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Because of its clonal evolution a tumor rarely contains multiple genomic alterations in the same 

pathway, as disrupting the pathway by one gene often is sufficient to confer the complete fitness 

advantage. As a result mutated genes display patterns of mutual exclusivity across tumors. The 

identification of such patterns have been exploited to detect cancer drivers. The complex problem of 

searching for mutual exclusivity across individuals has previously been solved by filtering the input data 

upfront, analyzing only genes mutated in numerous samples. These stringent filtering criteria come at 

the expense of missing rarely mutated driver genes. To overcome this problem, we present SSA.ME, a 

network-based method to detect mutually exclusive genes across tumors that does not depend on 

stringent filtering. Analyzing the TCGA breast cancer dataset illustrates the added value of SSA.ME: 

despite not using mutational frequency based-prefiltering, well-known recurrently mutated drivers 

could still be highly prioritized. In addition, we prioritized several genes that displayed mutual exclusivity 
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and pathway connectivity with well-known drivers, but that were rarely mutated. We expect the 

proposed framework to be applicable to other complex biological problems because of its capability to 

process large datasets in polynomial time and its intuitive implementation.  

Introduction 

Because of internationally coordinated efforts such as TCGA1,2 and ICGC3, a vast number of cancer 

datasets are publicly available. Using these datasets to identify mutations and pathways driving cancer 

phenotypes has become an active field of research4–7. Tumorigenesis and tumor progression follow a 

clonal evolutionary model8–11.  In this view, the disruption of a single gene in a molecular pathway often 

yields the complete fitness advantage associated with disruption of that pathway, making additional 

mutations in the same pathway redundant8. This evolutionary property can be exploited to understand 

cancer mechanisms by searching for patterns of genes that display mutual exclusivity (i.e. groups of 

genes which mostly have maximum one mutation per tumor). The identification of groups of genes 

showing patterns of mutual exclusivity across patients in large datasets has already been proven useful 

for the detection of driver mutations/pathways in single cancer types such as triple-negative breast 

cancer12, Lung Adenocarcinoma13 and in a pan-cancer setting14,15. 

In practice the mutual exclusivity patterns are not always strict (hard patterns), i.e. most patterns 

occasionally show the presence of multiple mutations in a single tumor. This is possible because for 

example tumorigenesis can start in an initially less potent driver, but more potent drivers in the same 

pathway can accumulate at later times, providing an additional marginal beneficial effect (diminishing 

returns)16. Therefore, exploiting clonal behavior for identifying driver pathways requires searching for 

“soft” mutual exclusivity where two otherwise independent mutational events co-occur less than 

expected by chance17. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2015. ; https://doi.org/10.1101/034124doi: bioRxiv preprint 

https://doi.org/10.1101/034124
http://creativecommons.org/licenses/by/4.0/


3 

 

In order to discover genes that exhibit a mutual exclusive pattern in cancer, all possible sets of genes 

have to be examined.  Due to the factorial computational complexity of this problem i.e. adding an extra 

gene to the pattern implies that the algorithm’s processing time increases factorially18, this problem 

cannot be solved for large data sets. Current methods mainly cope with this by prioritizing potential 

important genes upfront, filtering out genes which seem to be less important mainly based on the 

frequency with which they are mutated across tumor samples. Methods such as Dendrix6, CoMEt19 and 

Multidendrix13 explicitly try to find the largest set of genes that exhibit a mutual exclusivity pattern after 

a filtering step, using an integer linear program or a Markov chain Monte Carlo approach while methods 

such as MEMo5 and Mutex20 rely on the use of the human interaction network to further constrain the 

search space by using the knowledge that mutually exclusive genes are likely to be located in the same 

molecular pathways.  

MEMo relies on a human protein-protein interaction network to search for the largest set of genes that 

are closely related in the network and that exhibit mutual exclusivity, whereas Mutex uses a directed 

signaling network. Although using a network restricts the search space, searching for patterns of mutual 

exclusivity is still a difficult task. For these reasons, both MEMo and Mutex require a stringent filtering of 

the input (the input of Mutex is required to consist of less than 500 genes, MEMo is capable to analyze 

about 250 genes). As a result, potential drivers that are rarely mutated are likely to be missed. 

Therefore we developed SSA.ME (Small Subnetwork Analysis with reinforced learning for detecting 

Mutual Exclusivity patterns), a computational tool that searches for genes that belong to common 

patterns of mutual exclusivity and that are closely connected on an interaction network to prioritize 

drivers. It uses a novel methodology named Small Subnetwork Analysis with reinforced learning (SSA) 

that divides a complex problem, i.e. finding the largest set of genes that exhibit a mutual exclusivity 

pattern, into many simpler ones by calculating measures for mutual exclusivity in many small 
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subnetworks. By solving these simpler problems iteratively, each time biasing the search space based on 

results of previous iterations, SSA.ME can prioritize potential driver genes with linear algorithmic 

complexity. This, in principle, allows it to process large input datasets in short computational times and 

therefore, in contrast to previous approaches, requires little prior filtering. 

To assess the performance of SSA.ME we re-analyzed the breast cancer dataset from the 2012 cancer 

genome atlas (TCGA)2 without filtering the genomic variants up front. Despite adding many more 

mutations in the input, we could prioritize well-known drivers that are found to be recurrently mutated 

in different tumors. However, in addition to prior findings we could prioritize several genes that 

displayed mutual exclusivity and pathway connectivity with well-known drivers, but that were rarely 

mutated in the different tumors and therefore were missed by other methods that search for mutual 

exclusivity.  

Results 

SSA.ME Implementation 

To identify cancer drivers we develop SSA.ME (Small Subnetwork Analysis for mutual exclusivity), a 

method that searches for small subnetworks of the interaction network containing mutated genes that 

show a pattern of mutual exclusivity. SSA.ME reformulates the complex problem of finding the largest 

set of mutually exclusive genes into many independent and less complex sub-problems. SSA.ME scores 

many small subnetworks for their potential to contain genes that belong to a mutual exclusivity pattern, 

instead of explicitly searching for the largest set of mutual exclusive genes. Using these small 

subnetwork scores in a reinforced learning framework allows prioritizing individual genes that are likely 

to belong to a mutual exclusivity pattern, without ever having to explicitly evaluate the largest set of 

mutually exclusive genes.  
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The method is outlined in Figure 1. SSA.ME searches the local neighborhood around a set of predefined 

seed genes. In this case, the seed genes correspond to all genes mutated in at least one sample. In each 

iteration step of the algorithm, genes in the neighborhood of a seed gene are selected into a small 

subnetwork with a chance proportional to their gene scores (which are chosen to be uniformly 

distributed in the first iteration). These small subnetworks are subsequently scored based on the mutual 

exclusivity signal of the genes in each small subnetwork. Individual gene scores are updated 

proportional to the mutual exclusivity scores of the selected small subnetworks to which they belonged. 

Updating of the gene scores modifies the likelihood with which each gene will be selected in subsequent 

iteration steps. The iterative process continues until the method converges to a solution or a maximum 

number of iterations is reached. The output of SSA.ME consists of an interactive network together with 

supporting files compatible with Cytoscape21. 
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Performance on simulated data 

To evaluate the robustness of the method with respect to the used reference network, we applied 

SSA.ME on a simulated dataset in combination with a high quality human reference network (see 

Materials and Methods) and underconnected/overconnected versions of this reference network (with 

respectively 10%, 25% and 50% of the network edges being deleted or added). Per network, 100 

simulations were performed. Each simulated dataset contained a target mutual exclusivity pattern 

consisting of maximally 20 genes interacting on the reference network that were mutated in 30% of the 

samples (see Materials and Methods).  

 

Applying SSA.ME on each simulated dataset resulted in a ranked gene list. The top x% of the gene list 

were considered as genes belonging to a mutual exclusivity pattern, whereas the remainder of the 

genes were considered not to exhibit mutual exclusivity. Performance was evaluated by plotting the 

sensitivity versus the specificity where the sensitivity is defined as the percentage of genes belonging to 

the target mutual exclusivity pattern that were retrieved amongst the x% highest ranked genes and the 

Figure 1. Overview of SSA.ME  

The input consists of a matrix containing genomic alterations (i.e. mutations or copy number 
alterations, among others) across patients (depicted as black tiles) and a human reference network. In 
a first initialization step, every gene which has at least one genomic alteration across all patients is 
selected as a seed gene (colored genes in the network). The gene scores (represented as the opacity 
of the genes in the networks) are uniformly set to a value of 0.5. In every subsequent iteration step, 
small subnetworks will be generated, starting at every seed gene. Every gene adjacent to the small 
subnetwork has a chance proportional to its score to be incorporated in the small subnetwork. When 
a certain size has been reached the small subnetwork generation will stop and a score for each 
selected small subnetwork will be calculated based on the mutually exclusivity pattern found within 
this small subnetwork. At the end of every iteration step these small subnetwork scores will be used 
to update gene scores, altering the chance of genes to be incorporated into the small subnetwork in 
subsequent iteration steps. Upon convergence it can be seen that a few genes have high scores while 
others have scores close to 0. Genes are ranked based on their gene scores which reflects their 
potential to belong to a mutual exclusivity pattern. 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2015. ; https://doi.org/10.1101/034124doi: bioRxiv preprint 

https://doi.org/10.1101/034124
http://creativecommons.org/licenses/by/4.0/


7 

 

specificity, defined as the proportion of genes not present in the target pattern that were correctly 

classified as such. The results are shown in Fig. 2A for the highest ranked genes as this is the range that 

is of biological relevance (correctly identifying positives). The full ROC plot and the sensitivity/PPV plots 

can be found in the supplementary Fig. 1S. 
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Figure 2A indicates that the best performance is obtained using the reference network without added or 

deleted edges, as for the same relative increase in sensitivity less false positives are predicted (lower 

relative increase in 1-sensitivity). The method shows in general a high resilience of the results to using 

an overconnected network. In this case the method is capable of successfully prioritizing most of the 

mutually exclusive genes with a low number of false positives (which is the range we envisage when only 

showing the values of the 1-specificty between 0 and 0.01). With an underconnected network the 

maximal sensitivity that can be reached will get restricted as some of the genes that show mutual 

exclusivity can no longer be connected in the network. 

To assess the sensitivity of the method versus its parameter settings we ran SSA.ME on the same 

simulated data each time using a different combination of the reinforcement and forgetfulness 

parameters. Hereby reinforcement values were varied from 0.0005 to 0.0100 in steps of 0.0005. 

Forgetfulness values varied from 0.99 to 0.9995 in steps of 0.0005. Note that values of the forgetfulness 

closer to 1 imply that less is ‘forgotten’ and values of reinforcement are consistently lower than the ones 

of the forgetfulness to ensure that only few true positives will be reinforced. For each parameter 

Figure 2. Performance on Simulated Data. 

A) Robustness of the predictions with respect to the used reference network. The X-axis represents 1-
specificity and the Y-axis represents sensitivity. Underconnected networks lead to lower performance 
while overconnected networks result in similar, although lower, performance to when using the the 
true network. Note that, for clarity reasons, the range of the x-axis is restricted to [0, 0.01]. B) Heat 
map depicting parameter sensitivity. AUC values for every analyzed parameter pair are depicted. 
Warm colors depict higher AUC values while cold colors depict lower AUC values. It can be seen that 
the best performance is achieved on the diagonal for combinations of reinforcement and 
forgetfulness of 1. C) Plot visualizing convergence and stability of convergence of gene scores. The X-
axis represents the number of performed iterations, the Y-axis displays all genes in the reference 
network (black lines in the plot) and the Z-axis represents the gene scores. All genes start on the right 
side with a gene score of 0.5. Most of them converge fastly to 0 or 1. As no inflecting lines are 
observed, convergence is stable. Results shown on a plot depicting scores for all genes at every 
iteration step. D) Plot showing linear time complexity of the algorithm with respect to the number of 
seed genes. Each dot on the plot represents the time to convergence of a separate run. Per tested 
number of seed genes, 10 simulations were performed. Results were obtained by running the 
algorithm on one single processor Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz. 
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combination 10 simulated datasets were analyzed. The performance per parameter combination was 

assessed using the area under the ROC (Fig. 2B). In general a low performance is obtained if the 

forgetfulness is relatively low compared to the reinforcement. In those settings false positives might 

become reinforced relatively more than some weak or isolated true positives. However, in ranges where 

the forgetfulness is close to 1, the performance is more robust to the choice of the reinforcement value. 

Best performances were obtained on the diagonal where irrespective of their absolute values the sum of 

the values of 𝑟 and 𝑓 are close to each other 𝑟 + 𝑓 ≈ 1.  In most cases, a combination where the sum of 

the reinforcement and the forgetfulness is higher than one results in lower performances because then 

again the reinforcement becomes relatively high compared to the forgetfulness, resulting in relatively 

more false positives.  

To show that the method converges to a stable solution, we ran it on one simulated dataset for 50.000 

iterations. Fig. 2C shows that the method exhibits a consistent behavior, i.e. after a gene obtains a high 

gene score, it will remain consistently high or vice versa. Furthermore this figure shows that the 

algorithm converges, provided a sufficient number of iterations have been performed.   

To analyze its complexity with respect to the number of seed genes, we ran SSA.ME on 10 different 

simulated dataset, each time using an increasing number of seed genes (ranging from 1 to 8000 genes). 

Datasets contained incrementally more added seed genes. Seed genes were added gradually according 

to the frequency with which they were found mutated in the different tumor samples, hereby assuming 

that the most frequently mutated genes are the ones that in a real setting would also be prioritized as 

the most promising seeds. These runs were repeated on 10 different simulated datasets. Results are 

visualized in Fig. 2D and clearly show the linear complexity of the algorithm with respect to the number 

of seed genes. 
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Analysis of the TCGA breast cancer data 

To test the biological relevance of the predictions we applied SSA.ME on the well-studied TCGA Breast 

Cancer 2012 dataset2 using a high quality human reference network (see Materials and Methods). As 

seed genes we used all genes carrying somatic mutations or copy number alterations, provided the 

latter alterations also resulted in positively correlated expression values of those copy number altered 

genes. After running SSA.ME, genes were ranked according to their gene score and the highest ranked 

genes were prioritized as putative drivers. The cut-off on the ranked list was chosen so that, given a set 

of known cancer genes, a good trade-off between sensitivity and precision was obtained, i.e. we use the 

cut-off so that a maximal sensitivity was obtained with a PPV higher than 80% (Fig. 3A). Note that the 

PPV represents a lower boundary on the actual number of true positive predictions as all genes not 

previously associated with cancer according to CGC22, Malacard23 or NCG24 are regarded as false 

positives. Applying SSA.ME on the TCGA BRCA 2012 dataset resulted in 49 genes being prioritized as 

potential breast cancer associated genes. Because of the nature of the method this prioritized gene list 

contains both putative drivers, but also  ‘linker genes’ that connect genes that are part of a mutual 

exclusivity pattern but that are not mutated themselves. These ‘linker genes’ are therefore no true 

drivers, but have driver potential as they were found in the network neighborhood of true drivers. 
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The subnetwork in Fig. 3 displays the 49 prioritized genes and all edges in the reference network 

connecting them. Most of these genes (40 out of 49) have previously been associated with either breast 

cancer or cancer in general (Supplementary Table 1). 5 genes of those 40 were selected as ‘linker genes’ 

(i.e. they did not display alterations in the breast cancer dataset), but have been associated with other 

cancer types (i.e., CDC42, CDKN1A, RAC1, GSK3B and CTNNB). This indicates linker genes are potential 

cancer drivers.   

Of all 49 predictions, 9 genes were not previously associated with breast cancer in Malacards23, or 

associated with cancer in general by the Cancer Gene Census22 or Network of Cancer Genes24 (CCNB1, 

CRK, GAB2, IKBKB, MCL1, NFYC, TK1, VAV2 and UFD1L). Of those genes, two were selected as ‘linker 

Figure 3. Application of SSA.ME on TGCA Breast Cancer dataset 

A) Determination of the number of genes to be prioritized as cancer drivers. Genes were ranked 
according to their gene score obtained with SSA.ME. The X-axis represents the number of genes in the 
list of prioritized genes obtained by setting a cut-off on the rank. The Y-axis represents the positive 
predictive value (PPV) for the genes present in each list that corresponds to a given rank threshold. At 
the chosen threshold (arrow) 49 potential cancer drivers were prioritized. B) Subnetwork obtained 
after using SSA.ME on the TGCA breast cancer dataset. Seed genes and network were as defined in 
the main text. Genes are represented by nodes. If the gene had been associated with cancer, this is 
indicated by the color of the database in which the association was described. Gray genes correspond 
to genes not present in the Census of Cancer Genes, Malacard or the Network of Cancer Genes 
database.  The size of the node reflects the number of samples in which a gene was found mutated. 
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genes’ (CRK and TK1). Of the remaining 7 genes, 4 were missed by previous analyses on the same TCGA 

breast cancer dataset because they were mutated in less than 2% of the samples and therefore did not 

pass the filtering strategies commonly applied prior to the driver analysis (i.e. VAV2, UFD1L, NFYC, and 

CCNB1). The genes IKBKB, MCL1 and GAB2 pass the filtering criteria used by previous methods. Of those 

IKBKB was also detected in the original TCGA analysis, reported to belong to a pattern of mutual 

exclusive genes based on the MEMo analysis, whereas MCL1 and GAB2 were not. 

We could show that the mutations carried by the 49 prioritized genes and by the set of 9 cancer related 

genes not previously reported in cancer reference databases followed a CADD25 score distribution 

significantly different from the CADD score distribution of mutations in non- cancer related genes (Fig. 

4A), pointing towards the functional relevance of at least some of the mutations carried by the 

predicted drivers. In addition, we could find clear associations for the novel predictions with cancer in 

literature (see Supplementary Note). Although at least visually for some of these driver candidates, the 

mutations they carry seem to cluster at the same genomic positions (Fig. 4B and Fig. 2S), none of them 

scores highly significant for clustering of their mutations according to the results provided in the pan-

cancer analysis1 or the results we obtained by running SomInaClust26 (see Supplementary Note). This 

indicates that indeed without using network-based information, it would be difficult to prioritize these 

rarely mutated genes. 
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Comparison with TCGA Analysis 

We compared the previously obtained predictions2 of MEMo, with our predictions. To maximize 

comparability between our results and those of MEMo on the same TCGA dataset, we reproduced the 

same filtering approach and network of the original breast cancer study and ran SSA.ME (see Materials 

and Methods).  

Figure 4. Analysis of selected genes.  

A) CADD score distribution of mutations of the unselected set (left histogram), the positive set (middle 
histogram) and the set containing the mutations in the novel predicted driver genes (right histogram). 
The X-axis depicts the CADD score and the Y-axis depicts the frequency of mutations having a CADD 
score within a certain range. B) Positioning of the mutations found in the TCGA Pan-Cancer dataset 
along the CCNB1 and MCL1 gene loci. Only a subset of copy number aberrations are included in this 
representation for MCL1. Figure obtained with MAGi. C) Copy number aberrations observed in the 
MCL1 gene in the TCGA Pan-Cancer dataset. Figure obtained with MAGi35. 
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Because of the high similarity of the mutual exclusivity patterns detected by MEMo in the original paper 

(patterns consisting of maximally 8 genes that varied in most cases in no more than one gene), we 

collapsed the 23 genes of all patterns and depicted them as a network (Fig. 5A).  The subnetwork 

obtained by SSA.ME using the same filtered dataset consists of 33 genes (applying the same cut-off 

criteria as mentioned above) of which 18 were also found in the MEMo network (Fig. 5B). 5 genes 

retrieved by MEMo were not detected by SSA.ME (NBN, CHECK2 and MDM4) as they were no longer 

present in the filtered list we used as input, whereas they must have been present in the original input 

of MEMo: in contrast to what has been described in the original TGCA paper we found these genes to be 

mutated in less than 2 samples and therefore removed them from our analysis. The score of ATM just 

fell below the chosen threshold (it ranked 36 with SSA.ME and the cut-off we used was set at 33) and 

was therefore also missing from our prioritization. ATK3 was truly missed in our analysis as the small 

subnetworks to which it belonged never received consistently high scores during subsequent iteration 

steps.  

On the other hand we found 10 additional genes that were not retrieved by MEMo (of these, 4 were 

also found using the high quality network in the analysis described above: AR, STAT3, RPS6KB1 and 

Figure 5. Comparison between SSA.ME and MEMo. 

Prioritized driver networks obtained by MEMO as retrieved from the original mutually exclusive 
modules outlined in the breast cancer TCGA paper (Panel A), obtained by SSA.ME using the filtered 
data (Panel B), and using the non-filtered data as input (Panel D). Genes are represented as nodes. 
Colors refer to the databases in which associations of the indicated genes with breast cancer or cancer 
have been described. Gray genes were not found to be associated with breast cancer/cancer 
according to the used reference databases. Panel C and E represent the PPV analysis of results 
obtained by applying SSA.ME on respectively the filtered and non-filtered datasets. Y-axis represents 
the PPV according to the reference databases. X-axis represents the number of genes in lists of 
prioritized genes of increasing order. Sizes of gene lists were determined by ranking genes according 
to their gene scores and counting the number of genes with a rank lower than a given threshold. 
Arrows indicate the thresholds that were chosen to select the genes in the represented networks. We 
choose the threshold on the ranked list so that a good trade-off between sensitivity and precision was 
obtained given a set of known cancer genes, i.e. we use the cut-off so that a maximal sensitivity was 
obtained with a PPV higher than 80%. 
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GAB2). Some of the additional genes had previously been associated to breast cancer (AR and ESR1) or 

to cancer in general (MUC4 and CCDN1).  The reason why we detect more genes than MEMo is partially 

due to the choice on the cut-off, but also because of the inherent differences in selection criteria 

between the methods: first, our method only requires that the selected genes are members of the local 

neighborhood of genes that exhibit a mutual exclusivity pattern across patients. Second, our method 

does not require stringent filtering which leaves the possibility of selecting rarely mutated genes. 

These results thus show that SSA.ME is able to reproduce largely the same results as MEMo, provided 

the same input data are used or said otherwise genes that are highly ranked by MEMo are also highly 

ranked by our method. The discrepancies between the number of driver genes detected in this 

comparative analysis and the one above are due to the differences in the used networks. Above we 

choose to use a higher quality human network to reduce the possibility of including false positive 

interactions, whereas here we used the more connected interaction network used in the original TCGA 

dataset.  

As shown above, the advantage of SSA.ME is that because of its reduced computational complexity it 

does not require stringent prior filtering of the data and therefore can also predict cancer drivers that 

are, for instance, infrequently mutated across the different samples. One could argue that not filtering 

the data can deteriorate the results as having more potentially false positives in the input list could 

dilute the true signals in the data and prevent the method from finding these true positives. To prove 

this is not happening we also applied SSA.ME on the less filtered data using the same reference network 

as in the original TCGA paper2. Less filtered data here correspond to all genes having at least one 

genomic alteration (5641 genes). Applying SSA.ME to these data and applying the same criteria to set 

the cut-off as mentioned above resulted in a driver network of 44 genes being selected from a total 

5641 of genes (Fig. 5D). For comparison, with the filtered input set, 33 genes were prioritized out of the 
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237 using the same heuristics to set the cut-off on the size of the prioritized gene lists. Assuming that 

filtering already prioritizes the most frequently mutated genes and thus the most promising candidates, 

we can argue that the list obtained with the filtered input is the most reliable.  Remarkably, of the 33 

genes prioritized with the filtered input, 27 also occurred amongst the 44 genes prioritized with the 

unfiltered set. This indicates that despite the much larger number of input genes, the presumably true 

signals in the data are still best recovered and, compared to the much larger input that was used only 

relatively few additional candidates are prioritized. Not relying on pre-filtering in contrast offers the 

additional advantage of also recovering candidates that would not have passed the standard used 

stringent filtering criteria.   

Discussion 

We introduce SSA, a small subnetwork analysis technique with reinforced learning which solves a 

complex combinatorial search over an interaction network by calculating measures for mutual 

exclusivity in many small subnetworks of the interaction network. The method can be generically 

applied to any problem in which local neighborhoods in a network hold useful information. 

Here we applied SSA to prioritize cancer driver genes that are located in each other’s neighborhood on 

the interaction network and of which the genetic alterations display patterns of mutual exclusivity 

across different tumor samples (referred to as SSA.ME). To overcome the inherent high algorithmic 

complexity posed by its combinatorial nature, the problem of identifying drivers is iteratively solved and 

in each iteration multiple small subnetworks are independently analyzed. All results of these small 

subnetwork analyses are used in subsequent steps to bias the search space. The advantage of splitting 

the complex problem into multiple less complex problems, is that SSA.ME is not restricted by the 

number of mutated genes in the input data. As such by circumventing the stringent filtering strategy 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2015. ; https://doi.org/10.1101/034124doi: bioRxiv preprint 

https://doi.org/10.1101/034124
http://creativecommons.org/licenses/by/4.0/


18 

 

that is required by most other methods to enable the search for mutual exclusivity, SSA.ME can identify 

drivers carrying rare mutations and is able to identify genes based on relatively small-sized tumor 

cohorts of which the genetic variants cannot be pre-filtered based on the mutation frequency across 

samples.  

Because we never explicitly evaluate the largest set of mutual exclusive genes in the interaction 

network, the prioritized mutated genes are not guaranteed to be all mutually exclusive or to all belong 

the same network neighborhood. SSA.ME rather prioritizes genes that belong to local mutual exclusivity 

patterns. If one would be interested in finding the largest set of mutual exclusive genes or independent 

modules, the prioritized gene list would suffice as input for de novo discovery methods for mutual 

exclusivity, such as Dendrix, Multidendrix or CoMEt. However, given the incompleteness of the 

interaction network and the biology of clonal systems, imposing too strong global constrains, e.g. 

requiring that all genes belonging to a mutual exclusivity pattern should also all be closely connected in 

the network, might reduce the number of selected potential driver genes. This because patterns of 

mutual exclusivity can be broken because genes belonging to a specific pattern can be unconnected in 

the interaction network due to missing interactomics data. In addition, if mutations trigger different 

adaptive pathways that are, when occurring in the same tumor, synthetically lethal, the genes carrying 

the mutually exclusive mutations would belong to different local regions in the interaction network 

(incompatible pathways) that cannot co-occur in the same tumor.  

We showed that the results obtained by SSA.ME were largely consistent with those obtained by MEMo 

on the same TCGA 2012 dataset2 and that the use of a stringently versus an non-stringently filtered 

input set did not deteriorate the quality of those findings. By applying on the same breast cancer dataset 

SSA.ME with mutational data that were not a priori filtered based on recurrence across samples, we 

could show the potential of the method in discovering rarely mutated driver genes. In addition to drivers 
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reported in well-known databases, our method prioritized an additional 9 drivers, not yet covered by 

conventional cancer databases. Several of these additional drivers were found to be infrequently 

mutated in the breast cancer and pan-cancer datasets and therefore have been missed by statistical 

prioritization methods that rely on recurrence of mutations across different tumors.  

Conclusively, SSA.ME allows exploiting network connectivity and mutual exclusivity to identify drivers. 

Because of its computational efficiency, it can be used without relying on mutational recurrency based 

information and as such allows for the detection of infrequently mutated drivers.  

Methods 

SSA.ME 

Small Subnetwork Analysis with reinforced learning for detecting Mutual Exclusivity patterns (SSA.ME) is 

an algorithm that uses a reference network to detect mutual exclusive gene patterns in cancer. To 

accomplish this, SSA.ME performs two independent functions in an iterative manner: small subnetwork 

selection/scoring and reinforced learning. Each gene (node) in the reference network is initialized with 

an initial uniform gene score. Then, iteratively: starting from a set of seed genes, small subnetworks are 

selected favoring genes with high gene scores. Each selected small subnetwork is then scored based on 

how well the genes composing the small subnetwork belong to a mutual exclusivity pattern. Genes that 

consistently belong to small subnetworks with high scores thus exhibit mutual exclusivity with other 

genes in their neighborhood very well and are more likely to be selected in subsequent iterations. This 

will lead to high gene scores for genes which are part of a mutual exclusivity pattern. The pseudocode 

describing the algorithm can be found in Fig. 6. 
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Initialization 

The algorithm is initialized by giving each gene (node) a uniform initial gene score of 0.5. A static list of 

seed genes is defined that contains genes that possibly belong to a mutually exclusive pattern. Any type 

of biologically relevant filtering can be used to generate such gene list. In the context of this paper, seed 

genes are defined as all genes that were found to be mutated in at least one sample (tumor). 

Small subnetwork selection and scoring 

In each iteration small subnetworks of equal size are selected. Starting from every seed gene, 

subnetworks are selected by subsequently adding a gene adjacent to the current subnetwork. In order 

to be able to detect mutual exclusivity patterns of different sizes, the size of the small subnetworks 

varies from 3 to 6 genes between iterations. The probability of adding an adjacent gene to a small 

subnetwork is proportional to the gene scores of adjacent genes, expressing the assumption that 

mutually exclusive genes are likely to be located in the same adaptive pathway. Once constructed, each 

small subnetwork receives a mutual exclusivity score (MES). Each sample contributes to this score with a 

Figure 6. Pseudocode of SSA.ME algorithm 
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weight that is inversely related to the number of genes from the small subnetwork that were found 

mutated in that sample. This is calculated using the following equation: 

𝑀𝐸𝑆(𝑠𝑛) = ∑ √∑
1

𝑚(𝑠,𝑉)𝑠∈𝑆𝑉  Formula 1 

Where 𝑉 are the genes present in small subnetwork 𝑠𝑛 ordered according to the number of samples in 

which these genes were found to be mutated. 𝑆 is the set of samples pending to contribute to the 

mutual exclusivity score. Initially 𝑆 includes every sample with a mutation in one of the genes in the 

small subnetwork, but every time a sample is used to calculate a mutual exclusivity score it is removed 

from 𝑆. In this way a sample can only contribute once to the 𝑀𝐸𝑆. 𝑚(𝑠, 𝑉) is the number of genes in  𝑉 

which are mutated in sample 𝑠. This value would be equal to 1 if the genes in gene set 𝑉 are all 

members of a perfect mutual exclusive pattern and |𝑉| if all genes in 𝑉 are mutated in all samples. The 

square root allows giving relatively higher mutual exclusivity scores to small subnetworks for which each 

gene is mutated in approximately the same number of samples. 

Next, the 𝑀𝐸𝑆 are ranked from highest to lowest and their ranks are divided by the maximum rank (Fig. 

7). We end up with a ranked  𝑀𝐸𝑆 (𝑟𝑀𝐸𝑆) between zero and one where zero refers to the small 

subnetwork having the least evidence for mutual exclusivity and one refers to the small subnetwork 

having the most evidence for mutual exclusivity. 
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Reinforced learning 

Using the 𝑟𝑀𝐸𝑆 for each small subnetwork, the reinforced learning step updates gene scores based on 

two parameters: reinforcement and forgetfulness. The reinforcement is a parameter that determines the 

maximal value by which a gene score can be increased in the next iteration. The reinforcement is 

multiplied by the highest 𝑟𝑀𝐸𝑆 score of all small subnetworks to which the gene belongs, so the gene 

score of genes which are consistently in small subnetworks with high 𝑟𝑀𝐸𝑆 scores will further increase 

with iterations. 

Figure 7. Calculation of MES and corresponding rMES scores for three different small 
subnetworks. 

Genes which make up the small subnetwork are represented as columns of matrices, patients are 
represented as rows. Genes with alterations in a specific patient are depicted as black tiles. Small 
subnetworks exhibiting perfect mutually exclusivity patterns (two most left small subnetworks) have 
higher rMES scores than small subnetworks with non-perfect mutual exclusivity patterns (most right 
small subnetwork). Also, small subnetworks having a more uniform distribution of gene alterations 
across patients have higher rMES scores as shown by the two most left small subnetworks. 
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The forgetfulness determines the fraction of the gene score that is retained in every subsequent 

iteration. This means that part of the gene score is effectively lost every iteration step and thus the gene 

scores of genes having persistently low 𝑟𝑀𝐸𝑆 scores will go to zero. To calculate gene scores the 

following formula is used: 

𝑔𝑖+1 = 𝑔𝑖. 𝑓. [1 + 𝑟. max
𝑠𝑛 ∈ 𝑆𝑁𝑔

𝑟𝑀𝐸𝑆(𝑠𝑛)] Formula 2 

Where 𝑔𝑖 is the gene score at iteration 𝑖, 𝑓 is the forgetfulness, 𝑟 the reinforcement, 𝑆𝑁𝑔 the set of small 

subnetworks containing the gene. If the gene score resulting from the formula is larger than 1, it is 

topped off at 1 as the maximal gene score can never be larger than 1. The default parameters of the 

method are forgetfulness 𝑓 = 0.995, reinforcement 𝑟 = 0.005 and 5000 iterations. In general, the sum 

of forgetfulness and reinforcement should be close to 1 and the reinforcement should be small (smaller 

than 0.01). This because small values for forgetfulness or large values for reinforcement would make the 

algorithm prone to stochastic effects. Note that genes which are not part of any small subnetwork are 

assigned a value of zero for max
𝑠𝑛 ∈ 𝑆𝑁𝑔

𝑟𝑀𝐸𝑆(𝑠𝑛). 

In a final step we assign a rank to each gene that reflects to what extent a gene belongs to a mutual 

exclusivity pattern. Hereto we exploit the fact that genes belonging to a mutual exclusivity pattern tend 

to have a consistent increase in their gene score between iterations over time. Genes are ranked 

according to the maximal gene score they reach and in case of ties are based on how fast their score 

converges. 

Simulated data 

To assess the performance of SSA.ME we used simulated data. The set of true positive driver genes was 

defined first by creating a target mutually exclusive pattern which in biological terms corresponds to a 
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driver pathway. The target mutual exclusivity pattern was generated using a random walker with restart 

(5% restart chance) to select genes from the local network neighborhood of a randomly selected gene 

until 20 interactions have been visited in a high quality human reference network. This high quality 

human reference network was composed of HINT27, Interactome (HI-II-14)28 and Reactome29 interaction 

data. 

To mimic real tumor data, we counted the number of mutated genes present in each tumor sample in 

the TCGA 2012 study and assigned an equal number of alterations to random genes, thus conserving the 

distribution of mutated genes per sample. We added mutually exclusive mutations to genes present in 

the target pattern in 30 % of the samples. Each sample had 5% chance to also be mutated in any of the 

other genes belonging to the same mutual exclusivity pattern as we allowed for “soft” mutual exclusivity 

patterns which are non-perfect across samples. 

To evaluate the robustness of the method with respect to the used reference network, multiple 

simulated datasets were analyzed for different degrees of connectedness in the high quality human 

reference network: highly underconnected (50% of the edges were deleted from the reference 

network), mildly underconnected (25% of the edges deleted), lowly underconnected (10% edges 

deleted), true network (i.e. the high quality human reference network), lowly overconnected (10% 

additional random edges added to the reference network), mildly overconnected (25% additional edges) 

and highly overconnected (50% additional edges). We generated 100 different simulated datasets per 

network and ran SSA.ME. Performance was measured by receiver operating characteristic (ROC) curves. 

To assess parameter sensitivity we tested the effect of using different parameter combinations on the 

performance. This included 400 simulations for all combinations of reinforcement 𝑟 (from 0.0005 to 

0.0100 in steps of 0.0005) and forgetfulness 𝑓 (from 0.99 to 0.9995 in steps of 0.0005). Performance for 

each parameter combination was measured using the area under the curve (AUC). 
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Breast Cancer TCGA Data  

The TCGA Breast Cancer (BRCA) data published in 20122 was downloaded from https://tcga-

data.nci.nih.gov/docs/publications/brca_2012/. Level 2 files were used containing somatic mutations, 

RNA expression and copy number variations. Copy number alterations obtained from the original TCGA 

Breast cancer data were inferred with GISTIC30. In our analysis only genes in samples with high-level 

thresholds for amplifications/deletions and for which copy number alteration showed positive 

correlation with expression level were used. Priorization results were obtained by running SSA.ME on a 

non-stringently filtered input set, consisting of all genes having at least one genetic alteration (mutation 

or amplification/deletion correlated with expression) in the dataset. As a high quality human reference 

network we compiled information data from HINT27, Interactome (HI-II-14)28 and Reactome29.  

Using the TCGA breast cancer data also allowed us to compare our results with the ones originally 

published by MEMo, a representative state-of-the-art method that searches for mutual exclusivity 

patterns using a reference network. To maximize the comparison, we ran our approach with the same 

reference network and with the same data as originally used by MEMo. This reference network is a non-

curated reference network consisting of Reactome29, Panther31, KEGG32, INOH33 and interactions from 

non-curated sources (like high-throughput derived protein–protein interactions, gene co-expression, 

protein domain interaction, GO annotations, and text-mined protein interactions)34. Data were 

reproduced according to the description in the original paper, i.e. only retaining genes that were altered 

in at least ten samples. To illustrate how prioritizations were not largely affected by omitting this 

stringent prefiltering we redid the analysis in the same setting but using the less filtered input described 

above. 
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