i>ChemMedChem</i> 2011 , <i>6</i> , 1816-1831.	
934 129. Kepple, K.V.; Boldt, J.L.; Segall, A.M. Holliday junction-binding pepti	
935 junction-processing enzymes. <i>Proc Natl Acad Sci U S A</i> 2005, 102, 6867-68	
936 130. Sechman, E.V.; Kline, K.A.; Seifert, S. Loss of both holliday junction pro-	01
937 synthetically lethal in the presence of gonococcal pilin antigenic variation	. Mol Microbiol 2006 ,
938 <i>61</i> , 185-193.	
939 131. Suksangpleng, T.; Leartsakulpanich, U.; Moonsom, S.; Siribal, S.; Boonyue	en, U.; Wright, G.E.;
940 Chavalitshewinkoon-Petmitr, P. Molecular characterization of <i>Plasmodiu</i>	<i>m falciparum</i> uracil-
941 DNA glycosylase and its potential as a new anti-malarial drug target. <i>Ma</i>	alar J 2014 , 13, 149.
942 132. Venkatesh, J.; Kumar, P.; Krishna, P.S.; Manjunath, R.; Varshney, U. Ir	nportance of uracil
943 DNA glycosylase in <i>Pseudomonas aeruginosa</i> and <i>Mycobacterium smegmata</i>	is, g+c-rich bacteria,
944 in mutation prevention, tolerance to acidified nitrite, and endurance in m	ouse macrophages.
945 . J Biol Chem. 2003, 278, 24350-24358.	
946 133. Landini, P.; Corti, E.; Goldstein, B.P.; Denaro, M. Mechanism of action	n of purpuromycin.
947 Biochem J 1992 , 284, 47-52.	
948 134. Nishio, A.; Uyeki, E.M. Cellular uptake and inhibition of D	NA synthesis by
949 dihydroxyanthraquinone and two analogues. <i>Cancer Res</i> 1983 , 43, 1951-1	956.
950 135. Kelly, T.M.; Stachula, S.A.; Raetz, C.R.; Anderson, M.S. The firA gen	e of Escherichia coli
951 encodes udp-3-o-(r-3-hydroxymyristoyl)-glucosamine n-acyltransferase	e. The third step of
952 endotoxin biosynthesis. J Biol Chem. 1993 , 268, 19866-19874.	
953 136. Raetz, C.R.; Whitfield, C. Lipopolysaccharide endotoxins. Annu Rev Bio	ochem 2002, 71, 635-
954 700.	
955 137. Emiola, A.; George, J.; Andrews, S.S. A complete pathway model for lip	id a biosynthesis in
956 <i>Escherichia coli. PLoS One</i> 2015 , <i>10</i> , e0121216.	5
957 138. Farha, M.A.; Czarny, T.L.; Myers, C.L.; Worrall, L.J.; French, S.; Conrad	dy, D.G.; Wang, Y.;
958 Oldfield, E.; Strynadka, N.C.; Brown, E.D. Antagonism screen for inhibi	tors of bacterial cell
959 wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synt	
960 <i>Sci U S A</i> 2015 , <i>112</i> , 11048-11053.	
961 139. Dodbele, S.; Martinez, C.D.; Troutman, J.M. Species differences in a	lternative substrate
962 utilization by the antibacterial target undecaprenyl pyrophosphate syn	
963 2014 , <i>53</i> , 5042-5050.	5
964 140. Kuo, C.J.; Guo, R.T.; Lu, I.L.; Liu, H.G.; Wu, S.Y.; Ko, T.P.; Wang, A.H.; Li	ang, P.H. Structure-
965 based inhibitors exhibit differential activities against <i>Helicobacter pylori</i>	0
966 undecaprenyl pyrophosphate synthases. J Biomed Biotechnol 2008 , 2008, 8	
967 141. Zhu, W.; Zhang, Y.; Sinko, W.; Hensler, M.E.; Olson, J.; Molohon, K.J.; Lir	
 968 K.; Wang, K., et al. Antibacterial drug leads targeting isoprenoid biosynth 	
969 Sci U S A 2013, 110, 123-128.	

30	of	33
	~ ~	

970	142.	Sinko, W.; Wang, Y.; Zhu, W.; Zhang, Y.; Feixas, F.; Cox, C.L.; Mitchell, D.A.; Oldfield, E.;
971		McCammon, J. Undecaprenyl diphosphate synthase inhibitors: Antibacterial drug leads. J
972		Med Chem 2014 , 57, 5693-5701.
973	143.	Walker, S.; Chen, L.; Hu, Y.; Rew, Y.; Shin, D.; Boger, D.L. Chemistry and biology of
974		ramoplanin: A lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 2005, 105, 449-
975		476.
976	144.	Helm, J.S.; Hu, Y.; Chen, L.; Gross, B.; Walker, S. Identification of active-site inhibitors of
977		murg using a generalizable, high-throughput glycosyltransferase screen. J Am Chem Soc 2003,
978		125, 11168-11169.
979	145.	Mann, P.A.; Müller, A.; Xiao, L.; Pereira, P.M.; Yang, C.; Ho Lee, S.; Wang, H.; Trzeciak, J.;
980		Schneeweis, J.; Dos Santos, M.M., et al. Murgocil is a highly bioactive staphylococcal-specific
981		inhibitor of the peptidoglycan glycosyltransferase enzyme murg. ACS Chem Biol 2013, 8,
982		2442-2451.
983	146.	Olesen, S.H.; Ingles, D.J.; Yang, Y.; Schönbrunn, E. Differential antibacterial properties of the
984		mura inhibitors terreic acid and fosfomycin. J Basic Microbiol 2014, 54, 322-326.
985	147.	Bensen, D.C.; Rodriguez, S.; Nix, J.; Cunningham, M.L.; Tari, L.W. Structure of mura (udp-n-
986		acetylglucosamine enolpyruvyl transferase) from Vibrio fischeri in complex with substrate
987		udp-n-acetylglucosamine and the drug fosfomycin. Acta Crystallogr Sect F Struct Biol Cryst
988		<i>Commun</i> 2012 , <i>68</i> , 382-385.
989	148.	Gautam, A.; Rishi, P.; Tewari, R. Udp-n-acetylglucosamine enolpyruvyl transferase as a
990		potential target for antibacterial chemotherapy: Recent developments. Appl Microbiol
991		Biotechnol. 2011 , 92, 211-212.
992	149.	Han, H.; Yang, Y.; Olesen, S.H.; Becker, A.; Betzi, S.; Schönbrunn, E. The fungal product
993		terreic acid is a covalent inhibitor of the bacterial cell wall biosynthetic enzyme udp-n-
994		acetylglucosamine 1-carboxyvinyltransferase (mura) <i>Biochemistry</i> 2010 , 49, 4276-4282.
995	150.	Bachelier, A.; Mayer, R.; Klein, C.D. Sesquiterpene lactones are potent and irreversible
996		inhibitors of the antibacterial target enzyme mura. <i>Bioorg Med Chem Lett</i> 2006 , <i>16</i> , 5605-5609.
997	151.	Eschenburg, S.; Priestman, M.A.; Abdul-Latif, F.A.; Delachaume, C.; Fassy, F.; Schönbrunn,
998		E. A novel inhibitor that suspends the induced fit mechanism of udp-n-acetylglucosamine
999		enolpyruvyl transferase (mura). J Biol Chem. 2005, 280, 14070-14075.
1000	152.	Smithen, D.A.; Forget, S.M.; McCormick, N.E.; Syvitski, R.T.; Jakeman, D.L. Polyphosphate-
1001		containing bisubstrate analogues as inhibitors of a bacterial cell wall thymidylyltransferase.
1002		Org Biomol Chem 2015 , 13, 3347-3350.
1003	153.	Blankenfeldt, W.; Asuncion, M.; Lam, J.S.; Naismith, J.H. The structural basis of the catalytic
1004		mechanism and regulation of glucose-1-phosphate thymidylyltransferase (rmla). EMBO J
1005		2000, 19, 6652-6663.
1006	154.	Lakhal-Naouar, I.; Jardim A, S., R.; Luo S, K., Y.; Nakhasi, H.L.; Duncan, R.C. Leishmania
1007		donovani argininosuccinate synthase is an active enzyme associated with parasite
1008		pathogenesis. PLoS Negl Trop Dis. 2012, 6, e1849.
1009	155.	Piet, J.R.; Geldhoff, M.; van Schaik, B.D.; Brouwer, M.C.; Valls Seron, M.; Jakobs, M.E.;
1010		Schipper, K.; Pannekoek, Y.; Zwinderman, A.H.; van der Poll, T., et al. Streptococcus
1011		pneumoniae arginine synthesis genes promote growth and virulence in pneumococcal
1012		meningitis. J Infect Dis. 2014 , 209, 1781-1791.

- 1013 156. Somvanshi, V.S.; Viswanathan, P.; Jacobs, J.L.; Mulks, M.H.; Sundin, G.W.; Ciche, T.A. The 1014 type 2 secretion pseudopilin, gspj, is required for multihost pathogenicity of Burkholderia 1015 cenocepacia au1054. Infect Immun. 2010, 78, 4110-4121. 1016 157. Yang, H.L.; Kessler, D.P. Genetic analysis of the leucine region in Escherichia coli b-r: Gene-1017 enzyme assignments. J Bacteriol 1974, 117, 63-72. 1018 158. Singh, R.K.; Kefala, G.; Janowski, R.; Mueller-Dieckmann, C.; von Kries, J.P.; Weiss, M.S. The 1019 high-resolution structure of leub (rv2995c) from Mycobacterium tuberculosis. J Mol Biol. 2005, 1020 346, 1-11. 1021 159. Pettit, F.H.; Reed, L.J. Alpha-keto acid dehydrogenase complexes. 8. Comparison of 1022 dihydrolipoyl dehydrogenases from pyruvate and alpha-ketoglutarate dehydrogenase 1023 complexes of Escherichia coli. Proc Natl Acad Sci U S A. 1967, 58, 1126-1130.
- 1024 160. Bryk, R.; Arango, N.; Maksymiuk, C.; Balakrishnan, A.; Wu, Y.T.; Wong, C.H.; Masquelin, T.;
 1025 Hipskind, P.; Lima, C.D.; Nathan, C. Lipoamide channel-binding sulfonamides selectively
 1026 inhibit mycobacterial lipoamide dehydrogenase. *Biochemistry* 2013, *52*, 9375-9384.
- 1027 161. Krauth-Siegel, R.L.; Schöneck, R. Flavoprotein structure and mechanism. 5. Trypanothione
 1028 reductase and lipoamide dehydrogenase as targets for a structure-based drug design. *FASEB*1029 *J* 1995, *9*, 1138-1146.
- 1030 162. Boitz, J.M.; Strasser, R.; Yates, P.A.; Jardim, A.; Ullman, B. Adenylosuccinate synthetase and
 1031 adenylosuccinate lyase deficiencies trigger growth and infectivity deficits in *Leishmania*1032 *donovani. J Biol Chem.* 2013, 288, 8977-8990.
- 1033 163. Howard, N.I.; Dias, M.V.; Peyrot, F.; Chen, L.; Schmidt, M.F.; Blundell, T.L.; Abell, C. Design
 1034 and structural analysis of aromatic inhibitors of type ii dehydroquinase from *Mycobacterium*1035 *tuberculosis. ChemMedChem* 2015, 10, 116-133.
- 1036164.Cheung, V.W.; Xue, B.; Hernandez-Valladares, M.; Go, M.K.; Tung, A.; Aguda, A.H.;1037Robinson, R.C.; Yew, W.S. Identification of polyketide inhibitors targeting 3-dehydroquinate1038dehydratase in the shikimate pathway of *Enterococcus faecalis*. *PLoS One* 2014, 9, e103598.
- 1039 165. Ballester, P.J.; Mangold, M.; Howard, N.I.; Robinson, R.L.; Abell, C.; Blumberger, J.; Mitchell,
 1040 J.B. Hierarchical virtual screening for the discovery of new molecular scaffolds in
 1041 antibacterial hit identification. *J R Soc Interface* 2012, *9*, 3196-3207.
- 1042 166. Kumar, A.; Siddiqi, M.I.; Miertus, S. New molecular scaffolds for the design of *Mycobacterium* 1043 *tuberculosis* type ii dehydroquinase inhibitors identified using ligand and receptor based
 1044 virtual screening. *J Mol Model* 2010, *16*, 693-712.
- 1045 167. Prazeres, V.F.; Sánchez-Sixto, C.; Castedo, L.; Lamb, H.; Hawkins, A., R.; Riboldi-Tunnicliffe,
 1046 A.; Coggins, J.R.; Lapthorn, A.J.; González-Bello, C. Nanomolar competitive inhibitors of
 1047 *Mycobacterium tuberculosis* and *Streptomyces coelicolor* type ii dehydroquinase. *ChemMedChem*1048 2007, 2, 194-207.
- 1049 168. Siggaard-Andersen, M.; Wissenbach, M.; Chuck, J.A.; Svendsen, I.; Olsen, J.G.; von Wettstein1050 Knowles, P. The fabj-encoded beta-ketoacyl-[acyl carrier protein] synthase iv from *Escherichia*1051 *coli* is sensitive to cerulenin and specific for short-chain substrates. *Proc Natl Acad Sci U S A*.
 1052 1994, 91, 11027-11031.
- 1053169.Magnuson, K.; Carey, M.R.; Cronan, J.E.J. The putative fabJ gene of *escherichia coli* fatty acid1054synthesis is the fabF gene. *J Bacteriol* **1995**, *177*, 3593-3595.

32	of	33

1055	170.	Tong, L. Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 2013, 70,
1056		863-891.
1057	171.	Silvers, M.A.; Robertson, G.T.; Taylor, C.M.; Waldrop, G.L. Design, synthesis, and
1058		antibacterial properties of dual-ligand inhibitors of acetyl-coa carboxylase. J Med Chem 2014,
1059		57, 8947-8959.
1060	172.	Reddy, M.C.; Breda, A.; Bruning, J.B.; Sherekar, M.; Valluru, S.; Thurman, C.; Ehrenfeld, H.;
1061		Sacchettini, J.C. Structure, activity, and inhibition of the carboxyltransferase β -subunit of
1062		acetyl coenzyme a carboxylase (accd6) from Mycobacterium tuberculosis. Antimicrob Agents
1063		Chemother 2014 , 58, 6122-6132.
1064	173.	Levert, K.L.; Waldrop, G.L. A bisubstrate analog inhibitor of the carboxyltransferase
1065		component of acetyl-coa carboxylase. Biochem Biophys Res Commun 2002, 291, 1213-1217.
1066	174.	Freiberg, C.; Brunner, N.A.; Schiffer, G.; Lampe, T.; Pohlmann, J.; Brands, M.; Raabe, M.;
1067		Häbich, D.; Ziegelbauer, K. Identification and characterization of the first class of potent
1068		bacterial acetyl-coA carboxylase inhibitors with antibacterial activity. J Biol Chem. 2004, 279,
1069		26066-26073.
1070	175.	Tong, L. Acetyl-coenzyme a carboxylase: Crucial metabolic enzyme and attractive target for
1071		drug discovery. Cell Mol Life Sci 2005 , 62, 1784-1803.
1072	176.	Zhang, R.; Ou, H.Y.; Zhang, C.T. Deg: A database of essential genes. Nucleic Acids Res 2004,
1073		32(Database issue), D271-272.
1074	177.	Moule, M.G.; Hemsley, C.M.; Seet, Q.; Guerra-Assunção, J.A.; Lim, J.; Sarkar-Tyson, M.;
1075		Clark, T.G.; Tan, P.B.; Titball, R.W.; Cuccui, J., et al. Genome-wide saturation mutagenesis of
1076		Burkholderia pseudomallei k96243 predicts essential genes and novel targets for antimicrobial
1077		development. <i>MBio</i> 2014 , <i>5</i> , e00926-00913.
1078	178.	Somvanshi, V.S.; Viswanathan, P.; Jacobs, J.L.; Mulks, M.H.; Sundin, G.W.; Ciche, T.A. The
1079		type 2 secretion pseudopilin, gspj, is required for multihost pathogenicity of Burkholderia
1080		cenocepacia au1054. Infect Immun 2010 , 78, 4110-4121.
1081	179.	van Waasbergen, L.G.; Kidambi, S.P.; Miller, R.V. Construction of a reca mutant of
1082		Burkholderia (formerly pseudomonas), cepacia. Appl Microbiol Biotechnol 1998 , 49, 59-65.
1083	180.	Appleberg, R. Macrophage nutriprive antimicrobial mechanisms. J Leukocyte Biol 2006, 70,
1084		1117-1128.
1085	181.	McKinney, J.D.; Bentrup, K.H.; Mun [~] oz-Elias, E.J.; Miczak, A.; Chen, B.; Chan, W.T.;
1086		Swenson, D.; Sacchettini, J.C.; Jacobs Jr., W.R.; Russell, D.G. Persistence of <i>Mycobacterium</i>
1087		<i>tuberculosis</i> in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase.
1088		Nature 2000 , 406, 735–738.
1089	182.	Fang, F.C.; Libby, S.J.; Castor, M.E.; Fung, A.M. Isocitrate lyase (aceA) is required for
1090	102.	salmonella persistence but not for acute lethal infection in mice. <i>Infect. Immun.</i> 2005, 73, 2547–
1091		2549.
1092	183.	Liu, N.; Cummings, J.E.; England, K.; Slayden, R.A.; Tonge, P.J. Mechanism and inhibition of
1092	100.	the fabi encyl-acp reductase from <i>Burkholderia pseudomallei</i> . J Antimicrob Chemother 2011 , 66,
1095		564-573.
1094	184.	Bokman, A.H.; Levine, H.B.; Lusby, M. Glucose catabolism in <i>Malleomyces pseudomallei</i> . J
1095	101.	Bacteriol 1957 , 73, 649-654.

1097	185.	Kouassi, Y.; Shelef, L.A. Metabolic activities of Listeria monocytogenes in the presence of
1098		sodium propionate, acetate, lactate and citrate. J Appl Bacteriol 1996, 81, 147-153.
1099	186.	Premaratne, R.J.; Lin, W.J.; Johnson, E.A. Development of an improved chemically defined
1100		minimal medium for Listeria monocytogenes. Appl Environ Microbiol. 1991, 57, 3046-3048.
1101	187.	Joseph, B.; Przybilla, K.; Stühler, C.; Schauer, K.; Slaghuis, J.; Fuchs, T.M.; Goebel, W.
1102		Identification of Listeria monocytogenes genes contributing to intracellular replication by
1103		expression profiling and mutant screening. J Bacteriol. 2006, 188, 556-568.
1104	188.	Bordbar, A.; Lewis, N.E.; Schellenberger, J.; Palsson, B.Ø.; Jamshidi, N. Insight into human
1105		alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst
1106		Biol 2010, 6, 422.
1107	189.	Chatterjee, S.S.; Hossain, H.; Otten, S.; Kuenne, C.; Kuchmina, K.; Machata, S.; Domann, E.;
1108		Chakraborty, T.; Hain, T. Intracellular gene expression profile of Listeria monocytogenes. Infect
1109		Immun 2006 , 74, 1323-1338.
1110	190.	Eisenreich, W.; Heesemann, J.; Rudel, T.; Goebel, W. Metabolic host responses to infection by
1111		intracellular bacterial pathogens. Front Cell Infect Microbiol 2013, 3, 24.
1112	191.	Caspi, R.; Altman, T.; Dale, J.M.; Dreher, K.; Fulcher, C.A.; Gilham, F.; Kaipa, P.; Karthikeyan,
1113		A.S.; Kothari, A.; Krummenacker, M., et al. The metacyc database of metabolic pathways and
1114		enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Res. 2010,
1115		38(Database issue), D473-479.
1116	192.	Joseph, B.; Przybilla, K.; Stühler, C.; Schauer, K.; Slaghuis, J.; Fuchs, T.M.; Goebel, W.
1117		Identification of Listeria monocytogenes genes contributing to intracellular replication by
1118		expression profiling and mutant screening. J Bacteriol. 2006, 556-568.
1119	193.	Tuanyok, A.; Tom, M.; Dunbar, J.; Woods, D.E. Genome-wide expression analysis of
1120		Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect Immun 2006,
1121		74, 5465-5476.
1122	194.	Hamad, M.A.; Austin, C.R.; Stewart, A.L.; Higgins, M.; Vázquez-Torres, A.; Voskuil, M.I.
1123		Adaptation and antibiotic tolerance of anaerobic Burkholderia pseudomallei. Antimicrob Agents
1124		Chemother 2011 , 55, 3313-3323.
1125	195.	Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular biology of the cell,
1126		4th edition. Garland Science: New York, 2002.
1127	196.	Myint, K.T.; Uehara, T.; Aoshima, K.; Oda, Y. Polar anionic metabolome analysis by nano-
1128		lc/ms with a metal chelating agent. Anal Chem 2009, 81, 7766-7772.
1129	197.	Lee, I.J.; Hom, K.; Bai, G.; Shapiro, M. Nmr metabolomic analysis of caco-2 cell differentiation.
1130		J Proteome Res 2009 , 8, 4104-4108.
1131		
1122		

1132