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Abstract

Germline copy number variants (CNVs) are known to affect a large portion of the human
genome and have been implicated in many diseases. Although whole-genome sequencing can
help identify CNVs, existing analytical methods suffer from limited sensitivity and specificity.
Here we show that this is in large part due to the non-uniformity of read coverage, even after
intra-sample normalization, and that this is exacerbated in regions of low-mappability. To
improve on this, we propose PopSV, an analytical method that uses multiple samples to control
for technical variation and enables the robust detection of CNVs. We show that PopSV is able
to detect up to 2.7 times more variants compared to previous methods, with an accuracy of
about 90%. Applying PopSV to 640 normal and cancer whole-genome datasets, we demonstrate
that CNVs affect on average 7.4 million DNA bases in each individual, a 23% increase versus
previous estimates. Notably, we find that regions of low-mappability, which were often concealed
in previous analyses, harbor approximately 10 times more CNVs than the rest of the genome
and that this contrasts with somatic CNVs (sCNVs) that are nearly uniformly distributed.
We also observe that CNVs are found more than expected near centromeres and telomeres,
in segmental duplications, in specific types of satellite repeats and in some of the most recent
families of transposable elements. Although CNVs are found to be depleted in protein-coding
genes, we identify 7206 genes with at least one exonic CNV, 324 of which harbored CNVs that
would have been missed if low-mappability regions had been excluded. Similarly, 2253 trait-
and disease-associated loci are observed to overlap at least one CNV. Our results provide the
most comprehensive map of CNVs across the human genome to date and demonstrate the broad
functional impact of this type of genetic variation including in regions of low-mappability.
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1 Introduction

Structural variants (SVs) are defined as genetic mutations affecting more than 100 base pairs and
encompasses several types of rearrangements: deletion, duplication, novel insertion, inversion and
translocation!. Deletions and duplications, which affect DNA copy number, are also collectively
known as copy number variants (CNVs). SVs arise from a broad range of mechanisms and show
a heterogeneous distribution of location and size across the genome!?3. In healthy individual,
SVs are estimated to cumulatively affect a higher proportion of the genome as compared to single
nucleotide polymorphisms (SNPs)#. Numerous diseases including Crohn’s Disease®, schizophre-
nia®, obesity”, epilepsy®, autism?, cancer'® and other inherited diseases''2, harbor SVs with a
demonstrated detrimental effect 131415,

While cytogenetic approaches and array-based technologies have been used to identify large
SVs, whole-genome sequencing (WGS) could in theory uncover the full range of SVs both in terms
of size and type'S. Numerous methods have been implemented to detect SVs from WGS data
using either paired-end information'”!8) read-depth (RD) variation!?2%:21 breakpoints detection
through split-read approach?? or de novo assembly??. However, existing approaches suffer from
limited sensitivity and specificity®1%, especially in specific regions of the genome, including regions
of low-complexity and low-mappability 242°. One strategy to improve the accuracy of SV detection
has been to use an ensemble approach that combines information from different methods relying
on different types of reads. Large re-sequencing projects such as the 1000 Genome Project?2¢ and
the Genomes of Netherlands (GoNL) project 2”28 have adopted this strategy and have successfully
identified many SVs using an extensive panel of detection methods combined with low-throughput
validation. Such a strategy increases the specificity of the calls, although validation rates can still
be very low (e.g. 41 of the 601 predicted de novo SVs in Kloosterman et al.?®). Moreover, joining
the different sets of calls can be somewhat arbitrary and leads to an approach that is less sensitive.
Finally, in these studies, as in many others, repeat-rich regions and other problematic regions are
usually removed from the analysis to improve the accuracy of the calls. This is unfortunate given
that CNVs in a number of such regions have already been associated with various diseases2%-30:31:12,

Why is calling SVs from WGS data so challenging? A major limitation of many of the ex-
isting detection methods is the incorrect assumption that reads are uniformly distributed across
the genome. Indeed, it has been shown that various features of sequencing experiments, such as
mappability?42°, GC content3?, replication timing>3, have a negative impact on the uniformity of
the coverage®?. Unfortunately, this variability is difficult to fully correct for as it involves different
factors, some of which are unknown, that vary from one experiment to another. This issue will
particularly impair the detection of SV with weaker signal, which is inevitable in regions of low-
mappability, for smaller SVs or in cancer samples with stromal contamination or cell heterogeneity.

In this work, we start by showing that technical variation challenges the uniformity of coverage
assumption despite state-of-the-art intra-sample normalization. To correct for this, we propose a
new method, PopSV, an approach that relies on RD but uses a set of reference samples to control
for technical variation and detect abnormal read coverage. Our approach differs from previous
RD methods, such as RDXplorer3®> or CNVnator??, that scan the genome horizontally and look
for regions that diverge from the expected global average. Even when approaches rely on a ratio
between an aberrant sample and a control, such as FREEC! or BIC-seq3%, we show that they do
not sufficiently control for experiment-specific noise as compared to PopSV. PopSV is also different
from approaches such as cn.MOPS?! and Genome STRIP37 that scan simultaneously the genome
of several samples and fit a Bayesian or Gaussian mixture model in each region. Those methods
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have more power to detect SVs present in several samples but may miss sample-specific events.
Moreover, their basic normalization of coverage and fully parametric models forces them to conceal
a sizable portion of the genome and variants with weaker signal.

To demonstrate the utility of PopSV in characterizing CNVs across the genome, we apply the
method to 640 WGS individuals from three human cohorts: a twin study with 45 individuals3®, a
renal cell carcinoma datasets with 95 tumor and control pairs3® and 500 unrelated individuals from
the GoNL dataset?”. Using this data we compare the performance of PopSV with existing CNV
detection methods and validate the quality of the predictions. We also characterize the patterns of
CNVs across the human genome and show that CNVs are enriched in regions of low-mappability
and in different classes of repeats. Finally, we look at the functional significance of these structural
variants and show that thousands of genes and genome-wide associated studies (GWAS) loci overlap
CNVs. A number of these potentially important CNVs would have been missed if regions of low-
mappability had been excluded.

2 Results

Intra-sample normalization does not remove coverage biases It is usually assumed that
after correction for known biases such as GC content®? and mappability 242°, sequencing reads
in a WGS experiment are uniformly distributed across the genome. To test this hypothesis, we
computed the RD in non-overlapping genomic windows (bins) of size 5 kilo bases (Kb) in the
normal samples of the renal cancer dataset. Read counts in the bins were corrected for GC-bias
and, to be conservative in this initial analysis, regions with extreme read coverage were removed
(Methods). Bin scores were then quantile normalized to obtain the same distribution for all samples
(Fig. S1). Unexpectedly, and in contrast to simulated datasets, the inter-sample mean coverage in
each bin was observed to vary from one genomic region to the other, highlighting the presence of
additional biases (Fig. 1a). Supporting this observation, the bin coverage variance across samples
was lower than expected and also varied between genomic regions (Fig. 1b). Such region-specific
bias is overlooked when global estimates and genome-scanning methods are used to detect coverage
differences. To further investigate this bias, we computed the proportion of the genome where a
given sample had either the highest or the lowest coverage of all samples. Some samples looked
more affected by this bias than others, as they consistently showed the highest, or the lowest,
coverage across large portions of the genome (Fig. 1c). Similar patterns were also observed in the
other two cohorts (Methods and Fig. S2 and S3). In short, we observed significant coverage biases
even after intra-sample normalization and when focusing on the least problematic regions of the
genome. This effect was even stronger when the whole genome was being evaluated (Fig. S4).
The implications of this inter-sample variation, is that CNV detection approaches that assume a
uniform coverage distribution 2036 will have higher rates of false positives as the coverage will
artificially fluctuate. Moreover, this experimental noise will confuse the detection of weaker signal,
e.g. in low-mappability regions, for smaller CN'Vs or in cancer samples with stromal contamination
or cell heterogeneity.

A population-based normalization and CNV detection method The main idea behind
PopSV is to assess whether the coverage observed in a given location of the genome diverges sig-
nificantly from the coverage observed in a set of reference samples. In PopSV, the genome is first
segmented into bins and RD is computed for each sample as the number of reads with proper
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mapping in each bin. In a typical design, the genome is segmented in non-overlapping consecu-
tive windows of equal size, but custom designs could also be used. After normalization, the value
observed in each bin is compared to the values observed in the reference samples and a Z-score is
calculated (Fig. 2a, 2b and Methods). False Discovery Rate (FDR) is estimated based on these
Z-score distributions and a bin is marked as abnormal based on a user-defined FDR threshold.
The normalization step is critical here since we have shown that simple approaches will fail to give
acceptable normalized RD scores (Fig. 1c). Moreover, with global median/variance adjustment
or quantile normalization, the remaining subtle experimental variation impairs the abnormal RD
test (Fig. Sba). With PopSV, we propose a new normalization procedure, which we call targeted
normalization, that retrieves, for each bin, other genomic regions with similar profile across the ref-
erence samples and uses these regions to normalize RD (Methods). In contrast to other methods,
targeted normalization shows better distribution features (Fig. S5b). It is important to note that
it is critical for the success of this targeted normalization that the set of reference samples used is
comparable to the tested samples. We have included in PopSV a set of exploratory tools to help
assess this (Methods).

To demonstrate the effectiveness of PopSV, we first applied it to the twin dataset (Methods).
Using 5 Kb bins, we observe smooth normal-like Z-score distributions and overall consistency of
the bin values in the twin pairs (Fig. 2c). Applying the same methodology to the normal/tumor
cancer cohort lead to similar results and highlighted, as expected, a large number of duplications
and deletions in the tumors (Fig. S6). Encouragingly, in regions of low-mappability, the Z-score
distribution was found to be identical to the one in regions of normal mappability (Fig. S7). Next,
we estimated the copy number of each bin by dividing the RD in a given sample by the average RD
across the reference samples multiplied by two, to reflect the fact that reference set is assumed to
be diploid in each bin. We anticipate the copy number estimate to be reliable if the detected event
spans the entire bin but less accurate for smaller event or partial signal (e.g. contamination or cell
heterogeneity in cancer). The distribution of these copy-number estimates further supported the
quality of the PopSV calls, with clear peaks around integer values especially for longer events (Fig.
2d). It’s important to note that, in contrast to some of the other methods?!3”, this aggregation
around integer values is completely independent of the calling process which only marked bins with
abnormal RD.

Sensitivity and specificity of PopSV To evaluate the performance of PopSV, we compared it
to FREEC™ and cn.MOPS?!, two popular RD methods that can be applied to WGS datasets to
identify CNVs. FREEC segments the RD values of a sample using a LASSO-based algorithm. It
can use GC content and mappability information or RD from a control sample to normalize the
signal before segmentation. In contrast, cn.MOPS considers simultaneously several samples and
detects copy number variation using a Poisson model and a Bayesian approach. Here, RD is simply
normalized to adjust for the total coverage in each sample. We used cn.MOPS for this comparison
instead of GenomeSTRiP 37 because it was developed for a design similar to ours, i.e. tens of samples
sequenced at high coverage.

First, in the twin study, we measured the number of CNVs identified in each twin that were
also found in the matching twin (Methods). In this analysis, we focused on CNV calls found in
less than 50% of the reference samples, as calls at very high frequency could be systematic errors.
Using 5 Kb bins, PopSV recovered on average more concordant CNV events per sample, 324 versus
102 and 92 for FREEC and cn.MOPS respectively, while maintaining comparable specificity (Fig. 3a
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and 3b). Notably, focusing on the regions of low coverage that account for 13% of the genome (Fig.
S8 and Methods), we found that PopSV also outperforms the other approaches with 174 replicated
events per sample on average, while cn.MOPS and FREEC only found 70 and 19 respectively. In
those regions, PopSV had a slightly higher specificity with 96% of the calls being concordant (Fig.
3b). To explore the quality of the CNV calls further, we clustered individuals according to the CNV
calls and compared the result to the known pedigree for these samples (Methods). We found that
PopSV shows better concordance as assessed by the Rand index (Fig. S9). Even using only the
regions of extremely low coverage resulted in a clustering dendogram mimicking almost perfectly
the family relationships (Fig. 3c). Additionally, the distribution of CNV recurrence shows a clearer
peak at 3-sample for PopSV (Fig. S10), which is expected due to the aggregation of CNVs present
in both twins and one parent.

To further assess the performance of PopSV, we also tested the approach on the cancer dataset
by comparing the agreement between germline events in tumor/normal pairs in a similar way as
was done for the twin pairs. We observed comparable results with PopSV reporting on average 293
consistent CNV calls per sample while cn.MOPS and FREEC only detected 75 and 48 such events
respectively (Table S1). Once again, the specificity of the different methods was comparable at
around 88%. This was true overall as well as in low coverage regions where PopSV found twice as
many replicated calls.

Resolution and validation of the PopSV calls To evaluate the performance of PopSV at
different resolutions, we repeated the analysis of the twin dataset using 500 bp bins. With smaller
bins there is more noise and long stretches of bins of low significance might be missed. For this
reason, the 500 bp PopSV calls were combined with the 5 Kb calls (Methods). At this resolution,
we observed that PopSV still found on average 1.7 and 6.3 times more concordant calls per sample
compared to cn.MOPS and FREEC while maintaining similar specificity (Table S1). PopSV also
detected on average 1.3 and 23.2 times more replicated variants in regions of low coverage compared
to cn.MOPS and FREEC respectively, and had the highest specificity of all tested methods. Similar
results were also observed with 500 bp bins in the renal cancer data set (Table S1).

Next, we assessed the performance in each genomic bin individually. When more than 90%
of the twin pairs are consistently called in a given bin, we classify it as a reliable bin. We could
use this measure to show that bins with different levels of mappability and repeat content were as
likely to be reliable (Fig. S11), supporting PopSV’s robustness and superior performance even in
these challenging regions (Fig. S12). Using this metric, we also observed that a higher fraction
of the genome is reliably called with PopSV compared to cn.MOPS and FREEC (1.5 and 2.7 more,
respectively, Table S2 and Methods). These observations were replicated in the renal cancer dataset,
where reliability is defined based on the proportion of the normal samples with consistent calls in
their paired tumor (Table S1 and S2).

We also wanted to assess the consistency between the 5 Kb and the 500 bp individual calls. In
theory, calls from the 5 Kb analysis should be supported by many 500 bp calls. We also expect
large stretches of 500 bp calls to be detected in the 5 Kb analysis. This comparison is informative
as it explores the quality of the calls, the size of detectable events and the resolution for different
bin size. Overall, we find that 5 Kb calls are well supported by 500 bp calls, with only 14% of the
5 Kb bins not supported by any 500 bp bin (Fig. S13a). Even for these unsupported 5 Kb calls,
we find that the 500 bp bins RD was consistently enriched (or depleted) although not enough to be
called with confidence (Fig. S13b and S13c). This is expected given the higher background noise
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in the 500 bp analysis that will reduce the power to call these variants. Next, we looked at the
proportion of 500 bp calls, grouped by size, that were found in the 5 Kb calls. We find that the
concordance gradually increases until the 500 bp calls reach 5 Kb in size where the concordance
rises to nearly 100% (Fig. 3d). This suggests that PopSV is able to detect approximately 75% of
the events as large as half its bin size, and almost all events larger than its bin size. As expected,
only a small proportion of the small 500 bp calls overlap 5 Kb calls and they likely corresponds to
fragmented larger calls. Considering the trade-off between bin size and noise, this suggests to run
PopSV with a few bin sizes to better capture variants of different sizes.

Finally, 23 variants were chosen for experimental validation. We randomly selected one-copy
and two-copy deletions, among small (~ 700 bp) and large (~ 4 Kb) variants. In addition, although
more challenging to validate using standard approaches, 3 deletions in low coverage regions were
also randomly selected. We visually inspected the chosen deletions in order to map the breakpoints
and PCR primers were designed to target the whole deletion region (Methods). In total, 19 were
successfully validated (83%), close to our in silico estimates (Table S3). Of note, one of the three
low coverage deletions was successfully validated despite being embedded in a region that was more
repetitive, which made he design of primers more difficult.

Global patterns of CNVs across the human genome Having demonstrated the sensitivity,
specificity and resolution of PopSV, we wanted to characterize the global patterns of CNVs across
the human genome. We started with an analysis of the twins and of the normal samples in the renal
cancer dataset, both of which have an average sequencing depth around 40X. PopSV was used to
make calls using 500 bp and 5 Kb bins, which were then merged to create a final set of variants as
before. On average, 7.4 Mb in each genome had abnormal read coverage, 4 Mb showing an excess
of reads indicating duplications and 3.4 Mb showing a lack of reads indicating deletions (Table 1).
In both datasets, the average variant size was around 4 Kb and 70% of the variants found were
smaller than 3 Kb. We compared our numbers to equivalent CNVs detected in the recent human
SV catalogue from the 1000 Genomes Project?® (Methods). In that study, 6.0 Mb was found to be
variable on average in each genome (Table S4). As expected, the set of variants identified by PopSV
included more variants in low coverage regions, explaining in part the ~ 23% increase. While the
study from the 1000 Genomes Project?% explored a wider range of SVs, our set of variant is likely
more representative of the distribution of CNVs in a normal genome since a broader portion of the
genome could be analyzed.

Next, we applied PopSV to the 500 unrelated samples from the GoNL cohort (Table 1). Due
to a lower sequencing depth (~13X), we used bins of size 2 Kb and 5Kb that gave the best signal
to noise ratio (Methods). Slightly fewer variants were found in these samples mainly because of
the reduced sequencing depth, which limits the detection of smaller CNVs. Nevertheless, a large
sample size helps better characterize the frequency patterns and provides a more comprehensive
map of rare CNVs. In total, across these three cohorts, 326 Mb were found to be affected by a
CNV with more duplications (325,602) detected than deletions (248,937). This contrasts with the
CNVs reported by the 1000 Genomes Projects?® that were heavily skewed towards deletions (Table
1 and Table S4), likely due to the usage of different methods to detect various types of CNVs.
The frequency distribution of deletions and duplications found using PopSV was also much more
balanced compared with the ones from Sudmant et al.26 (Fig. S14). Of note, we observed the same
when comparing PopSV with other methods: PopSV’s frequencies are more similar between deletions
and duplications compared to FREEC (Fig. S15). As expected, both deletions and duplications
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detected by cn.MOPS tend to be skewed towards more common events.

CNVs are enriched near centromeres and telomeres and in regions of low-mappability
Large CNVs have been shown to be enriched near centromeres, telomeres and assembly gaps
(CTGs)0. We were interested in exploring this observation further using the set of high reso-
lution calls from PopSV. We compared the distribution of CNVs calls made across the 3 datasets
to randomly distributed regions of similar sizes (Fig. S16 and Methods). In an average genome, we
found that 34% of the CNVs calls were within 1 Mb of a CTG, while we would have expected 11%
by chance. To verify that these observations were not simply a consequence of the methodology
used, we also looked at the somatic CNVs that we could detected in the renal dataset. For this
purpose, we extracted the variants found by PopSV in the tumor sample of an individual but miss-
ing from its paired normal sample (Methods). As expected, somatic CNVs (sCNVs) were found to
be significantly larger and to affect a much larger fraction of the genome (Table S5). Reassuringly,
and in contrast to germline CNVs, SCNVs were not preferentially found near CTGs (Fig. S16b).

Notably, when looking at the genomic distribution of CNVs, we also observed that 10.9 and
37.5 times more variants were found in region of low and high coverage respectively, compared to
regions with expected coverage (Fig. 4a). This effect subsists even when controlling for proximity to
CTGs, adjusting for difference in false discovery rate and cannot be explained by different detection
power since variants in regions of low and high coverage are actually harder to detect (Methods).
In contrast to germline CNVs, sSCNVs were once again found to be more uniformly distributed and
were actually depleted in low and high coverage regions (Fig. S17). These results suggest that
the enrichments of germline CNVs near CTGs and in regions of low-mappability are trustworthy
and are probably the consequence of reduced selection pressure on these variants rather than the
detection methodology.

Segmental duplications and various repeat families are more prone to harbor CNVs
We wanted to characterize further the distribution of germline CNVs in relation to different genomic
features, including looking at the contribution of segmental duplications, low-mappability regions
and different repeat classes. To investigate these associations beyond the trends already observed
with CTGs and low coverage regions, we simulated a set of matched control regions (Methods).
Even after these corrections, we found that CNVs were enriched in simple repeats, segmental
duplications and satellites repeats (Fig. 4b), with fold-enrichments of 1.2, 1.9 and 2.6 respectively.
In contrast, and as expected, protein-coding genes and exons were found to be under-represented.
The over-representation of CNVs in segmental duplications has been described before? and in a
recent study?!, one-half of CNV base pairs were shown to overlap segmental duplications. Here,
we found that on average ~ 42% of the CNVs overlap a segmental duplication in any given sample.
The majority of these CNVs were fully contained in the overlapping segmental duplication (Fig.
S18). In our results, segmental duplications with different levels of sequence similarity showed
comparable levels of enrichment (Fig. S19).

Although it is known that satellites and simple repeats DNA are more unstable*?, the extent to
which CNVs are found in these regions in humans had, to our knowledge, not been systematically
explored. Satellite repeats are grouped into distinct families depending on their repeated unit
and we found that not all satellite repeats were equally likely to overlap a CNV (Fig. S20a). In
particular, Alpha satellites, Satellite-like Repeat 1 and 2 (SATR1, SATR2), Centromeric Repeats
(CER) and satellites with the specific motif (GAATG)n and its reverse complement (CATTC)n
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were found to have the highest fold enrichment. We also noted that the affected satellite repeats
tend to span almost completely the variable regions (Fig. S18). Simple repeats are also grouped
into families and we found the most significant enrichment for the TA(/AT') tandem repeats (Fig.
S20b). In contrast, the GT(/TG) tandem repeats were significantly under-represented and the
CAG repeat, known to cause Huntington disease??, was not observed to be enriched nor depleted.
Here the repeats tend to overlap just a fraction of the variant, but a clear subset of variant are
fully covered by these tandem repeats (Fig. S18).

Finally, although transposable elements (TEs) as a whole did not show enrichment (Fig. 4b),
the Other repeat class, which includes SVA repeats, was found to be significantly enriched in the
three datasets (Fig. S20c). Moreover, looking at TEs at the level of individual repeat families, we
found a number of them to be enriched including SVA D-F, L1Hs, and AluY (Fig. 4c¢). Surprisingly,
a few older ERV families, including HERV-H that has been shown to be expressed and important
in human embryonic stem cells?®%, were also in the list of enriched TEs. Several families of older
L1 repeats (e.g. L1PA2 to L1PA5) were also enriched and often implicated in what appears to be
non-allelic homologous recombination (see examples in Fig. 4d and S21). Reassuringly, the somatic
CNVs once again did not show any of these enrichments (Fig. S17).

Impact of CNVs on protein-coding genes and disease loci Although both small and large
CNVs were depleted in genes (Fig. 5a and Methods), 7206 protein-coding genes were found to
have an exon overlapping an event in at least one of the 640 normal genomes studied (Table S6).
Moreover, if we included the promoter regions, at least 11341 protein-coding genes were potentially
affected by at least one CNV (Methods). Next, to do a saturation analysis, we compared the
number of genes found in our three cohorts at different sample sizes (Fig. 5b). None of the curves
reached a plateau, suggesting that many more affected genes would have been identified with larger
sample sizes.

At this point, we would also like to highlight that many genes contain or are located in close
proximity to low-mappability regions (Fig. S22). Signal in these regions is frequently removed from
CNV analyses to avoid misleading signal created by extreme read coverage. This is regrettable
because these regions are known to harbour SVs and are likely to be unstable*>46. For instance,
a recent analysis of long-reads sequenced from an haploid human cell line*® found a large number
of SVs around these regions. In our 640 normal samples, 324 genes were found to have an exon
overlapping such a CNVs in a low coverage region and this number increased to 454 if we included
the promoter regions (Table S6). Many of these genes belong to gene families known to be copy
number variable, such as ANKRD, NBPF, ZNF or CD gene families. These CNVs are distinct
from larger aberrations (example Fig. 5c) and could easily be missed by other approaches masking
low coverage regions. Of note, we also found that 172 genes were affected by somatic exonic CNVs
located within these low coverage regions (Table S7).

Finally, we wanted to see the number of Genome-Wide Association Studies (GWAS) loci that
overlapped our comprehensive CNV catalogue. Similarly to protein-coding regions, GWAS hits
were found to be significantly depleted for CNVs (Fig. 4b). Nevertheless, in our population of 640
genomes, more than two thousands different GWAS hits were covered by at least one CNV in one
sample (Table 1). For example, a SNP associated with coronary artery disease locates within a
low-coverage deletion affecting one of our samples (Fig. S23).
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3 Discussion

Why are SVs so difficult to detect in WGS data? We have answered this question by showing that
various experimental biases, which cannot be corrected for using basic intra-sample normalization,
affect the uniformity of read coverage across the genome. These biases, if not considered, will
impair the detection of CNVs. One thing that is important to note is that the amplitude of these
biases varied from one cohort to the next and did not appear to be strictly linked to the sequencing
platform used but also to the way the samples were prepared (Fig. 1, Fig. S2 and S3). With PopSV,
samples that were sequenced with the same technology and protocols can now be analyzed jointly
to control for these biases. When only a few samples are available this inter-sample normalization
procedure might be less efficient but we estimate that with 20 reference samples or more PopSV will
be preferable over methods working on single samples (or pairs of samples). We note that WGS
is probably one of the most straightforward next-generation sequencing (NGS) protocol that only
involves DNA extraction, shearing, sometimes amplification, and sequencing. It is likely that other
NGS experiments, such as ChIP-Seq, are also similarly affected by sample preparation conditions
and that these would also benefit from a similar inter-sample normalization procedure.

Comparing different calling methods is not straightforward, especially when different strategies
are implemented. To begin, we compared PopSV cn.MOPS and FREEC using the same large bin
size (5 Kb) in order to assess their ability to detect different types of signal: full versus partial
signal, single versus multiple bin support, good versus low mappability. Next, we ran the methods
with a smaller bin size (500 bp) to compare the methods in a situation with higher background
noise. In each comparison we made sure that PopSV had similar specificity estimates compared to
other methods, in order to reliably compare the sensitivity. We concluded that PopSV was more
capable of detecting partial or single-bin signal (Fig. 3a and 3d), which is valuable to be able
to observe smaller variants or variants in more challenging regions. Even when the background
noise was significant, PopSV showed the best sensitivity and could reliably test a wider range of
the genome (Table S1 and S2). In contrast to cn.MOPS, FREEC and ensemble methodologies?”26,
PopSV was also able to detect both deletions and duplications as efficiently (Fig. S14 and S15).

A notable strength of this new approach is that it enables the analysis of CNVs across the
whole genome. Using PopSV on 140 normal genomes with high sequencing depth (~40X) and
500 additional samples with medium coverage (~13X), we found that regions of low coverage,
which only represent 13% of the genome, overlap with 65% of the CNVs detected. The fact that
this enrichment was observed for germline events and not somatic events was both reassuring and
interesting because of the implications on the selection forces at play. Having a more complete
CNYV catalogue also enabled an unbiased characterization of the CNV patterns across genome and
potentially increases the power for trait-association studies. In particular, we were able for the first
time to quantify the extent to which some regions in the genome are more prone to harbour such
structural rearrangements. For example, we could describe genome-wide enrichment for different
families of DNA satellites, simple repeats and several TE families, such as SVA, L1Hs and HERV-H.

Because PopSV looks for abnormal read coverage in each bin independently, it does not require
the coverage to be uniform across the genome. For this reason, a natural extension of PopSV
would be to apply it to targeted sequencing data, such as whole-exome sequencing data. In this
context, the fragmented nature of the coverage and the differences in baseline from one region to
another would seamlessly be integrated and corrected for by the set of samples used as a reference.
Actually, several methods for CNV detection from whole-exome data that use information from
other samples already exist?”48, although they do not control for the biases described above the
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way PopSV does. Similarly, another logical extension of PopSV would be to apply it not only to
correctly mapped reads but also to discordant reads to detect abnormal discordant coverage. Here,
any type of discordant mapping, such as read pairs with incorrect insert size, orientation or with
only one pair mapped could be counted together or separately. Discordant reads are intrinsically
difficult to work with because they are usually ambiguous and found in regions of low-mappability.
Issues of ambiguous mapping are context-specific and are exceedingly difficult to model directly.
The advantage of working with a set of reference samples, as in the PopSV framework, is that we
would have a way to control for this variability empirically. A additional advantage of incorporating
the discordant reads in PopSV is that it would also allow for defining more precise breakpoints for
the SVs detected, including in regions of low-mappability.

In summary, we have presented a novel method that enables the systematic detection of CNVs
across the genome. Applying this method to a set of 640 WGS datasets, we were able to produce
the most comprehensive map of CNVs across the human genome to date and highlight the broad
potential impact of this type of genetic variation including in regions of low coverage. In the future,
we anticipate that population-based methods, such as PopSV, will facilitate the identification not
only of CNVs but also of other types of SVs in both normal and cancer genomes.

4 Data and code availability

The PopSV R package and documentation are available at http://jmonlong.github.io/PopSV/.
The scripts used to produce the graphs and numbers in this study have been deposited on https:
//figshare.com/s/ba79730bb87a1322480d. It also contains the necessary data to reproduce our
results. The raw sequences of the different datasets have already beed deposited by their respective
consortium (Methods).
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Abbreviation

Kb Kilo base.

SV Structural Variation or Structural Variant.

CNV Copy-Number Variation or Copy Number Variant.
WGS Whole-Genome Sequencing.

RD Read-Depth, also called read coverage or depth of coverage.
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Figure 1: Variation and bias in whole-genome sequencing experiments. a) Distribution of

the bin inter-sample mean coverage (red) and null distribution (blue: bins shuffled, green: simulated normal
distribution). b) Distribution of the coverage standard deviation in each genomic bin. ¢) Proportion of the
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all samples should be the most extreme at the same frequency (dotted horizontal line).
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Figure 4: CNVs are enriched in regions of low-mappability and near centromeres and
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Figure 5: Functional impact of CNVs. a) Frequency of CNVs of different sizes and overlap with
coding exons. b) The curve shows the number of protein-coding genes with exonic sequence affected by a
CNV, at different sample size. ¢) Example of a duplication in ZNF322 exon, located in a challenging region
(low coverage). Same representation as Figure 2b.
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Figure S1: Distribution of the bin counts after removal of regions of extreme coverage
and normalization. a) All samples have exactly the same RD distribution after quantile normal-
ization. b) We build the distribution under the null hypothesis (i.e. uniform coverage) by shuffling
the bins or ¢) simulating RD from a Normal distribution.
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Figure S2: Variation and bias in whole-genome sequencing in the Twins dataset.

a)

Average bin RD across the samples (red) and null distribution (blue: bins shuffled, green: simulated normal
distribution). b) Same with standard deviation. ¢) Proportion of the genome in which a sample (x-axis) has
the highest(red) or lowest(blue) RD. In the absence of bias all samples should be the extreme one with the

same frequency (dotted horizontal line).

Dataset Region Bin size Number of concordant calls | Fold change PopSV vs || Proportion of concordant calls
PopSV | FREEC | cn.MOPS | FREEC cn.MOPS || PopSV | FREEC cn.MOPS

whole genome 5kbp 324.5 101.5 91.5 3.20 3.55 0.92 0.93 0.95

Twin study 500bp-5kbp 883.0 140.0 506.5 6.31 1.74 0.89 0.92 0.88
low coverage 5kbp 173.5 19.0 69.5 9.13 2.50 0.96 0.89 0.94

500bp-5kbp 546.0 23.5 407.5 23.23 1.34 0.94 0.90 0.87

whole genome 5kbp 293.0 48.0 75.0 6.10 3.91 0.88 0.80 0.88

Renal cancer 500bp-5kbp 949.0 80.0 564.0 11.86 1.68 0.79 0.72 0.75
low coverage 5kbp 107.0 6.0 52.0 17.83 2.06 0.91 0.78 0.87

500bp-5kbp 445.0 2.0 267.0 | 222.50 1.67 0.83 0.62 0.72

Table S1: Concordance in different datasets, methods and bin size.
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Figure S3: Variation and bias in whole-genome sequencing in the GoNL dataset. a)
Average bin RD across the samples (red) and null distribution (blue: bins shuffled, green: simulated normal
distribution). b) Same with standard deviation. ¢) Proportion of the genome in which a sample (x-axis) has
the highest(red) or lowest(blue) RD. In the absence of bias all samples should be the extreme one with the
same frequency (dotted horizontal line).

Dataset Bin size Number of reliable 1 Mb bins | Fold change PopSV vs
PopSV | FREEC cn.MOPS | FREEC cn.MOPS

Twin study 5kbp 1260 753 353 1.67 3.57
500bp-5kbp 2034 762 1360 2.67 1.50

Renal cancer 5kbp 2107 808 484 2.61 4.35
500bp-5kbp 2699 1149 2106 2.35 1.28

Table S2: Amount of genome reliably tested in different datasets, methods and bin size.
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Figure S4: RD bias is stronger when including all genomic regions. In renal cancer normals,
the same analysis as summarized in Fig. 1 is performed using all genomic regions, i.e. without filtering for
extreme coverage. Quantile normalization is used again to force the same RD distribution in all samples.
Of note, in a) and b) the distribution of the mean and variance across samples is shown on a log-scale as it
spans several orders of magnitude.
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Validated | Chr Start End | Class Left PCR primer Right PCR primer
Y 3 6649794 6654897 | large CN 0 CCTTAGTATTTCAGTGGTTTCTGTAGGTAT ATAAATATCAGTGCTCAACTTGGACTT
\% 5 | 127407030 | 127411341 | large CN 0 TATTCATATTAACCTATCCTCACAGAAAGA | TTTTTAAGAGATTTGAACTAAAATTCCAC
\% 3 5535139 5539535 | large CN 0 TACTTTTTGAATTTGTAAATTTCCTTTGTA | GAAATCAGAAAATCAAGATCATACTGAAG
v 1| 116229111 | 116233162 | large CN 0 | GTGTTACAGAATTAGTTTTACTGAGTGGTC | ATCTATAAAGAACTTTTTCCAAATAAACCA
\4 1| 158961082 | 158966958 | large CN 1 GTAGAATGAGCTGTGTTATGAGATGGT ATGACTTTCTATTGTTTGAAATGTAGTGAC
\4 15 | 26748887 | 26752614 | large CN 1 CAATTTATCTATCAAGTTATTTCACGGTAG AGTGAGATTTCATTTTAAGCTTGTCTTC
A% 6 | 33937344 | 33942846 | large CN 1 ACATTGTAGCCTGATGACCTTGTTC TGTGTTCTGAGGTTTACTTTATAATCTAGG
\% 12 | 82095501 | 82099389 | large CN 1 ACCTATAACTAAGTGTAGCTGCTGTAACTG | TCAGTAAAAATGATTACTACAGTGGAAAAT
\% 5 8255604 8260914 | large CN 1 TGAACATACATTCATACACACATAATACAA | TACATCACTGAACAAACCTCTATAGTCATA
\4 20 7398397 7403743 | large CN 1 AATAAACATTCTCTATAAACCCTAAAATGG | CTTTGTACCATATTTCATAAACGTAGAGTC
\4 18 | 40053822 | 40057873 | large CN 1 TAACTTTCTTTTCTAAAGCTTTTGGAGTAT | GTGAATTAAGATTCAATGTCTCTGCTAATA
A% 16 | 48904951 | 48906510 | small CN 0 | TCTTATTTATTTTGACAGTCCTTTACTCTG | AGATAATCAACTCTTTGTTTATTCTTTCAG
\4 2 | 241086647 | 241087801 | small CN 0 ATCAACATTTAGCCAGTGTTGTCTTAG GTCTCTTGTGCTCTATCTTTGGCTT
\% 13 | 110221621 | 110222631 | small CN 0 | ACCTCAGGAGAACTACTTCATACATTTCTA | GTATGAAAAACACTCATGGATATCATTTCT
\Y% 11 | 60571017 | 60572170 | small CN 0 AATGTTGAAGTGTGTCTTTCTGTAATATCT GTGTTTTGTGTCGCTATTTGTTTAGTA
A\ 5 | 166402295 | 166404219 | small CN 0 TCACTTTATTCATAACATTTCAGTGTAGAG GATCATATGCTTAAAATGCTAATGAGG
N 3| 160126422 | 160127288 | small CN 1 | TAAGATACAAGAAATAGAGATAACACTGGG | TCTGAACACTTATTTTAAGAAAATGAAAAA
N 17 | 10612674 | 10613775 | small CN 1 AATTTAGCAGTCTCTTACATTTCTTCTACC | TCTCTTCTATAAAAATAAATGGCTAAAAGC
\4 10 | 70253713 | 70255155 | small CN'1 | AATAAAATCAAAGGTGATATTACTGACAGA | ATATACTCTTTTAACTTTTGACCATTTTGG
\% 8 | 53700635 | 53702050 | small CN'1 | TAAGGAAAATTTAGTATAGTCTGGACCTGT ATGGAAATATATCTCTGATGGGTGAC
N 6| 26636844 | 26637539 | low coverage | GTACATAGATTCTCACCCACAATTAAATC CTTCTTCAACATCAGACAGTACACATT
N 13 | 78236245 | 78238105 | low coverage GTCAGTCTGGTTCTTTTCTGTCAAG ACTTTAGTAAAATTGTTATTTAGTCCCAGG
\4 1 | 248546279 | 248548008 | low coverage | CTATCTTTCTTACCATTTAATATCTGCCTT | AGACTTCATTTAGGAAAGTGAGAAATACAC

Table S3: Experimental validation results. Location of the validated (V) and non-validated (N)
CNVs for different classes. The last two columns show the primer sequences used for PCR amplification.
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Figure S6: ZZ plots between normal and tumor pairs. In renal cancer, Z-scores from each normal
samples is plotted against Z-scores from its tumor samples. This graph is an aggregation of all normal /tumor
pairs. Z-scores are winsorized at -30 and 30 for visibility purpose.

Sample | Type Variant Variant per sample Variant < 3 Kbp Affected genome
All Low-coverage | All Low coverage All  Per sample All  Per sample
2504 | All 2382489 3628 | 924 2 | 1420566 551 | 581.08 6.04
CNV | 312401 0| 124 0 0 0] 85.05 2.74
DEL | 2041543 3628 | 787 2 | 1420566 551 | 298.70 3.13
DUP 28545 0] 11 0 0 0 | 264.09 0.32

Table S4: 1000 Genomes deletions, duplications and CNVs. We removed variants with high
frequency (> 80%), variants in the chromosome X, and variants smaller than 300 bp in order to compare
with PopSV’s numbers (Table 1).

Set Sample Variant Size (Kbp) Variant <3 Kbp Affected genome (Mb)
All Per sample Proportion Per sample All Per sample
all  low-coverage min  mean maz
Renal cancer somatic 95 | 391860 4124.84 44.40 58.54 0.48 1966.36 | 2455.18 4.16 232.83 664.86
deletion 194181 2044.01 2.72 70.81 0.42 865.64 | 1695.56 0.01 136.35 413.66
duplication 197679  2080.83 43.68 46.50 0.53 1100.72 | 1464.00 0.12  96.48 367.53

Table S5: Somatic CNVs in renal cancer dataset.
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Figure S7: Z-score distribution versus the mappability of the bin. One randomly selected
sample from the Twin dataset. Mappability was extracted from the UCSC track (Methods).
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Figure S8: Average coverage in 5 Kbp bins across reference samples in the Twins dataset.
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Figure S9: Twin dataset: sample clustering and pedigree. Samples are clustered using the
CNV calls from the different methods (colors). The amount of genomic sequence called in only one of two
samples defines the distance used for clustering. After cutting the hierarchical cluster at different levels (z-
azis), cluster groups are compared to the known pedigree using the Rand index (y-axzis). Different clustering
linkage criterion (point style) are used and the one showing the best Rand index is highlighted by the line.

Set Sample | Affected genome (Mbp) Genes with CNVs Genes with CNVs in low coverage | GWAS
Exon + Promoter + Intron | Exon + Promoter + Intron
Twin study 45 62.22 | 1337 2761 4617 147 283 329 351
deletion 33.97 824 1805 3300 12 28 35 245
duplication 34.20 664 1330 2263 145 277 322 179
Renal cancer germline 95 134.77 | 4487 8126 10638 224 339 381 992
deletion 70.65 | 2439 4814 7136 8 17 29 458
duplication 76.28 | 2567 4822 7042 223 338 380 575
GoNL 500 226.50 | 3785 5586 7173 226 357 406 1432
deletion 106.83 | 1728 2790 4130 10 21 24 652
duplication 139.21 | 2538 3638 4762 224 355 403 883
Total 640 325.66 | 7206 11341 13259 324 454 514 2253
deletion 165.26 | 4018 7157 9466 28 55 72 1108
duplication 194.42 | 4514 7304 9439 322 452 510 1338

Table S6: Impact of CINVs. Genes are protein-coding genes and promoter region is defined as the 10
Kbp region upstream of the transcription start site.
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Figure S10: Twin dataset: recurrence distribution. The distribution of the event frequency shows
a nice peak at 3-samples frequency when focusing on regions involving at least one twin (top). Using regions
with no twin involved (bottom), the 3-samples peak should disappear.

Set Sample | Affected genome (Mbp) Genes with CNVs Genes with CNVs in low coverage | GWAS
Exon + Promoter + Intron | Exon + Promoter + Intron

Renal cancer somatic 95 2455.18 | 18121 18909 18969 172 295 328 19886

deletion 1695.56 | 12931 14185 14677 6 16 24 13813

duplication 1464.00 | 13535 15535 16316 171 291 323 | 11570

Table S7: Impact of somatic CNVs. Genes are protein-coding genes and promoter region is defined
as the 10 Kbp region upstream of the transcription start site.
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Figure S11: Twins concordance per bin. Bins are grouped by coverage class (top-left), GC content
(top-right), segmental duplication content (bottom-left) and simple repeat content (bottom-right). Concor-
dance is defined using the twin pairs. The null proportion (blue) represents the proportion expected by
chance. It is computed as the concordance when randomly selecting samples.
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Figure S12: Twins concordance per bin. Bins are grouped by coverage class (top-left), GC content
(top-right), segmental duplication content (bottom-left) and simple repeat content (bottom-right). The
y-axis represents the fold change between the concordance ratio of the calls (see Figure S11) and a null
concordance ratio (using random samples).
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Figure S13: 5Kbp calls supported by 500bp calls. a) 5 Kbp calls of different sizes (x-axis) are
split according to the proportion of the call supported by 500 bp calls. The Z-score of 500 bp bins in 5 Kbp
calls is consistent with the call for deletion b) and duplication ¢) signal. 5 Kbp calls with lower significance
(e.g. single-bin calls) are less supported by 500 bp calls (a) but their Z-scores are in the consistent direction
(b,c) although not always significant enough to be called.
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Figure S14: Frequency of different CINVs. The cumulative proportion (y-axis) shows the proportion
of the affected bp with frequency greater or equal to a particular frequency (x-axis).
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Figure S15: Variant frequency with different methods. The x-axis is log-scaled and represents
the frequency at which a genomic region is affected by a CNV. The y-axis represent the cumulative proportion
of the affected genome.
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Figure S16: Distance to a centromere, telomere or assembly gap (CTG). The y-axis rep-
resents the cumulative proportion of the affected genome. The random curve is computed from uniformly
distributed genomic regions with matched size.
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Figure S17: Somatic CNVs in the renal cancer dataset. a) The number of nucleotide affected by
CNVs per Mbp in each sample, across coverage classes. Enrichment of CNVs in b) different genomic classes,
c) satellite families, d) simple repeats, ) TE classes and f) TE sub-families. Bars show the inter-sample
median, boxplot shows the variation across samples.
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(Methods).

37


https://doi.org/10.1101/034165
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/034165; this version posted December 11, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

oii i

Figure S19: Enrichment in segmental duplication grouped by age. Segmental duplication are
grouped by similarity to the duplicated region. The fold enrichment between variant and control regions is

N
1

fold enrichment

=
1

feature

(0.94,0.96] ~

(0.92,0.94]
(0.96,1]
[0.9,0.92] ~

shown in the y-axis.

38


https://doi.org/10.1101/034165
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/034165; this version posted December 11, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

pv

(0,0.001]
(0.001,0.01]
0.011]

pv

(0,0.001]
(0.001,0.01]
(0.01,1]

fold enrichment
N @
h 1
—
I
 E—
—
fold enrichment

-

o

1

' ' ' '

s
o ] c s =
L X <Two - o J o808 8Ess0y E§g 0
dxbcEL e @b PP R0EEIEESE L ' R T T T R
203222225 52585088¢29506¢g35 % o r & <« o ¢ g o g £ o< B oo
2 3 © ¢g<a8 ERNY) g6 g8 <8 3 858+ EFE & £ K

feature

pv
B 00001

fold enrichment

DNA 7
SINE 7
LTR 7
LINE 7
Other 7
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Figure S22: Low mappability regions overlaps protein-coding genes, functional elements
and are enriched in structural variants. a) Mappability distribution of the genome fragmented
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b) Proportion of genes, DNase clusters and GWAS catalog overlapping regions of different mappability. ¢)
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annotated in at least 4 different studies were used. The random distribution was computed from regions of
similar sizes uniformly distributed across the genome.
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low-coverage region and overlapping a locus associated with coronary artery disease.
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8 Methods

8.1 Data

Twin study All patients gave informed consent in written form to participate in the Quebec
Study of Newborn Twins®®. Ethic boards from the Centre de Recherche du CHUM, from the
Université Laval and from the Montreal Neurological Institute approved this study. Sequencing
was done on an Illumina HiSeq 2500 (paired-end mode, fragment length 300 bp). The reads
were aligned using a modified version of the Burrows-Wheeler Aligner (bwa version 0.6.2-r126-tpx
with threading enabled). The options were bwa aln -t 12 -q 5’ and ’bwa sampe -t 12°. The
aligned reads are available on the European Nucleotide Archive under ENA PRJEB8308. The 45
samples had an average sequencing depth of 40x (minimum 34x / maximum 57x).

Renal cell carcinoma WGS data from renal cell carcinoma is presented in details in the CageKid
paper3?. In short, 95 pairs of normal/tumor tissues were sequenced using GAIlx and HiSeq2000
instruments. Paired-end reads of size 100 bp totaled an average sequencing depth of 54x (minimum
26x / maximum 164x). Reads were trimmed with FASTX-Toolkit and mapped per lane with BWA
backtrack to the GRCh37 reference genome. Picard was used to adjust pairs coordinates, flag du-
plicates and merged lane. Finally realignment was done with GATK. Raw sequence data have been

deposited in the European Genome-phenome Archive, under the accession code EGAS00001000083.

Genome of the Netherlands WGS data from the GoNL project is described in details in
Francioli et al. ?”. This data have been derived from different sample collections:

e The LifeLines Cohort Study, supported by the Netherlands Organization of Scientific Re-
search (NWO, grant 175.010.2007.006), the Dutch government’s Economic Structure En-
hancing Fund (FES), the Ministry of Economic Affairs, the Ministry of Education, Culture
and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Col-
laboration of Provinces (SNN), the Province of Groningen, the University Medical Center
Groningen, the University of Groningen, the Dutch Kidney Foundation and Dutch Diabetes
Research Foundation.

e The EMC Ergo Study.

e The LUMC Longevity Study, supported by the Innovation-Oriented Research Program on
Genomics (SenterNovem IGE01014 and IGE05007), the Centre for Medical Systems Biology
and the National Institute for Healthy Ageing (Grant 05040202 and 05060810).

e VU Netherlands Twin Register.

In short, samples were sequenced on an Illumina HiSeq 2000 instrument (91-bp paired-end reads,
500-bp insert size). We downloaded the aligned read sequences (BAM) for the 500 parents in the
data set. We further performed indel realignment using GATK 3.2.2, adjusted pairs coordinates
with Samtools 0.1.19, marked duplicates with Picard 1.118, and performed base recalibration (GATK
3.2.2). The average sequencing depth was 14x (minimum 9x / maximum 59x).
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Genomic annotations Gencode annotation (V19) was directly downloaded from the consortium
FTP server at ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.
annotation.gtf.gz. Other genomic annotations were downloaded from UCSC database®® from
http://hgdownload.soe.ucsc.edu/goldenPath/hgli9/database server. The file names of the
corresponding annotations are

Mappability wgEncodeCrgMapabilityAlign100Omer.bw
Cytogenetic bands cytoBandIdeo.txt.gz

Centromere, telomere, assembly gap | gap.txt.gz

Segmental duplication genomicSuperDups.txt.gz

Simple repeat simpleRepeat.txt.gz

RepeatMasker rmsk.txt.gz

GWAS catalog gwasCatalog.txt.gz

8.2 Technical variation in Read-Depth from Whole-Genome Sequencing

To investigate the bias in RD we first fragmented the genome in non-overlapping bins of 5 Kbp.
The number of reads mapping in each bin with a mapping quality higher than 30 (Phred score)
was used as RD measure. In each sample, GC bias was corrected by fitting a Loess model between
the bin’s RD and the bin’s GC content. Using this model, the correction factor for each bin was
estimated from its GC content. Bins with extreme coverage were identified when deviating from
the median coverage by more than 3 standard deviation. After these conventional intra-sample
corrections, RD across the different samples were combined and quantile normalized. At that point
the different samples had the same global RD distribution and no bins with extreme coverage or
GC bias.

Two control RD datasets were constructed to represent our expectation if there was no bias.
One was derived from the original RD by shuffling the bins’ RD in each sample. In the second, RD
was simulated from a Normal distribution with mean and variance fitted to the real distribution.
Simulation or shuffling ensures that no region-specific or sample-specific bias remains. To investigate
region-specific bias, we computed the mean and standard deviation of the RD in each bin across
the different samples. The same was performed in the control datasets. If there was no bias, the
distribution of these estimators should be similar in the original, shuffled and simulated RD.

Next, to investigate experiment-specific bias, we retrieved which sample had the highest coverage
in each bin. Then we computed, for each sample, the proportion of the genome where it had the
highest coverage. If no bias was present, e.g. in the shuffled and simulated datasets, each sample
should have the highest coverage in %% of the genome (with N the number of samples). If some
experiment are more affected by technical bias it would be more often extreme. The same analysis
was performed monitoring lowest coverage.

Finally, the same analyses were repeated with the challenging regions. Instead of excluding any
bin with an extreme coverage in a sample, we kept any bin that was extreme in at least one sample.
Hence it is the exact complement of the bins kept previously, i.e. all the bins previously removed
by this filter.

8.3 PopSV a population-based approach

Binning and coverage measure The genome is fragmented in non-overlapping consecutive
bins of fixed size. We ran three separate analysis on the three datasets. Bin sizes of 5 Kbp and
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500 bp were used on the Twin study and renal cell carcinoma. Because of its lower sequencing
depth, the 500 bp run on GoNL gave only partial results. More precisely, we observed a truncated
distribution of the copy-number estimates, with most of the 1 and 3 copy number variants missing.
It means that at this resolution many one-copy variation cannot be differentiated from background
noise. For this reason we finally ran GoNL analysis using 2 Kbp and 5 Kbp bins.

In each bin and each sample the number of reads that overlap the bin and are properly mapped
are counted to get a measure of coverage. Here proper mapping means read pairs with correct
orientation and insert size, and a mapping quality of 30 (Phred score) or more. The bin counts
were then corrected for GC bias. In each sample, a LOESS model was fitted between the bin’s
count and bin’s GC content. A normalization factor was then defined for each bin from its GC
content.

Constructing the set of reference samples In each dataset we choose the reference samples
as follows: in the renal cancer dataset from the normal samples, in the Twins dataset from all
the samples, in GoNL from a subset of 200 samples (see below). For each dataset, a Principal
Component Analysis (PCA) was performed across samples on the counts globally normalized. The
resulting first two principal components are used to verify the homogeneity of the reference samples.
In the presence of extreme outliers or clear sub-groups, a more cautious analysis is recommended.
For example, outliers can stay included in the set of reference samples keeping in mind it might
harbor more false calls later. Independent analysis in each sub-group identified is also a solution,
especially when all the samples are to be used as reference. Although our three datasets showed
different levels of homogeneity, we didn’t need to exclude samples or split the analysis. The effect
of weak outlier samples was either corrected by the normalization step or the integrated in the
population-view.

In GoNL, we decided to use only 200 of the 500 samples as reference. They were selected to
span a maximum of the space defined by the principal components. In contrast to random selection,
this ensures that weak outliers are included in the final set of reference samples, hence maximizing
the technical variation integrated in the population-view.

Moreover, the principal components were used to select one control sample from the final ref-
erence samples. This sample is used in the normalization step as a baseline to normalize other
samples against. We picked the sample closest to the centroid of the reference samples in the
Principal Component space.

Normalization Although uniformity of the coverage across the genome is not required for our
approach, RD values must be comparable across samples. When a particular region of the genome
is tested, sample specific variation of technical origin must be minimized. This is done through a
normalization step.

Naive global normalization approaches like the Trimmed-Mean M(TMM) or quantile normaliza-
tion have been first implemented and tested. The TMM normalization robustly aligns the mean RD
value in the samples. Quantile normalization forces the RD distribution to be similar in each sam-
ples. After witnessing the presence of un-characterized sample-specific variation, we implemented
a more suited normalization.

Targeted normalization uses information across the large set of samples to identify similar bins
across the genome and normalize their counts separately (see Fig. S24). For each bin, the top 1000
bins with similar coverage patterns across the reference samples are used to normalize the coverage
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of the bin. TMM normalization is used on these top 1000 bins to derive the correct normalization
factor for the bin to normalize. Similarity between two bins is measured using Pearson correlation
between the counts across the reference samples. Hence the top 1000 bins are most similar in
term of relative coverage across the samples to the coverage in the bin to normalize. If some bias is
present in some samples, the top 1000 bins should also harbor this bias. This is a way to select other
regions with similar bias patterns in order to correct it. In this targeted approach, each genomic
region is normalized independently. The 1000 supporting bins are saved and used to normalized
new samples (e.g. case sample). Although computationally expensive it ensures that all bins are
normalized with the same effort. In contrast global normalization or even PCA-based approaches
corrects for the most common or spread bias.

In order to compare the performance of the different normalization approaches we computed
a set of quality metrics. The normalized RD will need to be suited for testing abnormal pattern
across samples: under the null hypothesis, i.e. for normal bins, the RD should be relatively normally
distributed and the samples rank should vary randomly from one bin to the other. The first metric
is the proportion of bins with non-normal RD across the samples. Shapiro test was performed
on each bin and a P-value lower than 0.01 defined non-normal RD. Then the randomness of the
sample ranks was tested by comparing the RD of each sample a region with the median across all
samples. In a regions of 100 consecutive bins, we counted how many times the RD in a sample
was higher than the median across sample. If the rank are random this value should be around
0.5. The probability under the Binomial distribution is computed for each sample and corrected for
multiple testing using Bonferroni correction. If any sample has an adjusted P-value lower than 0.05
we consider that the bin has non-random ranks. The resulting QC metric is simply the proportion
of bins with non-random sample ranks. This QC is specifically testing how much sample-specific
bias remains. The remaining QC metrics look at the Z-score distribution in each sample. The
proportion of non-normal Z-scores is computed by comparing the density curves of the Z-scores
and simulated Normal Z-scores. We compute the proportion of the area under the density curve
that doesn’t overlap the Normal density curve. This estimate of the proportion of non-normal
Z-scores is computed in each sample. The final metrics are the average and mazimum across the
samples.

Abnormal RD test and Z-score computation The test is based on Z-scores computed for
each bin, corrected afterward for multiple testing. The Z-scores represents how different the read
count in the tested sample is from the reference samples. It is simply:

BCy - BCY,,
~ sd(BC,))

where BC? is the bin count, i.e. the number of reads, in bin b and sample ¢.

Inevitably some samples are hosting common CNVs. We observed that just a couple of samples
hosting a CNVs could be enough to bias the standard deviation used in the score computation and
mask these CNVs in the coming tests. In many cases the RD signal was clearly showing several
groups of samples with proportional read counts. To improve the Z-score computation in those
regions, a simple approach was used: the samples were stringently clustered using their RD and
the group with higher number of samples was chosen as reference and used to compute the mean
and standard deviation for the Z-score computation. In practice, this clustering affects only bins
with clear clusters but would remove just a few or no samples in most situations. Furthermore, a
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median-based estimator was used for the standard deviation as it is less sensitive to outlier removal.
A trimmed mean was also preferred over normal mean for its robustness to outliers.

Significance and multiple testing correction The Z-scores for all the bins of a sample are
pooled and significance is estimated. Under the null hypothesis of normally distributed read counts,
the Z-scores should also follow a normal distribution. For multiple testing correction, the Z-score
empirical distribution is used to fit a normal and estimate the P-value and Q-value of each test.
This step is performed using fdrtool R package.

By default the null distribution fitting for P-value computation assumes only a low proportion
of bins violates the null hypothesis. In aberrant genomes, e.g. in tumor samples, it is often an
unrealistic assumption. We devised a new strategy to set the proportion of the empirical distribution
used to estimate the null distribution variance. Here the null Z-score distribution is assumed to be
centered on 0 and only its variance is estimated by trimming the tails of the empirical distribution.
To find a correct trimming factor, an iterative approach started from a low trimming factor and
increased its value until reaching a plateau for the variance estimator. Once the plateau is reached,
additional trimming doesn’t change the estimated variance because there is no more abnormal
Z-scores, only the central part of the null distribution. Samples with an important proportion of
abnormal genome, e.g. tumor samples, showed more appropriate fit.

Of note the P-values for positive Z-scores (duplication) and negative Z-scores (deletion) are
estimated separately. Thus imbalance in the deletion to duplication ratio, or large aberration that
lead to asymmetrical Z-score distribution doesn’t affect the P-value estimation. Multiple testing
correction is still performed on all the P-values.

Copy number estimation and other metrics Following the significance estimation, consec-
utive bins with abnormal coverage are merged into a call. In addition to the Z-score, P-value,
Q-value and number of bins of each call, PopSV retrieves the average coverage in the reference
samples and the fold change in the sample tested.

Copy number is also estimated by dividing the coverage in a region by the average coverage
across the reference samples, multiplied by 2 (as diploidy is expected). In our bin setting, the
estimation is correct if the bin spans completely the variant. For this reason we trust the copy
number estimate for calls spanning 3 or more consecutive bins, as it is computed using the middle
bin(s) which completely span the variant. In other cases we expect the copy number estimate to
under-estimated.

All this additional information can be used to order or retrieve high confidence calls. For
examples, several consecutive bins or a copy number estimate around an integer value increases our
confidence in a call. In our validation and analysis however, we used the entire set of calls.

The ZZ plots are computed directly from the Z-score of each bin in two different samples (e.g.
paired normal/tumor samples, twins). The global distribution of the Z-score is also compared to
the mappability estimate of the bins. At this point, we use the mappability track available from
UCSC* (see Genomic annotations) and compute the mean level across the bin.

Coverage tracks For each run, we computed coverage tracks based on the average coverage in
the reference samples. Bins where the reference samples had, on average, the expected coverage
were classified as expected coverage. Bins with a coverage higher or lower than 4 standard deviation
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from the median were classified as high coverage or low coverage respectively. To ensure robustness,
the standard deviation was derived from the Median Absolute Deviation.

Eventually, we also defined extremely low coverage region which have an average coverage close
to 0. These region are defined by the peaks around 0 in the distribution of average coverage (see
Figure S8). This sub-class of low coverage region is used in a few of the following analysis to
highlight the most challenging regions.

8.4 Validation

Running FREEC and cn.MOPS FREEC was run on each sample separately, starting from the
BAM file. FREEC internally corrects the RD for GC and mappability bias. In order to compare its
performance in low-mappability region, the minimum “telocentromeric” distance was set to 0. The
remaining parameters were set to default. Of note an additional run with slightly looser parameter
(breakPointThreshold=0.6) was performed to get a larger set of calls used in some parts of the
in silico validation analysis to deal with borderline significant calls.

cn.MOPS was run on the same GC-corrected bin counts used for PopSV. All the samples are
analyzed jointly. Of note an additional run with slightly looser parameter (upperThreshold=0.32
and lowerThreshold=-0.42) was performed to get a larger set of calls used in some parts of the
in silico validation analysis to deal with borderline significant calls.

Clustering the Twins samples A distance between two sample A and B is defined as : 1 —
2% where V4 represents the variants found in sample A, V4 N Vg the variants found in both
A and B, and |V| the cumulative size of the variants. Hence the similarity between two samples is
represented by the amount of sequence found in both divided by the average amount of sequence
called. This distance is used for hierarchical clustering of the samples. Different linkage criteria
(average, complete and Ward) were used for the exploration. In our dendograms we used the average
linkage criterion. The same clustering was performed using only calls in regions with extremely low

coverage (reference average <10 reads).

Frequency peak in Twins The frequency at which a region is affected by a CNV was compared
between the different methods. In the Twins dataset, we expect a peak around frequency of 3
samples : the two twins and one parent. To compare the different methods the height of the
peak, in the frequency distribution, represent the proportion of the affected genome called at each
frequency.

Concordance between two twins For each twin, a CNV call was defined as concordant if
also found in the other twin. In order to avoid missing calls with borderline significance, we used
slightly less confident calls for the second twin. We removed calls present in more than 50% of the
samples as they could be systematic errors that would look concordant. Hence a concordant call
is most likely true as it is present in a minority of samples but consistently in the twin pair. The
proportion of concordant calls per sample gives an estimate of specificity. The level of sensitivity
is represented by the number of concordant calls. Even if we removed systematic calls, the most
frequent calls in the cohort are more likely to look concordant by chance. To normalize for this
effect, we use the frequency distribution to compute the number of concordant calls expected by
chance. In practice the null concordance for each call is simulated by a Bernoulli distribution of
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parameter the frequency of the call. This number of concordant calls by chance is subtracted to
the original number of concordant calls to give a adjusted measure of sensitivity. Although we
don’t know the true number of variant, this number of concordant calls is used to compare the
different methods. The same analysis is also performed using only calls located in low coverage (as
defined by the coverage track) regions in order to get an estimate on challenging regions. A call
was considered in a low coverage region if more than 90% of its sequence was annotated as so.

In addition to this per-sample concordance, we compute a per-region concordance estimate by
pooling all the calls from the samples. When most of the normal /tumor pairs are consistently called
in a specific bin, it is classified as concordant. Then the bins can be grouped according to their GC
content or repeat content to test that the quality of the calls is similar. This approach is particularly
useful to verify that the proportion concordant bins is similar in bin extreme GC content or repeat
content. Finally we compute a null distribution with same approach but using randomly selected
samples instead of the sample called in each bin. Dividing the proportion of concordant bin by its
null equivalent gives an idea of the significance of the observation. This fold-change from the null is
used to compare the different methods. In addition, we use the per-region concordance to estimate
the amount of the genome that can be correctly tested. Here the genome is fragmented in 1 Mbp
windows and we count how many show more concordant regions than concordant by chance. The
1 Mbp fragmentation is used in order to avoid biases from segmentation behavior. If the regions
were used as-is, a segmentation that tend to locally call longer segments will look largely superior
even-though it calls the same variants. The fragmentation of the genome in large windows limits
this bias and allows for fair comparison between the different methods. By counting how many 1
Mbp windows can be called correctly, we estimate how much of the genome can be correctly tested
by each method.

Concordance between paired normal and tumor samples The same approach as described
previously when comparing pairs of twins was applied in the renal cancer dataset, on pairs of
normal/tumor samples. Here true germline calls should be also found in the paired tumor sample,
and concordance is computed for each normal sample. Again both per-sample and per-region
estimates are computed and compared between methods.

Concordance between different bin sizes We compared the calls using small bins (500 bp)
and the calls using larger bins (5 Kbp). First we counted how many small bin calls supported
any large bin call. These metrics were separated according to the size of the large bin call. To
investigate large bin calls with no supporting small bin call, we display the average Z-scores in the
small bins overlapping large bin calls. This is useful to test if the lack of support is due to lower
confidence or real discordance between the different runs. If the Z-scores in the small bins deviates
from 0 in the correct direction we conclude that they support the large bin call.

Then we checked which of the small bin call overlapped large bin calls. More specifically,
we grouped them by size to verify that large enough small bin calls are present in the large bin
calls. This analysis is used to both test the sensitivity of PopSV with a particular bin size, and its
resolution to variants smaller than the bin size. Indeed this framework allow us to ask questions
such as: how much of the variants spanning only half a bin are detected 7

Experimental validation The 23 variants chosen for experimental validation were randomly
selected among both one-copy and two-copy deletions. We selected both small (~ 700 bp) and
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large (~ 4 Kbp) variants in each class. In addition, 3 deletions in low-mappability regions were
also randomly selected and included. The coverage at base pair resolution was visually inspected
for each deletion in order to map the breakpoints. PCR primers were designed to target the whole
deletion region. We performed long-range PCR followed by gel electrophoresis. We then compared
the size of the amplified fragment in affected and control samples. If the affected sample showed
a lower band than a control with a predicted 2 copies, the deletion was considered validated. On
the other hand if affected sample and controls had one similar band, the deletion was considered
non-validated. Of note, the validation rate might be under-estimated because visual prediction of
the breakpoint is not always accurate and could lead to non-validation when the variant is actually
present.

8.5 Genomic patterns of CNVs

Merging results using two different bin sizes Small bins gives better resolution for smaller
variant. Large bins gives better sensitivity. For this reason we merged the calls from the 500 bp
bin and 5 Kbp bin runs. Variant supported by both sets of calls were merged into one. To decide
which set to use to define breakpoints and other information (e.g. copy number estimate), the
proportion of overlap was used. If call(s) from the small bin run overlapped more than a third of a
call from the large bin run, it was considered fully recovered by the small bin call which was then
used to retrieve breakpoints and other information. If not, the large bin run was considered more
appropriate to define the final breakpoints and additional information. Calls unique to each run
were simply added to the final set of calls.

Computing global estimates of copy number variation In Table 1, a call in low coverage
region is completely located within exztremely low coverage regions (as defined by our coverage
tracks). The amount of sequence affected in a genome is computed by merging all the variants
(e.g. if several samples are combined) and counting the number of bases in this merged set. After
the merging step, each base of the genome either overlapped a merged variant or not. Hence each
affected base is counted only once, even if it overlaps CNVs in several samples, or with large copy
number differences.

Comparing with 1000 Genomes SV set The SV catalog from? was downloaded and parsed
into our preferred BED-like format. We first checked that we could reproduce the numbers in the
main SV paper. Then we retrieved the set of autosomal deletion, duplication and CNVs. We then
removed deletions smaller than 300 bp as well as variants with high frequency (> 80%). This
sub-set of SV represent CNVs that could in theory be detected by PopSV’s approach. Using this
sub-set, we derived the number of variants, number of variants smaller than 3 Kbp, number of
variants in extremely low coverage regions, and amount of genome affected. These number are
computed exactly as the one presented in Table 1 for PopSV’s results.

Distance to centromere, telomere and assembly gaps The centromeres, telomeres and as-
sembly gaps (CTGs) are annotated in the gap track from UCSC*’. However some chromosomes
were missing telomere annotations. We defined them as the 10 Kbp region at the ends of chromo-
somes derived from the cytogenetic bands track.
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The distance from each variant to the nearest CTG was computed and represented as a cu-
mulative proportion, meaning the proportion of variants located at a distance d or closer to a
CTG.

Because this distribution changes with the size of the variants, we sampled random regions
in the genome with similar sizes and computed the same distance distribution. Thanks to this
null distribution we are able to see if variants are closer/farther to CTG than we would expect by
chance.

Variation rate computation The variation rate represent how much a sample varies from the
reference genome. The first estimate is the average number of variant per Mb, the second is the
average number of affected nucleotide per Mb. These estimates are computed for each samples.
Afterwards the distribution across samples is visualized.

We computed these estimates separately for regions of low coverage, expected coverage and high
coverage (as defined by our coverage tracks). These three classes of regions might have different false
positive rate (FPR). In order to be sure that the differences in variation rate are not due to FPR
differences, we adjust our estimates. We use the estimates from the per-region validation and sub-
sampled the calls in each class with the corresponding proportion. Sub-sampling the variants and
recomputing the variation rate was preferred over a crude multiplication of the original variation
rate by the FPR.

Simulating control regions Control regions are simulated to have the same size distribution
and same overlap with specified genomic features. In practice, this was used to control for the
distance to centromere, telomeres and assembly gaps, as well as the overlap with regions of low
mappability. Hence the patterns observed afterwards are not caused by the over-representation of
region in low/high coverage regions or their proximity to CTGs. To simply control for the distance
to a genomic feature, we created new annotation with regions flanking the regions in question and
control for the overlap with these.

First, thousands of bases are randomly chosen in the genome. The distance between each base
and the genomic features is then computed. At this point, simulating a region of a specific size and
with specific overlap profile can be done by randomly choosing as center one of the bases that fit
the profile :

&
2

with Oy equals 1 if the original region overlaps with feature f, -1 if not; dl} is the distance
between base b and feature f; and S, is the size of the original region.

Hence for each input region, a control region would be selected as described. In practice, the
input regions are first grouped by overlap profile (i.e. Of) and then split up according to their size
(e.g. 30 different size classes). Instead of using the exact desired size S,, we now use the median size
of the size class and simulate regions in chunk, which speeds up the computations while providing
satisfactory results.

The number of random bases is important : a low number might result in duplicated regions
in the output, but a high number is more computationally demanding. In practice, we perform
the simulation twice with 10° random bases. The second run is used to simulate again all the
duplicated regions from the first run.

{b,V feature f,04(d% — =) < 0}
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Of note, when desired we control for the distance to CTG using this approach. We actually
correct for the overlap with CTGs and regions flanking CTGs. We used CTGs, 500 Kbp regions
flanking CTGs and 3 Mbp regions flanking CTGs. These gave satisfactory distribution of the
distance to the nearest CTG in the control regions.

Enrichment in genomic features Regions of interest are overlapped with genomic features.
We then compute the proportion of regions overlapping each feature. The same is done with control
regions, constructed from the regions of interest (see previous paragraph).

If sample information is available (e.g. when analyzing variants), the proportion of overlap
and the control regions are computed separately for each sample. Hence the control region fits
perfectly the profile of the variants in each sample and is not simply a reflection of the majority of
the samples. For each sample (and each feature), the enrichment measure is the difference between
the proportion in the original and control regions. A Wilcoxon test on this measure assesses how
significant is the potential deviation from 0. The fold-enrichment is the ratio between overlap
proportion between original and control regions.

Eventually, we display how much of a variant overlap a feature of interest. This distribution is
useful to get a sense if the genomic feature overlap completely the variants or just a small fraction
of it.

Somatic variant definition Somatic variants were defined as variant in a tumor samples with
no or low overlap with variant in the paired normal sample. In CageKid data, overlapping tumor
variant with the ones from the paired normal showed almost only two peaks, at 0 and 100% overlap.
Here a tumor variant was defined as somatic if it overlapped less than 10% of any variant in the
paired normal.

Frequency distribution The frequency at which a region is affected is computed using calls
from our 640 samples. The cumulative proportion of affected genome is shown for each frequency
in the frequency curve. In addition, frequency curves are computed using small or large variants,
exonic or non-exonic variants, and deletions or duplications.

Eventually, we perform the same analysis with the set of comparable CNVs extracted from the
1000 Genomes catalog. Of note, the CNV set was down-sampled to 640 random samples in order
to give comparable frequency curves.

CNYV impact Exons of protein-coding genes and promoter regions (10 Kbp upstream of the
transcription start site) were extracted from the Gencode annotation v19. We counted how many
different genes had their exons, exons + promoter and exon + promoter + introns hit by a CNV,
in a sample or in the entire dataset.

The number of genes hit by at least one of the CNV in at least one sample increases with sample
size. We performed a saturation analysis by down-sampling our dataset to lower sample size. For
each down-sampled set the number of genes hit is computed. Afterwards the number of affected
genes is plotted against the sample size. A plateau at higher sample size would mean that a set of
CNV-tolerant genes has been almost completely discovered.

Finally, we also computed the number of GWAS hits overlapping a CNV, per sample or in the
entire dataset.
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