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Abstract 25 

Genetic assimilation results from selection on phenotypic plasticity, but quantitative genetics models 26 

of linear reaction norms considering intercept and slope as traits do not fully incorporate the process of 27 

genetic assimilation. We argue that intercept-slope reaction norm models are insufficient 28 

representations of genetic effects on linear reaction norms, and that considering reaction norm 29 

intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental 30 

value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on 31 

environmental perception. Instead we suggest a model with three traits representing genetic effects 32 

that respectively (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to 33 

the environment, and (iii) determine how the organism perceives the environment. The model predicts 34 

that, given sufficient additive genetic variation in environmental perception, the environmental value 35 

at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental 36 

change, and eventually become equal to the new mean environment. This readjustment of the zone of 37 

canalization becomes completed without changes in genetic correlations, genetic drift or imposing any 38 

fitness costs on maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear 39 

reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and 40 

maximum expected fitness does not occur at the mean trait values in the population.  41 
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Introduction 42 

All natural populations evolve in environments that are to some degree variable. Biologists have long 43 

realized that the phenotypic expression of different genotypes may respond differently to the same 44 

environmental change, and that such phenotypic plasticity may be heritable (DeWitt & Scheiner, 45 

2004; Pigliucci, 2005). Depending on the effect this phenotypic plasticity has on selection (fitness), 46 

evolution may thus bring about mechanisms that either buffer the phenotypic expression against 47 

environmental variation (i.e., environmental canalization) or modify the responses to some 48 

environmental influence in an adaptive manner (Nijhout, 2003). Phenotypic plasticity involves 49 

developmental, physiological and/or behavioral phenotypic responses to some component(s) of the 50 

environment (DeWitt & Scheiner, 2004; Pigliucci, 2005; Pigliucci et al., 2006). These environmental 51 

components, often referred to as environmental ‘cues’(DeWitt & Scheiner, 2004), are often just 52 

correlated with, but not identical to, the environmental variables affecting fitness (e.g. McNamara et 53 

al., 2011; Svennungsen et al., 2011; Gienapp et al., 2014). Hence, cues do not provide perfect 54 

information about the optimal phenotypic expression, and it is usually adaptive to respond more 55 

conservatively towards information-poor cues than more informative ones (Yoccoz et al., 1993; 56 

Ergon, 2007; McNamara et al., 2011). The phenotypic expression of a particular genotype as a 57 

function of environmental cues is called a reaction norm (Woltereck, 1909; Pigliucci, 2005). There has 58 

been considerable interest in evolutionary processes governing reaction norms as this is crucial for our 59 

understanding of how populations may respond to environmental change and introduction to novel 60 

environments (e.g. Lande, 2009; Reed et al., 2010; McNamara et al., 2011; Gienapp et al., 2014). 61 

Waddington (1953, 1961) originally used the term ‘genetic assimilation’ to describe 62 

experimental selection results where qualitative phenotypes (such as lack of cross-veins in Drosophila 63 

wings) that are initially only expressed in response to a particular environmental stimuli (such as heat 64 

shock during a particular stage of development) becomes constitutively produced (i.e., becomes 65 

expressed independently of the environmental stimuli) after continued selection. However, ‘genetic 66 

assimilation’ is also used to describe similar phenomena in evolution of the mean of quantitative 67 

phenotypes that may remain plastic at equilibrium in a stochastic environment after an environmental 68 
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change (Pigliucci & Murren, 2003; Lande, 2009). In such cases, the new equilibrium phenotypes will 69 

not be independent of the environment unless the reaction norm slope is zero. 70 

We here use the term ‘genetic assimilation’ essentially as in Pugliucci et al. (2006) and Lande 71 

(2009) to describe the evolutionary scenarios where, after an  abrupt environmental change, there is an 72 

initial increase in phenotypic plasticity, after which mean plasticity is reduced and the zone of 73 

canalization (i.e., the environment range, or value, where phenotypic variance is at minimum; 74 

Dworkin, 2005; Lande, 2009) moves towards the current mean environment (see Fig. 2 in Pugliucci et 75 

al. (2006) and Fig. 1 in Pigliucci & Murren (2003)). While the exact definition of ‘genetic 76 

assimilation’ and proposed mechanisms are somewhat contentious (Scharloo, 1991; Pigliucci et al., 77 

2006), there is substantial evidence from both laboratory experiments and field studies that such 78 

processes do occur (Pigliucci & Murren, 2003; Braendle & Flatt, 2006; Pigliucci et al., 2006). In our 79 

treatment, we regard the process of genetic assimilation as complete in a stationary environment when 80 

phenotypic variance is minimized in the mean environment (but both mean reaction norm slope and 81 

phenotypic variance in the mean environment may remain non-zero). Population level phenotypic 82 

variation in a fluctuating environment depends on both the degree of environmental canalization, or 83 

“buffering”, of individual plasticity (represented by the genotypic reaction norm slopes; Dworkin, 84 

2005) and the variation among genotypes in the reaction norm elevation around the mean 85 

environment. In a population of linear reaction norms, phenotypic variance is always minimized in the 86 

environment where the correlation between reaction norm slope and the phenotypic expression is zero 87 

(i.e., where reaction norms “tend to cross”; Lande (2009)). 88 

The final stage of the genetic assimilation process where the zone of canalization moves to the 89 

new mean environment is perhaps the least understood; it has been suggested that genetic drift or 90 

fitness costs of maintaining plasticity plays a part (West-Eberhard, 2003; Pigliucci et al., 2006; Lande, 91 

2009; Bateson & Gluckman, 2011), and changes in the genetic variances, covariances and genetic 92 

architecture of reaction norm components may be involved (Wagner et al., 1997; Steppan et al., 2002; 93 

Le Rouzic et al., 2013). 94 

One approach to quantitative genetics analysis of phenotypic plasticity (Via et al., 1995; Rice, 95 

2004) is to consider the intercept and slope of linear reaction norms as two quantitative traits in their 96 
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own right (de Jong, 1990; Gavrilets & Scheiner 1993a; de Jong & Gavrilets, 2000; Tufto, 2000; 97 

Lande, 2009). More generally, reaction norms have been modeled by considering polynomial 98 

coefficients as traits (Gavrilets & Scheiner, 1993b; Scheiner, 1993). In these models, the intercept trait 99 

is defined as the value of the plastic phenotype at a reference cue designated as zero by the researcher. 100 

Lande (2009) analyzed the evolution of such a linear reaction norm, assuming a stochastic 101 

environment undergoing a sudden change (relative to the background fluctuations) in both the mean 102 

environmental cue and the phenotypic value where fitness is maximum. In his model the population 103 

responded by a rapid increase in mean reaction norm slope (plasticity), followed by a slow increase in 104 

reaction norm intercept with a concomitant decrease in plasticity. However, the genetic assimilation 105 

was not completed, as the zone of canalization could never move away from the reference cue because 106 

the covariance between reaction norm slope and intercept was assumed to remain constant. Lande 107 

(2009) argued that further reduction in phenotypic variance would take place (e.g., due to fitness costs 108 

of maintaining plasticity), but did not include any such mechanisms in his modeling. 109 

 In this paper, we argue that the two-trait model is an insufficient representation of genetic 110 

effects on linear reaction norms, and hence fails to predict critical aspects of the evolution of 111 

phenotypic plasticity and genetic assimilation. Instead we suggest modeling linear reaction norms as 112 

being composed of three traits based on the most fundamental ways that gene products may alter linear 113 

reaction norms in such a way that they remain linear. Reanalyzing the scenarios for extreme 114 

environmental change considered by Lande (2009), we show that, under the three-trait reaction norm 115 

model, genetic assimilation in the new stochastic environment becomes complete (as defined above) 116 

without changes in genetic correlations among the defined traits, genetic drift or imposing any fitness 117 

costs on maintaining plasticity. Further, we show that the evolutionary equilibrium of this three-trait 118 

linear reaction norm under random mating entails (with certain exceptions) a shallower mean reaction 119 

norm slope than the slope of the optimal individual reaction norm and the equilibrium slope of the 120 

two-trait model. Hence, maximum individual fitness does not occur at the mean trait values in the 121 

population. 122 

We start by deriving an expression for optimal linear reaction norms as a function of 123 

environmental cues in stationary stochastic environments. We then derive our three-trait linear 124 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2016. ; https://doi.org/10.1101/034256doi: bioRxiv preprint 

https://doi.org/10.1101/034256
http://creativecommons.org/licenses/by/4.0/


6 
 

reaction norm model, and finally we analyze the evolutionary dynamics of this model in a quantitative 125 

genetics framework, and compare it to the dynamics of the two-trait reaction norm model analyzed by 126 

Lande (2009). 127 

Models 128 

Optimal linear reaction norms in temporally variable environments 129 

Models for optimal adaptations in variable environments have traditionally assumed either that 130 

individuals have no information about the relevant environmental variables, or that individuals have 131 

exact information about the state of the environment (Yoshimura & Clark, 1991; Roff, 2002). 132 

Whenever the phenotype yielding highest fitness is not known exactly (i.e., the individuals do not have 133 

full information about the present and future environment), the long term success of a genotype 134 

depends not only on the expectation of fitness, but it is also adaptive to reduce the variance in mean 135 

fitness across generations (Yoshimura & Clark, 1991; Starrfelt & Kokko, 2012). Models that assume 136 

that individuals have no information about the environment have been used to explain risk-avoidance 137 

and bet-hedging strategies (den Boer, 1968; Hopper et al., 2003; Starrfelt & Kokko, 2012). On the 138 

other side of the spectrum, models that predict optimal trait values as a function of environmental 139 

variables, often assume that these variables are known to the individuals without error (e.g. Stearns, 140 

1992; Roff, 2002). 141 

The concept that phenotypic expressions are functions of more or less informative 142 

environmental cues is well established in evolutionary ecology (Tollrian & Harvell, 1999; DeWitt & 143 

Scheiner, 2004; Stephens et al., 2007; McNamara et al., 2011; Gienapp et al., 2014). For example, 144 

seasonal reproduction in many organisms must take place within a rather narrow time-window which 145 

often varies largely between years (Durant et al., 2007; Gienapp et al., 2014). Since such phenological 146 

events must often be prepared a long time in advance (due to acquiring resources, physiological 147 

developments and migration), seasonal reproduction may be influenced by rather information-poor 148 

cues such as temperature and food constituents weeks before reproductive success is determined 149 

(Berger et al., 1981; Korn & Taitt, 1987; Lindstrom, 1988; Negus & Berger, 1998; Nussey et al., 150 
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2005). Examples of such obviously adaptive phenotypic plasticity to more or less informative 151 

environmental cues are ubiquitous in nature (Pigliucci, 2005; Sultan, 2010; Landry & Aubin-Horth, 152 

2014). 153 

To derive an optimal norm of reaction to an imperfect cue, we may view the cue, �, and the 154 

phenotypic expression that maximize fitness, Θ, as having a joint distribution with given means, �� 155 

and ��, variances, ��� and ���, and a correlation, � = 
��
�
� (Fig. 1). Note that we here define the cue 156 

(�) in a general sense as the environmental component that affects the phenotype, not how this 157 

component is perceived by the individuals (as in e.g. Tufto (2000)). Also note that � must not 158 

necessarily be interpreted as a proxy for another environmental component that affects fitness (e.g. 159 

Miehls et al., 2013), although this may be the case (see caption of Fig. 1). Hence, following 160 

McNamara et al. (2011) we focus on the information content in the cue (�) about the optimal 161 

phenotypic expression (Θ) in the given environment. 162 

Under the assumption of no density or frequency dependence, the optimal phenotypic trait 163 

values are those that maximize the geometric mean of fitness across generations (Dempster, 1955; 164 

Caswell, 2001). This is equivalent to maximizing the expected logarithm of fitness. Hence, if fitness, 165 


, is a Gaussian function (with constant width and peak value) of the phenotype value, �, such that 166 

ln�
���� is a quadratic function, the optimal linear reaction norm as a function of cue values � is  167 

������� = �� + � ���� �� − ��� (1)  

(Appendix S1). Note that, due to the quadratic fitness function ln�
����, this is the same as the least 168 

squares prediction line of Θ as a function of cue values � (Battacharyya & Johnson, 1977). 169 

This optimal individual reaction norm under imperfect information (eqn (1)) may be seen as a 170 

weighted average of the optimal phenotype under no information (��) and the optimal phenotype 171 

under perfect information (�� + 
�
� �� − ���), with the weight being |�| (Fig. 1). Given that 
 is a 172 

Gaussian function of �, this linear reaction norm is the optimal reaction norm (i.e., a non-linear 173 
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reaction norm would not perform better) as long as E[Θ|� = �] is a linear function of �, which is the 174 

case when � and Θ are bi-normally distributed (chap. 7.8 Johnson and Wichern, 2007). 175 

Optimality models of this kind have been central in the development of evolutionary ecology 176 

(Parker & Maynard Smith, 1990; Sutherland, 2005; Roff, 2010). McNamara et al. (2011) analyzed the 177 

general optimal linear reaction norm given by eqn (1) in terms of optimal phenology under 178 

environmental change. Ergon (2007) used a similar approach to analyze optimal trade-offs between 179 

pre-breeding survival, onset of seasonal reproduction and reproductive success in fluctuating 180 

multivoltine species.  181 

Quantitative genetics models for linear reaction norms – two vs. three traits 182 

The optimal linear reaction norm given by eqn (1) says nothing about the selection process and does 183 

not consider genetic constraints. In the following we will consider a quantitative genetics model for 184 

linear reaction norms, assuming phenotypic responses to an interval-scaled cue with an arbitrary zero 185 

point (Houle et al., 2011).  186 

In quantitative genetics models for the evolution of phenotypic plasticity, it is common to 187 

consider  the intercept (�) and slope ( ) of the reaction norm as two traits (e.g. de Jong, 1990; 188 

Gavrilets & Scheiner, 1993a; de Jong & Gavrilets, 2000; Tufto, 2000; Lande, 2009; Scheiner, 2013). 189 

I.e., the plastic phenotype is modeled as a function of an environmental cue � on the form 190 

 ���� = � +  �. (2)  

In this two-trait model, the intercept trait � is the phenotypic expression for the cue-value designated 191 

as zero. Lande (2009) assumed that minimum phenotypic variation occurred in the mean environment 192 

that the population had been adapted to, and hence defined the cue to have its zero point in this 193 

reference environment. He then used this reaction norm model (eqn (2)) in a quantitative genetics 194 

analysis of adaptations to a sudden extreme change in the mean environment when the reference 195 

environment remained unchanged. 196 
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We will here analyze a more general linear reaction norm model based on the three most 197 

fundamental ways that genetic effects can alter a linear reaction norm in such a way that it remains 198 

linear; (i) a change along the plastic phenotype axis, (ii) a change in slope (cue sensitivity), and (iii) a 199 

change in the reaction norm along the cue axis. This leads us to consider a linear reaction model on the 200 

form 201 

���� = "# + "$�� − "%�, (3)  

where "#, "$ and "% are considered as (latent) traits. A particular genetic effect may of course affect 202 

more than one of these traits, but any genetic effect on a linear reaction norm can be decomposed into 203 

these three components. Obviously, shifting a linear reaction norm along the cue-axis (a change in "%) 204 

may have exactly the same effect on the reaction norm as shifting it along the �-axis (a change in "#). 205 

By rearranging the reaction norm model (3) as ���� = � + "$� where � = "# − "$"%, we see that 206 

increasing "# by one unit has the same effect on ���� as decreasing "% by 1/"$ units. However, traits 207 

"# and "% still represent very different genetic effects within the organisms. Trait "% may be thought of 208 

as representing genetic effects on “perception” of the environmental cue in a general sense. For 209 

example, variation in "% may represent genetic effects affecting the sensory apparatus in such a way 210 

that different genotypes perceive the same environmental cue as different, but cue perception may not 211 

necessarily involve a sensory apparatus (see Discussion). Note that the intercept �"# − "$"%� depends 212 

on the chosen zero-point of the interval scaled cue, while  trait "# represents genetic effects that are 213 

invariant to which environment that has been designated (by the researcher) to have cue value zero. 214 

Variation in trait "# may thus represent variation in gene products for which both the production of 215 

these gene products and their effect on ���� are independent of the cue. Finally, trait "$ (reaction 216 

norm slope) represents variation in gene products that affect the sensitivity of the plastic phenotype 217 

���� to the cue. With this parameterization of the reaction norm (eqn (3)), "% may be referred to as a 218 

“cue reference trait” although we do not suggest that there is necessarily a “template” of a specific 219 

environment that is stored genetically in the organisms; what is essential is the types of genetic 220 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2016. ; https://doi.org/10.1101/034256doi: bioRxiv preprint 

https://doi.org/10.1101/034256
http://creativecommons.org/licenses/by/4.0/


10 
 

variation that is represented by the three traits in the model. Note that it is only when assuming a linear 221 

reaction norm that genetic effects on cue “perception” can lead to the same change in the reaction 222 

norm as genetic effects on the environment independent component of the plastic phenotype ("#); this 223 

will not be the case in a non-linear reaction norm model. 224 

 The two-trait model (eqn (2)) is a special case of the more general three-trait model (eqn (3)) 225 

where "% is fixed to zero. Reaction norm slope is considered as a trait in both models (i.e.,  = "$), but 226 

for clarity we have used separate notations in the two models. 227 

Analysis 228 

Basic properties of the reaction norm models 229 

As already noted, an obvious difference between the two-trait (eqn (2)) and the three-trait (eqn (3)) 230 

reaction norm models is that the two-trait model implies a one-to-one correspondence between 231 

genotypes and reaction norms, whereas the three-trait model implies that one reaction norm can 232 

represent many genotypes. As we will see below, linear reaction norms in a population will evolve 233 

very differently and reach different equilibria when we consider the reaction norm to result from three 234 

traits rather than two traits. 235 

 An essential difference between the two-trait and the three-trait reaction norm models relates 236 

to constraints in the evolution of the covariance between reaction norm intercept and slope in the 237 

population. To see this, it is elucidating to consider a particular representation of this covariance, �), 238 

defined as the cue value for which phenotypic variance is at a minimum and where the covariance 239 

between the plastic phenotypic value ���� and reaction norm slope is zero (the “zone of canalization” 240 

at the population level is centered around �)). Given a phenotypic covariance between intercept and 241 

slope (*+,) and a variance in reaction norm slope (*,,), this cue value is 242 
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 �) = −*+,*,,  
(4)  

 (Appendix S2). 243 

From eqn (4) we see that, in the two-trait model (2), where reaction norm intercept (�) and 244 

slope ( ) are considered as traits, �) is independent of the trait means, and directional selection on any 245 

of the traits will not affect �) unless the selection also changes the variance of the slope or covariance 246 

of the traits. 247 

On the other hand, in the three-trait model (3), the covariance between intercept and slope 248 

depends on the mean traits "$̅ and "%̅. Under the assumption of normal traits, �) then becomes  249 

 �) = "%̅ + "$̅*$% − *#$*$$ , 
(5)  

where *$%, *#$ and *$$ are the elements of the phenotypic variance-covariance matrix indicated by the 250 

subscripts (Appendix S2). Thus, under the three-trait model (3), �) may respond directly to directional 251 

selection on both trait "$ (if *$% ≠ 0) and trait "%. If trait "$ is independent of trait "# and "% (i.e., 252 

*$% = *#$ = 0), �) becomes "̅%. Note also that �) is independent of *#%. 253 

Lande (2009) defined the cue � (0�12 in his model) to have its zero-point at �) as a “reference 254 

environment”. Hence, one could define the two-trait model analyzed by Lande (2009) for any arbitrary 255 

interval scaled cue variable as ���� = �′ +  �� − �)� where the genetic correlation between the traits 256 

�′ and   is by necessity zero since �) is defined by 456����)�,  � = 456��7,  � = 0 (Appendix S2; 257 

see also last paragraph on page 1438 in Lande (2009)). This model is structurally similar to our three-258 

trait model except that the “reference environment” in our model is considered as an individual trait, 259 

"% (reflecting individual variation in cue “perception”), which is exposed to selection. Unlike in 260 

Lande’s (2009) model, where the definition of trait �′ depends on �), there are no constraints on the 261 

phenotypic or genotypic covariances in our three-trait model (other than that the covariance matrix 262 
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must be positive-definite). The two-trait model of Lande (2009) can only evolve in the same way as 263 

the three-trait model if �) is treated as the mean of an individual trait with variance different from 264 

zero. Hence, the three-trait quantitative genetics model and Lande’s (2009) two-trait model are not 265 

alternative parameterizations of the same model. Lande’s (2009) two-trait model is a constrained  266 

version of our more general three-trait model with the trait "% fixed to �), which requires that *%% =267 

*#% = *$% = 0 as well as *#$ = 0 (*#$ = 0 is only required to maintain the same definition of "# and 268 

�′	and to give "%̅ = �)). We will later show that expected �) at equilibrium in the three-trait model 269 

always becomes ��. 270 

Evolution of linear reaction norms 271 

Environmental change may lead to changes in any of the parameters of the joint distribution of cue 272 

(�� and the best possible phenotype (Θ) (c.f., eqn (1) and Fig. 1). Any such change will impose 273 

directional selection on the individual traits defining the reaction norm, and the evolutionary response 274 

to this selection will depend on the additive genetic variances and covariances of these traits. We will 275 

here compare the evolution of linear reaction norms based on the three-trait model (eqn (3)) and the 276 

more constrained two-trait model (eqn (2)) analyzed in detail by Lande (2009). Specifically, we will 277 

analyze the transient and asymptotic evolution of the reaction norm distribution after a sudden and 278 

extreme concomitant change in both �� and ��, while ���, ��� and ��� remain unchanged. We assume 279 

that all individuals in each generation experience the same environment, and that the environments in 280 

subsequent generations are independent (as also in Lande’s (2009) analysis). Following Lande (2009) 281 

we also assume that trait variances and covariances remain constant under selection. Although this 282 

may be a particularly unrealistic assumption (Steppan et al., 2002), it serves the purpose of examining 283 

how reaction norms can evolve through changes in trait means only. 284 

Quantitative genetics – modeling 285 

Assuming that the individual traits of the reaction norm (3) have a multi-normal distribution with a 286 

constant variance-covariance matrix in a population with discrete generations, the fundamental 287 

equation describing the change in the population mean of the traits from a generation 9 to the next, 288 
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 :"#̅"$̅"%̅;�<= −	:
"#̅"$̅"%̅;� = :>## >#$ >#%>#$ >$$ >$%>#% >$% >%%; ?� , (6)  

is the product of the additive genetic variance-covariance matrix for the traits, @, and the selection 289 

gradient ?�. Here, ?� is the sensitivity of the logarithm of population mean fitness to changes in each 290 

of the mean trait values (Lande, 1979, Lande & Arnold, 1983), 291 

 ?� = AB/B"#̅,�B/B"$̅,�B/B"%̅,�C ln�
D��. (7)  

We will assume a Gaussian fitness function with width E and peak value 
F#G, and that all 292 

individuals experience the same environment in any generation. 293 

A random individual in generation 9 has phenotype ������ = "#,� + "$,���� − "%,��, where the 294 

traits ["#,�, "$,� , "%,�] are drawn from a multi-normal distribution with mean ["#̅ , "$̅ , "%̅]� and phenotypic 295 

covariance matrix H. When the phenotypic expression that maximizes fitness in that generation is I�, 296 

this individual will have fitness 297 

 
� = 
�������, I�� = 
F#G expM−������� − I���2E� O. (8)  

To find an analytical expression of the selection gradient (7), a common approach (Lande and 298 

Arnold 1983, Lande 2009) would be to first find the population mean fitness by integrating over the 299 

phenotype distribution, P��������, 300 
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D� = Q 
�������, I��P��������R�S
1S . 

(9)  

However, because P�������� is not normal as it involves the product of the two normally distributed 301 

traits "$,� and "%,�, it is not straightforward to solve this integral analytically. Indeed, it seems that an 302 

exact analytical expression for the selection gradient (7) does not exist. We therefore initially based 303 

our analysis on simulations of the evolutionary process (6), where the selection gradient (7) is 304 

computed numerically by simulating a population of 10,000 individuals at each generation (see 305 

Appendix S5 for R code). These simulations are accompanied by (and compared to) mathematical 306 

analyses presented in Appendix S3 and Appendix S4. 307 

In the simulation results presented in Fig. 2, we used the same parameter values as in Lande’s 308 

(2009) analysis of the two-trait model except that we, for convenience, used a somewhat less extreme 309 

sudden change in the environment, with a change in �� and �� of 3 (instead of 5) standard deviations 310 

of the background fluctuations (�� and �� of eqn (1)). As Lande (2009) we used a diagonal @-matrix 311 

and sat >%% to half the cue variance (three-trait model) or zero (two-trait model). For simplicity, in the 312 

simulations we also assumed that only trait "# had a non-additive residual component with variance 313 

�T�, such that *## = >## + �T�, *$$ = >$$, *%% = >%%, and *#$ = *#% = *$% = 0. The two-trait model 314 

is obtain simply by setting also *%% = 0 and "%̅ = 0. 315 

Quantitative genetics – results 316 

The simulations show that immediately after the sudden environmental change, there is a rapid 317 

increase in reaction norm slope (Fig. 2B), while "%̅ (Fig. 2C) swings back in the opposite direction of 318 

the change in mean cue �� (i.e., away from the new optimum). This phase of the adaptation may be 319 

characterized as a “state of alarm”, where it becomes adaptive to exaggerate the perception of the 320 

environmental change. As "̅# moves towards the new optimum (Fig. 2A), the reaction norm slope "$̅ is 321 

reduced and "%̅ turns towards the new optimum. Eventually, "̅% stabilizes around �� and "#̅ stabilizes 322 

around �� (Fig. 2D), in accordance with the theoretical results in Appendix S3 (see Appendix S4 for 323 
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detailed numerical results). Note that with *#$ = *$% = 0 (as in the simulations), the theoretical 324 

equilibrium mean values "#̅∗ = �� and "%̅∗ = �� are independent of the variances and covariance of � 325 

and Θ. In Appendix S4 we conjecture that the equilibrium mean traits "#̅∗ and "%̅∗ in general (for 326 

*#$ ≠ 0 and *$% ≠ 0) are affected by ���, ��� and ���, but then only indirectly through "̅$∗. 327 

Since we used a diagonal phenotypic variance-covariance matrix (H) in the simulations, the 328 

cue value �) that yields minimum phenotypic variance (eqn (5)) equals "%̅, which stabilizes around the 329 

theoretical equilibrium �� (Fig. 2C; Appendix S3). Hence, in this case, equilibrium �) becomes 330 

�)∗ = ��. As shown both by simulations (Supporting Figs S1-S3) and theoretical considerations 331 

(Appendix S4), this property (�)∗ = ��) holds also when H is not diagonal – i.e., at equilibrium, 332 

phenotypic variance is always minimum in the mean environment. As a result, the three-trait model 333 

leads to complete genetic assimilation in the sense that the population level zone of canalization 334 

(represented by �)) evolves to the mean environment regardless of what this mean is. In contrast, in 335 

the two-trait model, �) does not evolve in response to changes in the trait means and the phenotypic 336 

variance can only be minimized when the mean environment equals −*+,/*,,  (see eqn (4)). This 337 

contrast in the asymptotic state of the systems obtained from the two alternative reaction norm models 338 

is illustrated in Fig. 3, and Fig. 4 shows the trajectories of phenotypic variation and difference between 339 

�) and �V in the simulated scenario presented in Fig. 2. Supporting Figures S4 and S5 show 340 

simulation results for a scenario where there is no environmental variation before and after the sudden 341 

environmental change (more similar to classic examples of genetic assimilation). 342 

Interestingly, as seen in Fig. 2B, the mean reaction norm slope "̅$ in the three-trait model 343 

stabilizes at a lower level than the optimal slope yielding the highest expected fitness of an individual, 344 

���/���  (see eqn (1)), which is also the equilibrium mean slope in the two-trait model (Gavrilets & 345 

Scheiner, 1993a; Lande, 2009). Intuitively, this is because the optimal value of trait "$ of an individual 346 

depends on the value of trait "% that this individual possesses, which is stochastic. Under the 347 

assumption that *#$ = *$% = 0, an approximate mean slope value is found as "$̅∗ ≈ ���� +348 

*#%�/���� + *%%� (Appendix S4 and eqn (10) below),which is close to the stationary mean in the 349 

simulations (Fig. 2). For comparison, the equilibrium mean traits in the two-trait model become 350 
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 ̅∗ = ���/���	 and �X∗ = �� −  ̅∗�� (Gavrilets & Scheiner, 1993a; Lande, 2009). Note that the 351 

denominator in the approximate expression for "$̅∗ is the variance of �� − "%�, and not the variance of 352 

the cue � alone as in the expression for  ̅∗ in the two-trait model; i.e., genetic variance in the 353 

perception trait "% inflates the variance of the perceived cue �� − "%�. Hence, if *#% = 0, "$̅∗ is always 354 

lower than the optimal slope in eqn (1) unless *%% = 0 (which gives the two-trait reaction norm 355 

model). This is indicated by a stippled reaction norm in Fig. 1.  356 

As seen in Fig. 2B the asymptotic mean "$̅ in the simulations (where *#% = 0) is close to but 357 

somewhat larger than the approximation "$̅∗ ≈ ���/���� + *%%�	. This discrepancy is further analyzed 358 

in Appendix S4. As shown there, the equilibrium mean reaction norm slope "$̅∗ can be approximated 359 

analytically if we assume that the plastic phenotype ���� has a normal distribution, which is very 360 

nearly the case with the parameter values in our simulations in Fig. 2. The integral (9) then has an 361 

analytical solution, and as a result an approximate equilibrium slope "$̅∗ can be found numerically from 362 

the equation (assuming *#$ = *$% = 0) 363 

 "$̅∗ ≈ ��� + *#%��� + *%% + ���� + "$̅∗���� − 2"$̅∗��� + *$$�����−*#% + "$̅∗*%%��E� + *## − 2"$̅∗*#% + *$$*%% + "$̅∗�*%%����� + *%%�, (10)  

where the large values of ��� and especially E� used in the simulations make the second term positive 364 

but small compared to the first term (see Appendix S4 for detailed numerical results). 365 

Another reason for the discrepancy between the asymptotic mean "$̅ in the simulations and the 366 

approximation "$̅∗ ≈ ���/���� + *%%�  is that when the population under directional selection based on 367 

eqn (6) evolves towards a stationary state, the mean traits will fluctuate around the equilibrium 368 

because of the influence from the random inputs �� and I� (as seen in Fig. 2). In stationarity this leads 369 

to  "#̅ = Y["#̅] + 6# etc. (where Y["#̅] = lim\→S =\∑ "#̅,�\�_=  and Y[6#] = 0 etc.), and, as shown in 370 

Appendix S4, the variances and covariances of 6#, 6$ and 6% then enter into eqn (10). Note that we 371 

assume that �� and I� have zero autocorrelation, such that the covariances between the mean reaction 372 

norm parameters and the environment caused by adaptive tracking (Tufto, 2015) are zero.  373 
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 Because the reaction norm slope "$̅∗ is influenced by the phenotypic variance of the cue 374 

reference trait "% (and its covariance with the other traits; eqn (10)), and hence deviates from the slope 375 

that maximizes fitness (eqn (1)), the expected fitness at equilibrium will be lower than the expected 376 

fitness of the optimal individual reaction norm in eqn (1) (Fig. 5, lower right panel). As a consequence 377 

a proportion of the population will have a higher expected fitness than an individual with mean trait 378 

values. Nevertheless, mean fitness in the population after the environmental change stabilizes around a 379 

higher level in the three-trait model than in the two-trait model (Fig. 5, left panels), despite a lower 380 

expected fitness at mean trait values (right panels). The reason for this is that the three-trait model 381 

gives a lower phenotypic variance in the new environment (Fig. 4A). Mean fitness in the two-trait 382 

model thus stabilizes around the optimum only when the mean cue is zero because phenotypic 383 

variance will not be minimized in other environments (Fig. 5, left panels). 384 

Discussion 385 

Quantitative genetics models are theoretical models for the joint evolution of population means of 386 

quantitative individual phenotypic traits, where the researchers define traits that they find most 387 

meaningful in the context they are studied. In quantitative genetics models of reaction norms where a 388 

plastic phenotype is modeled as a linear function of an interval scaled environmental cue, the reaction 389 

norm intercept and slope are often considered as individual traits subjected to selection (Gavrilets & 390 

Scheiner, 1993b; Scheiner, 1993; de Jong & Gavrilets, 2000; Tufto, 2000; Lande, 2009; Scheiner, 391 

2013; Tufto, 2015). The intercept of such a reaction norm (i.e., the reaction norm value at cue value 392 

zero) is often not very biologically meaningful since this trait, as well as its variance and covariance 393 

with other traits, depend on the defined zero-point, or “reference cue”, of the (arbitrary) interval scaled 394 

cue variable. One may, however, as in Lande (2009), define the zero-point of the cue to be the mean 395 

cue value which the population is adapted to. This ensures that the variance of the plastic phenotype is 396 

minimized in the mean environment, which is theoretically plausible (Bürger, 2000; Lande, 2009; Le 397 

Rouzic et al., 2013), but it is not clear how this “reference cue” may evolve (in Lande’s (2009) 398 

analysis it is assumed to remain constant; see however de Jong & Gavrilets 2000).  399 
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We have here suggested that the “reference cue” can be considered as an individual trait that 400 

reflects genetic variation in cue “perception” in a general sense, and hence considered a linear reaction 401 

norm on the form ���� = "# + "$�� − "%�. In this model, the biological meaning of all the traits, and 402 

their variances and covariances, is not modified when redefining the zero-point of the cue variable � 403 

(which is not the case for the intercept � = "# + "$"%, 6`a��� and 456��, "$)). The three traits in this 404 

model reflect three fundamentally different genetic effects on linear reaction norms. While "$ 405 

represents genetic effects on cue sensitivity, "% reflects genetic effects on cue “perception” (in the 406 

general sense discussed below) and has the same scale as the environmental cue, and "# represents 407 

genetic effects that are both independent of the cue value and invariant to its defined zero-point (the 408 

latter is not the case for the intercept). These structural differences in the reaction norm models matter 409 

for the equilibrium mean reaction norms (and distributions), because the traits do not have 410 

independent effects on the plastic phenotype (����) (note the product "$"% in the three-trait model). 411 

In our analysis of the three-trait model, we have shown that the cue value where variance of 412 

the plastic phenotype is minimized (where reaction norms “tend to cross”; �)) always evolves to equal 413 

the mean environment at equilibrium. This occurs without assuming any cost of maintaining plasticity 414 

(DeWitt et al., 1998; West-Eberhard, 2003; Pigliucci et al., 2006; Lande 2009; Bateson & Gluckman 415 

2011; Svennungsen et al., 2011), or any change in the variances or covariances of our defined traits 416 

(de Jong & Gavrilets, 2000). Even though �) may be interpreted as ‘−456�intercept, slope�/417 

6`a�slope�', �) is biologically more meaningful than the covariance between reaction norm slope and 418 

a somewhat arbitrarily defined intercept trait. Note that �) is a population level parameter that does 419 

not depend on any quantitative genetics model for the linear reaction norm, and which can easily be 420 

estimated (as discussed below). Further, our analysis also demonstrate that the equilibrium mean 421 

reaction norm slope in the three-trait model will deviate from the optimal slope yielding the highest 422 

expected fitness of a hypothetical individual that can tune reaction norm intercept and slope accurately 423 

and independently (eqn (1)), which is also the equilibrium mean slope of the two-trait model 424 

(Gavrilets & Scheiner 1993a; Lande, 2009). At least when there is weak correlation between "# and "% 425 

(i.e., *#% is sufficiently small), the equilibrium mean slope will be lower than the optimal individual 426 
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slope. Intuitively, this is because the optimal slope is lower when the cue reference trait of a random 427 

individual, in addition to the environmental cue, is stochastic due to random mating. As a 428 

consequence, maximum expected fitness does not occur at the mean trait values in the population. 429 

In the three-trait model, phenotypic variance in a given environment increases with both "$̅ 430 

and the distance between "%̅ and the environmental cue (�), at least when the traits are independent 431 

(see eqn S4-3 in Appendix S4), whereas in the two-trait model, phenotypic variance is independent of 432 

the trait means (Fig. 4). In our simulations, after the sudden environmental change, there is a rapid 433 

initial increase in both "$̅ and the distance between "%̅ and the new mean cue value (i.e., "̅% initially 434 

evolves rapidly in the opposite direction of the change in the environmental cue, such that the 435 

perception of the environmental change is exaggerated). Hence, due to the positively interacting 436 

(epistatic) effects of "$̅ and "%̅ on the plastic phenotype ����, this efficiently increases phenotypic 437 

variance in the new environment which enhances the evolvability of the plastic phenotypic character 438 

and acts to restore population mean fitness (see Figs 2 and 5). The subsequent process of assimilation 439 

whereby reaction norm slope "$̅ is reduced, "%̅ moves towards the mean cue value, and "̅# evolves 440 

towards mean Θ, is a much slower process. 441 

Genetic effects on linear reaction norms 442 

Although a shift in the reaction norm along the cue-axis (through trait "%) can have exactly the same 443 

effect on the individual linear reaction norm as a shift along the phenotype-axis (through trait "#), the 444 

genetic bases for these effects are fundamentally different, and, as explained above, changes in the 445 

means of these two traits have different effects on the population. It also seems obvious that there will 446 

often be genetic variation on both these traits. 447 

Phenotypic plasticity involves complex pathways, at both organismal and cell levels, from 448 

perception of environmental cues and physiological transduction to phenotypic expression (reviewed 449 

in Sultan & Stearns, 2005). Depending on the type of organism and the nature of the phenotypic 450 

characters and the environmental cues, these pathways may, to varying degrees, involve sensory 451 

systems, neuroendocrine and metabolic systems, cellular reception, gene regulation networks, and 452 

other developmental, physiological and behavioral processes. Environmental conditions may directly 453 
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affect any of these systems and processes, not just the sensory systems (e.g., temperature may directly 454 

affect metabolism and gene regulation in ectothermic organisms (Gillooly et al., 2002; Ellers et al. 455 

2008), and various processes may be affected by food constituents (Sanders et al., 1981; Meek et al., 456 

1995; Krol et al., 2012) and nutritional state (Lõmus & Sundström, 2004; Rui, 2013; Mueller et al., 457 

2015)). Genetic variation in upstream (i.e., close to the cue perception) regulatory processes, which 458 

may involve cue activation thresholds for transduction elements, may affect the way the environment 459 

is “perceived” (in a general sense) by the organism, and hence the cue reference trait (trait "%) in our 460 

model. Genetic variation in downstream processes close to the phenotypic expression of quantitative 461 

characters, on the other hand, may affect the degree of up/down regulation in response to given levels 462 

(and types) of transduction elements and hence the slope of linear reaction norms (trait "$ in our 463 

model). Finally, some genetic variation may have the same additive effect on the phenotype 464 

irrespective of the environmental cue (trait "# in our model). The importance of differentiating 465 

between these three traits may be better appreciated when considering the effects of the mean traits on 466 

the population; A change in "̅% will change the cue value at which different genotypic reaction norms 467 

tend to cross (�)), whereas a change "̅# will not. 468 

 While there is ample evidence for widespread genetic variation for reaction norms in natural 469 

populations (Falconer & Mackay, 1996; Sultan & Stearns, 2005; Sengupta et al., 2016), there are not 470 

many examples where the full pathway of phenotypic plasticity from cue perception to phenotype 471 

expression is known in great detail (Sultan, 2010; Morris & Rogers, 2014), and even less is known 472 

about the genetic variation of the different elements of these pathways. It seems, however, obvious 473 

that there may be substantial genotypic variation in perception of environmental cues (i.e., variation in 474 

trait "% in our model). Examples indicating genetic variation in environmental perception include  475 

substantial among-population variation in the signal transduction pathway of induced plant defense in 476 

Arabidopsis thaliana (Kliebenstein, et al., 2002), and individual variation in systemic stress responses 477 

has likely components of individual variation in what is perceived as stressful (Hoffmann & Parsons, 478 

1991; Badyaev, 2005; Dingemanse, et al., 2010). There is also considerable variation and “fine 479 

tuning” in light (and shading) perception systems involving phytochromes that are sensitive to 480 

different wave lengths in plants (Smith, 1990; 1995; Schlichting & Smith, 2002). 481 
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Predictions and empirical evaluations 482 

Parameters in a reaction norm function considered as quantitative traits are always latent in the sense 483 

that one cannot measure their phenotypic value by a single measurement of an individual (except for 484 

traits that are defined for a particular environment, such as an intercept). While one may estimate 485 

reaction norm intercept and slope from multiple measurement of the same genotype or related 486 

individuals with known genealogy (Nussey et al., 2007; Martin et al., 2011), such data alone does not 487 

provide enough information to separate the traits "# and "% (from a statistical point of view, the three-488 

trait model fitted to such data is over-parameterized, which may be one of the reasons it has not 489 

previously been considered; note however that the three-trait model predicts a different phenotypic 490 

distribution than the two-trait model due to the product "$"%). Nevertheless, if one have a detailed 491 

understanding of the physiological (or developmental) mechanisms of the plastic response one may 492 

still be able to estimate meaningful reaction norm traits beyond a phenomenological ‘intercept’ and 493 

‘slope’, including traits associated with cue perception (trait "%). Time-series data from selection 494 

experiments may also provide information about the genetic architecture of the reaction norms (Fuller 495 

et al., 2005). 496 

The cue value that gives minimum phenotypic variation in the population (�)), may be 497 

estimated by fitting data on genotype specific phenotypic measurements to mixed-effects linear 498 

models with random individual slopes and intercepts (Martin et al., 2011; Bates et al., 2015),  or from 499 

a random regression “animal model” building on a known relatedness among individuals (Nussey et 500 

al., 2007). Our three-trait quantitative genetics model gives certain predictions about the evolution of 501 

�) under environmental change. Our analysis shows that the mean cue reference trait ("%̅), and hence 502 

�) (eqn (5)), will respond rapidly to changes in the mean environment (provided sufficient additive 503 

genetic variation). Whenever there is selection for increased plasticity (i.e., selection for higher |"$̅|), 504 

it also becomes adaptive to exaggerate the perception of the environmental change, and �) will swing 505 

away in the opposite direction of the change in the mean cue during a “phase of alarm” (see Fig. 2). 506 

Later, �) will move towards, and eventually fluctuate around, the new cue value. In contrast, under the 507 

two-trait model �) will not change in response to changes in the mean cue values. 508 
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Future directions 509 

In this paper we have made a number of simplistic, but quite standard, assumptions, including interval 510 

scaled cues and phenotypes, Gaussian fitness with constant width and peak value, lack of density and 511 

frequency dependence, random mating, discrete generations where all individuals are exposed to the 512 

same environment (e.g. no spatial heterogeneity), and uncorrelated environments from one generation 513 

to the next. These assumptions may be modified or relaxed in future developments. In particular, the 514 

two-trait model has been used in theoretical studies involving within-generation heterogeneity (de 515 

Jong & Gavrilets, 2000; Tufto, 2000; Scheiner, 2013; Tufto, 2015). We suggest that these studies may 516 

be developed by including a cue reference trait in the linear reaction norms (our three-trait model). 517 

The models may also be modified by incorporating different reaction norm shapes. Notably, de Jong 518 

and Gavrilets (2000) allowed the genetic covariance between reaction norm intercept and slope, as 519 

well as their variances, to evolve through selection on allelic pleiotropy. It would be interesting to 520 

repeat their approach on our three-trait model to investigate the relative contributions (and synergies) 521 

of the evolution of trait means and trait variances and covariances. 522 

Several authors have assumed flexible polynomial reaction norms with the polynomial 523 

coefficients considered as traits (Gavrilets & Scheiner 1993a, b; Scheiner, 1993, Via et al., 1995). We 524 

suggest that such rather phenomenological non-linear reaction norm models may be modified by 525 

considering the slope and perception traits of the three-trait model as themselves dependent on the 526 

environment, which may result in a polynomial of (� − "%); Considering trait "$ as a linear function of 527 

(� − "%) results in a reaction norm that is a second order polynomial of (� − "%), etc. Note that in non-528 

linear reaction norms, unlike linear ones, a change in the perception trait(s) will never have the same 529 

effect on the genotypic reaction norm as a change in elevation trait (the component of the plastic 530 

phenotype independent of the environment).  531 

Regardless of the reaction norm shape, we argue that it is essential to distinguish between 532 

genetic variation in how the environmental cues are perceived from other genetic variation affecting 533 

the reaction norm distribution in the population. We suggest that future developmental and behavioral 534 

studies pay more attention to genetic variation in environment perception and transduction, and that 535 
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the contributions of such genetic variation to phenotypic variation in natural environments are 536 

evaluated. 537 
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Figure legends 723 

Fig. 1. Conceptual overview of optimal linear reaction norms in stochastic environments. The 724 

environmental component � (cue) that determines the mean phenotype and the environmental 725 

component Y determining the phenotypic expression that maximize fitness (Θ) have a bivariate 726 

distribution with correlation � (central 95% of a bi-normal distribution with � = 0.5 is indicated by 727 

the ellipses in the lower right panel). This leads to a bivariate distribution of � and Θ with means �� 728 

and ��, variances ��� and ���, and a correlation � = ���/������ (top right panel). The shaded areas 729 

show the conditional probability distributions of Y and Θ given a cue value � (with � = 0.5).  If 730 

fitness, 
, is a Gaussian function of the plastic phenotype value ����, the optimal reaction norm as a 731 

function of cue values � is the same as the least squares prediction of Θ given �, ������� = �� +732 

� 
�
� �� − ���, Appendix S1. Some authors refer to � in this context as a “proxy cue” of 733 

environmental component Y. However, it is sufficient to only consider � and Θ as two correlated 734 

components of a temporally varying environment. Blue line represents the optimal reaction norm 735 

under perfect information (� = 1) (when the ellipses collapse to a line), and green line represents the 736 

optimal reaction norm when � and Θ are uncorrelated (� = 0). Solid red line represents the optimal 737 

reaction norm when � = 0.5 (corresponding to the drawn ellipses). Thick stippled red line is referred 738 

to in the Analysis section. Note that in Lande’s (2009) notation, 0� corresponds to a random value of Y 739 

in generation 9, and 0�12 corresponds to a random � in the same generation. 740 

 741 

Fig. 2. Evolution of linear reaction norms after a sudden environmental change. Panels A-C: 742 

Trajectories of the population mean trait values with a sudden environmental change at generation 743 

5000 (see text). Panel D: Phase plane diagram showing "#̅ plotted against "%̅ through all generations 744 

(this is the point in the cue-phenotype plane where reaction norms “tend to cross” (see Fig. 3), since 745 

the phenotypic variance-covariance matrix here is diagonal (see eqn (5)). Solid blue lines represent the 746 

three-trait model (3) and the stippled red lines represent the two-trait model (2). The trajectories were 747 

calculated as the mean of 1000 independent simulations. Grey lines show the realization of a single 748 

simulation. Solid green lines show �� (panel A), the optimal slope when reaction norm slope and 749 
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intercept can be tuned independently, ���/��� (eqn (1)) (panel B), and �� (panel C). In panel A, the 750 

dotted blue line is the mean intercept �"#̅ − "$̅"%̅ − *$%� in the three-trait model for comparison with 751 

the intercept trait in the two-trait model (stippled red line). In panel B, stippled green line shows the 752 

mean slope that gives maximum expected logarithm of fitness of a random individual (Appendix S3). 753 

Parameter values in the initial environment were �� = 0, �� = 0, �� = 2 , �� = 4, and � = 
��
�
� =754 

0.25. At generation 5000, �� jumps to 6 and �� jumps to 12 while the other parameters remain 755 

unchanged. Diagonal @ and H matrices were used with >## = 0.5, *## = >## + 0.5, *$$ = >$$ 	=756 

	0.045, and *%% = >%% = 2 (three-trait model) or *%% = >%% = 0 (two-trait model). Initial mean trait 757 

values were "#̅ = 0, "$̅ = � 
�
� = 0.5, and "%̅ = 0. 758 

 759 

Fig. 3. Reaction norm distribution when the populations have reached a stationary dynamics in the 760 

two-trait model (A) and the three-trait model (B) under the scenario presented in Fig. 2. The 761 

distribution of the environmental cue (�) in the new environment is indicated by the shaded areas on 762 

the x-axes, and the central 95% of the joint distribution of � and Θ is shown with the ellipses with an 763 

‘×’ at the mean. For each model, 50 random reaction norms (genotypes) are plotted. In the two-trait 764 

model, the cue value �) where phenotypic variation is minimal will always be at zero when reaction 765 

norm slope and intercept are independent (indicated with a white, crossed, symbol plotted at the mean 766 

plastic phenotype for this cue value). In contrast, in the three-trait model genetic assimilation becomes 767 

complete and �) moves to �� with a mean plastic phenotype at ��.   768 

 769 

Fig. 4. Phenotypic standard deviation, ij��� (A), and the distance between the mean environment and 770 

the zone of canalization, �� − �) (B), in the simulations presented in Fig. 2. Blue solid lines represent 771 

the three-trait model, while the red stippled lines represent the two-trait model. Horizontal grey lines 772 

are drawn at the mean values of the last 3000 generations prior to the sudden environmental change at 773 

generation 5000. Lines show the mean of 1000 independent simulations plotted at every 100th 774 

generation. 775 

 776 
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Fig. 5. Fitness trajectories in the simulation example (Fig. 2). Left panels: Population mean fitness 777 

relative to maximum fitness (
F#G	). Right panels: Expected fitness at the mean trait values. The 778 

lower panels show the same values plotted with a narrower range on the y-axis. Thick blue line 779 

represents the three-trait model and the thin red line represents the two-trait model. Horizontal stippled 780 

green line shows the fitness of the optimal reaction norm (1). Only every 20th generation is plotted in 781 

the left panels and every 100th generation is plotted in the right panels. Plotted values are the mean of 782 

the same 1000 independent simulations used for Fig. 2. 783 

  784 
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