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Abstract

With the advent of next generation high-throughput DNA sequencing technologies, omics exper-
iments have become the mainstay for studying diverse biological effects on a genome wide scale.
ChIP-seq is the omics technique that enables genome wide localization of transcription factor bind-
ing or epigenetic modification events. Since the inception of ChIP-seq in 2007, many methods have
been developed to infer ChIP target binding loci from the resultant reads after mapping them to
a reference genome. However, interpreting these data has proven challenging, and as such these
algorithms have several shortcomings, including susceptibility to false positives due to artifactual
peaks, poor localization of binding sites, and the requirement for a total DNA input control which
increases the cost of performing these experiments. We present Ritornello, a new approach with roots
in digital signal processing (DSP) that addresses all of these problems. We show that Ritornello gen-
erally performs equally or better than the peak callers tested and recommended by the ENCODE
consortium, but in contrast, Ritornello does not require a matched total DNA input control to avoid
false positives, effectively decreasing the sequencing cost to perform ChIP-seq.

Introduction

Reliable and precise characterization of where proteins, such as transcription factors interact with the genome,
enables biologists to understand how gene expression is regulated at the molecular level. The human genome,
for example, encodes about 1500 transcription factors (TFs) [1] and many of them directly recognize and bind to
specific DNA sequences to regulate gene expression. Therefore, identification of where each TF binds to the DNA
is critical for reconstructing the complex regulatory network of gene expression. Chromatin immunoprecipitation
(ChIP) followed by high-throughput sequencing (ChIP-seq) is a powerful tool for detecting protein-DNA interac-
tions at the genome-wide scale and has become the method of choice. In a ChIP-seq experiment, first, proteins
interacting with the DNA are chemically attached to the DNA using formaldehyde-mediated crosslinking. Then
the DNA is fragmented into short pieces and antibodies specifically targeting the protein of interest are used to
pull down DNA fragments bound by that protein. Finally, the immunoprecipitated DNA fragments are released
from the protein of interest and subjected to high-throughput DNA sequencing. The resulting sequenced reads
are mapped to a reference genome and computational algorithms are applied to process mapped reads and infer
protein binding positions (peak calling).

Transcription factors usually bind to short specific DNA sequences (motifs) and generate sharp point-source
peaks [2]. For most ChIP-seq experiments currently available, only one of the two 5’ ends of each double-
stranded DNA fragment has been sequenced (single end sequencing), so the read coverage near the point-source
peaks follow a characteristic bimodal shape. However, calling peaks accurately from a large quantity of mapped
reads is nontrivial and over 40 algorithms have been developed [3–44] since the ChIP-seq technology was first
introduced [45]. Peak calling remains challenging due to the presence of artifactual binding events (false positives)
and background noise from reads outside of peaks, multi-binding events with overlapping read contributions, and
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variability of experimental quality. Additionally, for most peak calling algorithms, matched negative controls,
which are usually DNA samples obtained without performing immunoprecipitation (total DNA input control)
or immunoprecipitated by non-specific antibodies (IgG control), are often required to control the false positive
rate.

Performing a negative control experiment for each sample, effectively doubles the sequencing cost of ChIP-seq,
limiting the number of samples that can be run per experiment. Peak calling algorithms that do not use the
control (including those that have the option to run with or without it) have been developed, however, they
underperform due to the lack of a detailed characterization of ChIP-seq signal and noise.

Binding events can also occur in close proximity to one another, and it is often difficult to resolve how many
binding sites are present and precisely where binding occurs. BRACIL [46] and CSDeconv [47] use blind decon-
volution algorithms to resolve individual peaks at multi-binding loci but are not scalable for peak calling and
are thus used for post processing when peaks have been identified by other peak callers. GEM [23] incorporates
de novo motif discovery into the peak identification process aiding in resolving individual peaks, but may not
be suitable if the transcription factor of interest does not bind to DNA directly or does not have any specific
motif.

ChIP-seq experiments can also be of varying quality. Collective efforts by large consortia have provided guidelines
on how to evaluate the quality and signal-to-noise ratio of ChIP-seq experiments. The opposing strand cross-
correlation between the read coverage on the positive and that on the negative strands has been used to assess
experimental quality by ENCODE [2]. The cross-correlations of ChIP-seq as well as input control experiments
exhibit two modes, one at or around their respective average fragment lengths, and an additional one at or
around their respective read lengths. High quality experiments tend to have a greater contribution from the
fragment length mode, while low quality experiments and input controls tend to have a larger contribution from
the read length mode. Specifically, the ENCODE ChIP-seq guidelines include two metrics: the normalized strand
coefficient(NSC) and the relative strand correlation(RCS) [2]. If the NSC or RSC scores are low, indicating poor
experimental quality, ENCODE recommends repeating the experiment. Given the considerable cost of repeating
a ChIP-seq experiment, it is useful to be able to “rescue” samples with suboptimal quality for use as additional
replicates, rather than discarding them.

Here, we present Ritornello, a novel ChIP-seq peak calling algorithm based on both digital signal processing and
statistical techniques. In the current work, we contribute the following innovations and insights:

• a peak caller, that does not require a matched control and still maintains a low false positive rate, outper-
forming even algorithms that use the control

• an efficient method to perform full deconvolution of multi-binding events on a genome wide scale
• samples of low quality can be “rescued”, instead of being discarded
• a rigorous characterization of the binding signals and artifacts in the presence of noise in ChIP-seq data
• a nonparametric approach to calculate the fragment length distribution for any single-end NGS experiment.

We benchmarked Ritornello against MACS2 [3] and GEM [23], two algorithms recommended by the ENCODE
consortium [2]. In the default modes each requires the matched control. We demonstrated that Ritornello, a
matched control free method, outperformed MACS2 and GEM.

Methods

We have developed Ritornello to find candidate peaks efficiently, with minimal use of memory and computation
time, by using a digital signal processing technique called a matched filter, classify candidate peaks as true binding
events or artifacts based on their shape, and finally test candidate binding positions for significance based on
comparison to a model absent of binding at that position. The scheme of the Ritornello method is detailed in
Figure 1.

Derive fragment length distribution via deconvolution

For fragments overlapping a binding position, the positive strand mapping reads will be upstream of the binding
site whereas negative strand reads will be downstream of the site. As such, the distance between a read and
the binding position is dependent on the fragment length, which most peak calling algorithms must estimate
(usually mean fragment length) to obtain accurate predictions for binding locations. Our first innovation for
Ritornello is calculating, not just the mean fragment length, but the entire sample specific empirical fragment
length distribution (FLD) from single-end reads (step 2 of Figure 1). Ritornello utilizes this FLD, as a key
component, for more accurate peak predictions, which we will describe in detail below.
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The cross-correlation is the single strand autocorrelation convolved against the fragment length distribution as
has previously been shown [48]:

Ψn = c · Pr[Rn] ∗ Pr[−Rp]
= c · Pr[Rp + F ] ∗ Pr[−Rp]
= c · Pr[Rp] ∗ Pr[−Rp] ∗ Pr[F ]
= Φp ∗ Pr[F ],

(1)

where Ψn is the opposing strand cross-correlation, Φp is the autocorrelation of the positive strand, Pr[Rp] is
the probability of choosing a read starting at a position Rp on the positive strand, Pr[Rn] is the probability of
choosing a read start at a position Rn on the negative strand, Pr[F ] is the probability of sampling a fragment of
length F , (fragment length distribution), c is the read count, and ∗ is the convolution operator. The fragment
length distribution can then be obtained by deconvolution as follows:

Pr[F ] = F−1
(
F(Ψn)
F(Φp)

)
, (2)

where F is the Fourier transform operator and F−1 is its inverse.

In the current work, we clarify that Equation 1 assumes that Rp and F are statistically independent, and thus
Pr[Rp +F ] can be simplified to Pr[Rp] ∗Pr[F ]. If we assume that Rn (as opposed to Rp) and F are independent,
then we can instead write the following relationship:

Ψp = c · Pr[Rp] ∗ Pr[−Rn]
= c · Pr[Rn + F ] ∗ Pr[−Rn]
= c · Pr[Rn] ∗ Pr[−Rn] ∗ Pr[F ]
= Φn ∗ Pr[F ],

(3)

and deconvolve as follows:

Pr[F ] = F−1
(
F(Ψp)
F(Φn)

)
. (4)

Equations 2 and 4 describe how to obtain the fragment length distribution under two different and mutually
exclusive assumptions (i.e. Rp ⊥ F or Rn ⊥ F where ⊥ denotes statistical independence). To estimate the
fragment length distribution, Ritornello locates genomic positions where either Rp ⊥ F or Rn ⊥ F and invokes
the corresponding equation locally. However, it is highly likely that regions, outside of binding events, with
relatively uniformly distributed reads on Rp or Rn satisfy Rp ⊥ F or Rn ⊥ F respectively.

We identify these regions by looking for read coverage that is locally uniform on either strand, using a χ2 goodness
of fit test (i.e. Pr[Rp] ∼ U or Pr[Rn] ∼ U). For each window of size 2Fmax (twice the maximum fragment length)
centered at position i on either strand, we calculate the χ2 test statistic as follows:

zp
i =

i+Fmax∑
j=i−Fmax

(Pr[Rp = j]− U [j])2

U [j]

zn
i =

i+Fmax∑
j=i−Fmax

(Pr[Rn = j]− U [j])2

U [j] .

(5)

We then sum the local autocorrelations, Φp,i or Φn,i, for those windows where either the positive or negative
strand is independent of the fragment length, as determined by the χ2 test for local uniformity, across the
genome G. Additionally, we sum the local opposing strand cross-correlations, Ψp,i or Ψn,i, associated with each
autocorrelation according to Equations 1 and 3 as follows:

Φ(τ) =
G∑

i=1

Φp,i(τ)I(V p
i > α) + Φn,i(τ)I(V n

i > α)

Ψ(τ) =
G∑

i=1

Ψn,i(τ)I(V p
i > α) + Ψp,i(τ)I(V n

i > α)

V p
i ≡ Pr[zp

i < χ2(2Fmax)]
V n

i ≡ Pr[zn
i < χ2(2Fmax)].

(6)
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where,

Φp,i(τ) = Pr[Rp = i] Pr[Rp = i− τ ]
Φn,i(τ) = Pr[Rn = i] Pr[Rn = i− τ ]
Ψp,i(τ) = Pr[Rp = i] Pr[Rn = i− τ ]
Ψn,i(τ) = Pr[Rn = i] Pr[Rp = i− τ ]

τ ∈ [−Fmax, Fmax].

(7)

Using the global autocorrelation, Φ, and cross-correlation, Ψ, functions from Equation 6, we calculate the
fragment length distribution as follows:

Pr[F ] = F−1
(
F(Ψ)
F(Φ)

)
. (8)

Why the fragment length distribution can be inferred from single end data?

We have just shown that the fragment length distribution can be derived via deconvolution from Pr[RP ] and
Pr[Rn] when those distributions are related by Equations 1 or 3. This is intuitive in paired-end sequencing.
However, in single-end sequencing, only one end is randomly selected from each fragment, and it is hard to imagine
how the fragment length information can be preserved. For a given set of fragments, single end sequenced reads
are a sub-sample of paired-end sequenced reads. Thus, Pr[RP ] and Pr[Rn], the only input to Equations 2
or 4, in the single-end reads should be the same with that in the paired-end, resulting in the same estimated
fragment length distribution, Pr[F ]. A reliable approximation of the paired end distributions Pr[Rp] and Pr[Rn]
are obtained from locations where multiple fragments share either a common start or end position (within a
couple of base pairs) such as in Figure 2a. Collectively, all such locations in the genome enable a faithful
reconstruction of the whole fragment length distribution as in paired-end sequencing (Figure 2a).

To demonstrate this point we have isolated fragments sharing common start or end positions in a paired-end
total DNA input, randomly sampled one end from each fragment to create a pseudo single-end data, and used
the deconvolution approach to calculate fragment length distribution. In Figure 2b, we show that the fragment
length distribution calculated from this pseudo single-end data (blue) is very similar to the true fragment length
distribution of the paired-end sample (green). When pseudo single-end data is created from all fragments in
the paired-end data (not only from fragments that share common start or end positions), the fragment length
distribution calculated via deconvolution (black) is less similar to the true fragment length distribution. When
pseudo single-end data is created from all fragments except those that share common start or end positions,
the fragment length distribution calculated via deconvolution (red) dramatically deviates from the true fragment
length distribution. This suggests that even in single-end sequencing, the distribution of reads originating from
fragments that share common start or end positions reliably approximate the paired end Pr[Rp] and Pr[Rn]
distributions, enabling accurate calculation of the fragment length distribution.

Local fragment length distribution varies around binding events

The fragments generated from a binding event overlap the binding site, thus any given fragment must be at least
as long as the distance from its start position to the binding site. This creates dependence between the fragment
length and genomic position on both strands because reads that are further from the binding site are necessarily
longer on aggregate. Consequently, neither the positive nor the negative strand read coverage is independent of
the fragment length within a binding event, making it inappropriate to recover the fragment length distribution
using Equation 2, as shown by simulation in Figure 3a. In contrast, in simulated event free regions, it is shown
that the fragment length distribution can be correctly recovered using Equation 2 as seen in Figure 3b.

Local fragment length distribution varies around read length artifacts

In addition to binding events, we have observed local artifactual patterns that create dependence between frag-
ment length and genomic position on both strands, preventing the reconstruction of fragment length distribution.
These artifactual patterns fall into the following two categories:

• a pile of reads whose start positions constitute a read length width column pattern on the positive strand,
followed by a read length width column pattern on the negative strand, a read length downstream. We
refer to this artifact as a column artifact. We simulate it in Figure 3c, and show it in Figure 4a.
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• a binding peak (or background read coverage) but with a read length width column pattern of missing reads
on the positive strand followed by a read length width column pattern of missing reads on the negative
strand, a read length downstream. We refer to this as a missing-column artifact. We simulate it in Figure
3d and show it in Figure 4b.

Both of these artifacts cause local disturbances in the fragment length distribution, however, the aggregate global
fragment length distribution remains constant. This is easier to see in paired-end sequenced reads. The paired-
end column artifact shown in Figure 4c contains fragments with length distributed according to the sample’s
fragment length distribution. However, the fragments are organized such that longer fragments extend further
from center of the artifact (denoted with an asterisk) than shorter fragments, implying F is dependent on Rn

and Rn. The paired end missing-column artifact shown in Figure 4d is composed of fragments organized such
that the range of possible fragment lengths is restricted based on genomic position. Specifically, on the positive
strand, lengths of fragments (such as fragments A and B) must lie outside the range [dp, dp +w] where dp is the
distance dp from the positive strand read to the center of the missing-column artifact (denoted with an asterisk).
Likewise, on the negative strand, the lengths of fragments (such as fragments C and D) must lie outside the range
[dn, dn +w] where dn is the distances dn from the negative strand read to the center of the missing-column artifact
(denoted with an asterisk). Thus, column and missing-column artifacts are composed of fragments organized
such that both strands are dependent on fragment length.

We note that if we were using Equations 2 or 4 without invoking Equations 5 - 8 at these artifactual regions,
the resulting fragment length distribution would have two modes, one associated with the “phantom peak” near
the read length, and one associated with the predominant fragment length. ENCODE observed these two modes
in the opposing strand cross-correlation, which is related to the fragment length distribution (Equations 1 and
3). However, when these artifactual regions are filtered out as is done in Equations 5 - 8, the “phantom peak”
is greatly attenuated. Thus, these artifactual areas give rise to a low quality RSC [2,49], the ENCODE measures
of the “phantom peak” using cross-correlation.

Incorrect mapping leads to read length artifacts

The read length used in any sequencing experiment is determined subsequent to the collection of fragments.
Therefore, read length artifacts are associated with sequencing or post-sequencing procedures. Each read in a
ChIP-seq experiment is sequenced from the sample’s genomic DNA, which can differ from the reference genome
used in the alignment step. Comparative genome assembly algorithms used for sequence alignment work by
comparing the nucleotide sequence for each read to the sequence of the reference genome, and assigning the read
to the location that gave the best alignment score, usually based on fuzzy string matching. If the nucleotide
sequence of the sample’s genome, from which the reads are sampled, disagrees with the reference genome at
location x, the mapping algorithm can fail to assign the appropriate reads to that location. This could occur
if the number of mismatched bases per read exceeds a predetermined cutoff or simply if the reads belonging to
that location map better to another region with higher sequence similarity. When this occurs there will be a
discontinuity in coverage across w nucleotides (where w is the read length) because there are exactly w possible
read start positions where the read would overlap the mismatched base. On the positive strand the discontinuity is
upstream of x and on the negative strand the discontinuity is downstream of x. This results in an missing-column
artifactual coverage pattern of incorrectly mapped reads to the upstream sequence highlighted in yellow as seen
in Figure 5. Further, reads that fail to map to the correct location can instead map to another location with
higher sequence similarity as determined by the mapping algorithm. This would result in a column artifact as
seen in the downstream sequence highlighted in yellow in Figure 5. These artifacts tend to occur in interspersed
repetitive regions such as the sequences shown in yellow in Figure 5.

For paired-end each relocated read in a column artifact, the associated read from the same fragment is also
relocated as shown in Figure 4c. Likewise for each missing read in a missing-column artifact, the associated
read from the same fragment is also missing as shown in Figure 4d.

Derive the expected read coverage distribution around binding events

Once we infer the fragment length distribution, we use it to derive a filter matched to the read coverage pattern
characteristic to regions of true binding events (step 3 of Figure 1). We denote putative ChIP target binding
sites by Bj , where j is an index representing the j-th putative binding event along the genome. Each fragment
originating from binding event j covers the binding position, Bj . The binding position Bj is then related to the
read position as follows:

Rp
j = Bj − FK , (9)
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and

Rn
j = Bj + F (1−K) , (10)

where Rp
j is the start position of a read on the positive strand resulting from event j, and Rn

j is the end position
of a read on the negative strand resulting from event j. K is a random variable taking values between zero
and one, describing the relative position of the binding site within a fragment. If K equals 0, then the binding
position is at the most upstream end of the fragment, and if K equals 1, then the binding position is at the most
downstream end of the fragment. If K is between 1 and 0, the binding position is at that location relative the
fragment length. We model K as a beta distributed random variable Pr[K] ∼ B(α, β). The beta distribution
is convenient for this purpose because it is flexible for modeling random variables which take values between 0
and 1. Additionally, we set α = β, assuming that K is symmetrically distributed. We initialize K to a uniform
distribution (α = 1) as a natural choice in the absence of prior knowledge (step 3 of Figure 1), and as detailed
subsequently we reevaluate it by optimizing α (step 7 of Figure 1). Next, applying algebra of random variables,
it can easily be seen that:

Pr[Rp
j ] = Pr[Bj ] ∗ Pr[−FK] , (11)

and

Pr[Rn
j ] = Pr[Bj ] ∗ Pr[FK] , (12)

where ∗ is the convolution operator, Pr[K] = Pr[1 −K] due to the symmetry mentioned above, and Pr[FK] is
the product distribution as follows:

Pr[FK = z] =
∫ ∞
−∞

Pr[F = x] Pr[K = z/x] 1
|x|dx

and

Pr[−FK = z] =
∫ ∞
−∞

Pr[−F = x] Pr[K = z/x] 1
|x|dx.

(13)

Pr[−FK] is the distribution of local read coverage on the positive strand with support upstream of a binding
position (negative offset). Pr[FK] is the distribution of local read coverage on the negative strand with support
downstream of a binding position (positive offset). We will use these local coverage patterns in both steps 4 and
6 of Figure 1 to locate and quantify candidate peaks respectively.

Matched filtering for rapid and accurate localization of candidate peaks

Transcription factors bind to a small fraction of the genome, thus to improve efficiency we only test candidate
peak positions (step 6 of Figure 1) that closely match our expected peak shape (Pr[−FK] and Pr[FK]), as
identified by a matched filter [50] (step 4 of Figure 1).

In signal processing, a filter is a function which selects for the desired output signal vector, s, and suppresses the
undesirable noise vector, v, of an observed input signal x = s + v. A matched filter [50] is a specialized filter
whose time inverse is the impulse response function, h, where h is optimally parallel to the desired signal (h ‖ s),
and orthogonal to the noise (h ⊥ v). The matched filter has the favorable property that when convolved with an
observed signal, it will maximize the output signal to noise ratio. The time inversed matched filter, h, is defined
as follows:

h = γΣ−1s, (14)

where γ is a normalization constant and Σ−1 is the inverse covariance matrix of the noise. For identifying peaks
in ChIP-seq, the desired output signal s has shape Pr[−FK] for the positive strand and Pr[FK] for the negative
strand.

Noise is rarely globally stationary (i.e. invariant probability distribution with respect to genomic position).
However, when the noise distribution changes on a much larger length scale than the support (2Fmax) of the
desired signal, it is fair to assume that the noise is independent and locally stationary, as is done in many other
algorithms. Under this assumption, Σ, the covariance matrix of the noise at each position, is diagonal and
locally proportional to the identity matrix. This property implies that in Equation 14 h ∝ s. Absorbing the
normalization constants, the impulse response functions for the positive and negative strands can then be written
as:

hp = Pr[−FK] hn = Pr[FK]. (15)
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As a result the filtered signal Y at each position is given by the sum:

Y = hp(−t) ∗ Pr[Rp] + hn(−t) ∗ Pr[Rn]. (16)

Usually γ is chosen to normalize the expected power of the noise after application of the filter to one. However,
a given γ that normalizes the noise in low coverage areas to one, necessarily will give higher power in areas of
higher coverage. Therefore, it is infeasible to specify a single γ when the noise is not globally stationary. As
a result, the standard way of detecting the desired output signal by thresholding using a fixed signal to noise
ratio is not applicable. Alternatively, we identify local maxima using a Gaussian derivative filter, a technique
commonly used for detecting local maxima (edges) in images as follows:

0 = Y ∗ d

dx
G(0, σ2) , (17)

where G is the Gaussian distribution with variance σ2. Zero crossings (Equation 17) from positive to negative
of this smoothed first derivative are the local maxima. A minimum read count requirement is applied to avoid
spurious low coverage local maxima. Those local maxima passing the threshold are selected as candidate binding
events, bj ; j ∈ [1, N ] (for N candidate events).

Remove false positive binding events using cross-correlation

Genomic regions that have similarly high read coverage in both the ChIP sample and the negative control are
false positive binding events. Most current peak calling algorithms rely on negative controls (usually total DNA
input) to control the false positive rate. To the best of our knowledge, if negative controls are not available, false
positive events would not be filtered out by current peak calling algorithms. We have discovered that most of the
significant false positive events are in fact the read length artifacts described earlier and exemplified in Figure
6. We have already shown that the cross-correlations and deconvolved fragment length distributions of regions
with read length artifacts exhibit the “phantom peak” at read length (Figure 3).

Ritornello identifies regions containing false positive events by detecting the “phantom peak” in their cross-
correlations; true binding events contain no such “phantom peak” in thier cross-correlations. To this end, we
employ a machine learning approach, building a classifier to distinguish between read length artifacts and true
binding events. To extract features for the classifiers, we calculated cross-correlation locally from bj − Fmax to
bj + Fmax around each candidate peak. The features include: a) the maximum value of the cross-correlation
function in the range between zero and read length, which is denoted by c1, and b) the maximum value of
the cross-correlation function in the range between the read length and the maximum fragment length Fmax,
which is denoted by c2. In the neighborhoods of binding events c2 is expected to be higher than c1, whereas
in neighborhoods of read-length artifacts we expect c1 to be larger than c2. We added additional features to
account for consecutive read length artifacts of varying amplitudes and large amplifications such as due to PCR.
For this purpose, we binarized the coverage in the positive and negative strands by setting positions with read
count greater than 0 to 1. We then performed a running mean smoothing on the binarized coverage, calculated
cross-correlation and extracted the following features: a) the maximum value of the binarized smoothed cross-
correlation function in the range between zero and read length, which is denoted by d1 and b) the maximum
value of the binarized smoothed cross-correlation function in the range between the read length and the maximum
fragment length Fmax, which is denoted by d2.

We build a classifier using logistic regression, with features: { c2
c1
, d2

d1
}. The instances used to build this classifiers

include manually classified peaks obtained as follows: we first applied MACS2 (negative control free mode) to
four transcription factor ChIP-seq datasets generated by ENCODE, subsequently selected the top 200 peaks
for each of four samples, and finally manually labeled regions with typical binding shape as true positives (see
Figure 6a) and regions with characteristic read length artifact as false positives (see Figure 6b). We trained
this model using a five fold cross-validation and achieved high performance with AUROC of 0.993. This set of
features is scale-free and thus our trained classifier is generalizable to any ChIP-seq sample and does not need to
be retrained. Ritornello incorporates this trained classifier (step 5 of Figure 1) to flag artifactual locations as
false positives without the need for a paired total DNA input or IgG control.

Deconvolving single events from local coverage

The read coverage near an event is a mixture of reads generated by that event, as well as neighboring events and
noise. In order to accurately quantify each event, it is essential to deconvolve its binding intensity (number of reads
originating from each event) from this mixture. Fragments originating from different events in close proximity
may overlap. Consequently, it is difficult to quantify the number of reads coming from each binding event.
Further, fragments originating from non ChIP-ed DNA, off targeted sequencing due to antibody inefficiency, as
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well as other sources, contribute to background noise. We model the read coverage around each candidate peak
using a generalized linear model to deconvolve its binding intensity.

The binding intensity, βj , of each candidate peak, j, is only dependent on positions where that peak has support,
i ∈ [bj − Fmax, bj + Fmax]. To efficiently deconvolve the signal at bj we first discard peaks that do not overlap
with bj . We retain only the subset qk ∈ {q1 . . . qT } of T peaks in close proximity to j (including j), such that the
support of each peak in q overlaps with the support of j. The locally uniformly distributed noise associated with
this neighborhood is indexed by q0. Here we assume that read counts follow a Poisson distribution, a common
assumption made by other algorithms, such as MACS and GEM [3,23]. We can then model the number of reads
on the positive and negative strands, Cp

i,qk
and Cn

i,qk
, at position i due to event qk as follows:

Cp
i,qk
∼ Pois

(
βp

qk
hp(i− bqk )

)
, (18)

and

Cn
i,qk
∼ Pois

(
βn

qk
hn(i− bqk )

)
, (19)

where the parameters βp
qk

and βn
qk

denote the binding intensities (expected read counts) of event qk. The impulse
response functions hp(i − bqk ) and hn(i − bqk ) are the probabilities of observing a read at position i from event
qk. We note that different βp

qk
and βn

qk
values are used to account for local differences in read coverage between

positive and negative strands.

To model the noise we will once again invoke our assumption of locally stationary noise, as in the discussion
before Equation 15. Here we assume that the locally stationary noise is a uniformly Poisson distribution. We
model the read counts due to noise at position i for the positive and negative strands as follows:

Cp
i,q0
∼ Pois

(
βp

q0U(i)
)

, (20)

and

Cn
i,q0 ∼ Pois

(
βn

q0U(i)
)

, (21)

where U is a function that is locally uniform with support of 2Fmax around bj , and βp
q0 and βn

q0 are the expected
number of reads due to noise on the positive and negative strands respectively.

The read count at position i is then given by the sum of read counts from all sources qk as follows:

Cp
i = Cp

i,q0
+

T∑
k=1

Cp
i,qk
∼ Pois

(
λp

i,q

)
, (22)

where

λp
i,q = βp

q0U(i) +
T∑

k=1

βp
qk
hp(i− bqk ), (23)

and

Cn
i = Cn

i,q0 +
T∑

k=1

Cn
i,qk
∼ Pois

(
λn

i,q

)
, (24)

where

λn
i,q = βn

q0U(i) +
T∑

k=1

βn
qk
hn(i− bqk ). (25)

The relationships in Equations 22 and 24 use the following theorem: if X1 . . . Xn are independent Poisson
distributed random variables, Pois(λ1) . . . Pois(λn), then their sumX1+. . .+Xn is Poisson distributed, Pois(λ1+
. . .+ λn).

In order to obtain the binding intensity for peak, bj , we maximize the likelihood for the models (Equations 22
and 24) of all nucleotides around bj . The likelihood of local binding intensities βp

q and βn
q around the peak of

interest, j, can be written as:

L(βp
q , β

n
q |Cp

i , C
n
i ) =

bj +Fmax∏
i=bj−Fmax

Pois
(
Cp

i ;λp
i,q

)
Pois

(
Cn

i ;λn
i,q

)
.

(26)
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We then find the maximum likelihood estimates for parameters βp
q and βn

q . The sum, βp
j + βn

j , is reported as the
binding intensity for the peak at bj .

We note that this is formally a Poissson generalized linear model with identity link function. Such a model has
the advantage that it can resolve multiple peaks in close proximity, such as double binding or triple binding
events. To our knowledge only BRACIL [46] and CSDeconv [47] are designed to deconvolve adjacent binding
events, in particular double binding events. These algorithms are inefficient and therefore require as input a set
of peaks from other peak callers. Ritornello implements a dogleg optimization (the Newton-Raphson method
coupled with initial gradient descent), which is much faster than traditional Estimation Maximization or Markov
Chain Monte Carlo methods [51], enabling the rapid deconvolution of all loci detected in previous steps.

Testing candidate peaks for significance

In the previous section we quantified the intensity, βj , of each candidate peak. Here we determine the significance
of each of these candidate binding events using a likelihood ratio test based on the likelihood we derived in
Equations 26. The null model H0

j is obtained by setting both βp
j = 0 and βn

j = 0. We note that we use the term
null model at each position bj to refer to the model involving a zero binding intensity at bj but with potentially
nonzero βp

q0 and βn
q0 as well as βp

q and βn
q in neighboring candidate events. The alternative model H1

j uses full
parameterization including non vanishing βp

j and βn
j at the location of interest bj .

Since the null model H0
j is nested within H1

j , we can employ the likelihood ratio test statistic (D) in the
form:

D = 2 ln

(
max

{
L(βp

q , β
n
q |Cp

i , C
n
i )
}

max
{
L(βp

q′ , βn
q′ |Cp

i , C
n
i )
})

q′ ≡ q \ {j}

H0
j : βq′ ∈ <, βj = 0

H1
j : βq ∈ <.

(27)

According to Wilke’s theorem [52] the likelihood ratio test statistic for this nested model is distributed according
to a χ2 distribution with two degrees. We then calculate the p-value for each peak based on this χ2 distribution.
Finally, to account for false discovery in multiple hypothesis testing, we corrected these p-values using Benjamimi-
Hochberg correction [53].

Up to this point, we have obtained an initial list of putative binding events. This was based on inferring an
impulse response function given by the product distribution of the fragment length distribution and a uniformly
distributed K (step 3 Figure 1). To further refine the impulse response function, we find the estimate of α
that maximizes the combined likelihood of the 200 most significant putative events (step 7 of Figure 1). As
shown in Figure 7, the Pr[−FK] and Pr[FK] derived from this procedure closely match the shape of highly
abundant peaks. Finally, we repeat the peak identification, artifact testing, and likelihood ratio testing (steps
4-6 of Figure 1) using the updated hp and hn and report final list of significant peaks.

Benchmarks

To assess Ritornello’s performance, we compared it against the MACS2 [3] and GEM [23] peak callers, which
have both been recommended by the ENCODE consortium [54, 55]. We use 14 single-end transcription factor
ChIP-seq experiments from the ENCODE project [55], each with two biological replicates (see Table 1 and
Supplementary Table S1). Matched DNA input or IgG controls were also available (Supplementary Table
S1). We run Ritornello, a control free algorithm, MACS2 (with the matched control), and GEM (with the
matched control) on each of the 28 samples. We compare the performance of these algorithms in terms of:

• the degree of reproducibility between biological replicates
• the similarity between characteristic coverages in reproducible binding events predicted uniquely by Ritor-

nello, MACS2, or GEM to the coverages of strong binding events predicted by multiple algorithms
• motif enrichment in top 1000 reproducible peaks

Additionally, we demonstrate that potential false positive events not predicted by MACS2 or GEM, but predicted
if they run without a matched control, are generally not predicted by Ritornello. We also demonstrate that
Ritornello predicts very few reproducible false positives in duplicated negative controls. This suggests that
Ritornello has a low false positive rate.
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Comparing Ritornello and alternative methods based on reproducibility

We have evaluated the reproducibility between biological replicates of each algorithm using the Irreproducible
Discovery Rate (IDR) approach [56]. The IDR method calculates the consistency of peak rankings in each
replicate, and determines an optimal cutoff to report the reproducible peaks between replicates. It is recommended
by ENCODE to analyze replicates of ChIP-seq experiments [55].

For each algorithm we applied the IDR approach and counted the number of reproducible peaks passing the
recommended thresholds (IDR=0.05) for each the 14 experiments. We found that Ritornello had the largest
number of reproducible peaks in 7 out of the 14 experiments, while MACS2 and GEM had a larger reproducibility
in 5 and 2 out of the 14 experiments respectively (Figure 8). This indicates that Ritornello tends to capture
similar or more reproducible binding events from biological replicates compared to MACS2 and GEM. This also
demonstrates that the mathematical processing of the ChIP-seq signal can eliminate the need of using negative
controls in TF ChIP-seq experiments. To evaluate the specificity of Ritornello, we applied the matched filter
built in the ChIP channel to the matched control data and counted the number of reproducible false positives
(values in parentheses in Figure 8 ). We found that Ritornello had few reproducible false positives in all five
pairs of negative controls.

Comparing Ritornello and alternative methods based on unique peak coverage
patterns

To assess the shape and strength of reproducible peaks identified by the IDR approach, we compared the re-
producible peaks reported by Ritornello to those reported by MACS2 and GEM respectively for each biological
replicate. The majority of reproducible peaks reported by Ritornello, especially the most significant ones, overlap
with those reported by MACS2 and GEM, indicating that Ritornello exhibits comparable performance to the
other two algorithms even in the absences of negative controls (venn diagrams in Figures 9 and 10).

Further, we compared the reproducible peaks that are uniquely reported by Ritornello (but missed by MACS2) to
those uniquely reported by MACS2. Similarly, we compared Ritornello-unique peaks to those uniquely reported
by GEM. If we plot peaks reported by MACS2 or GEM, their pileup coverages are generally distorted by the
aforementioned read length artifacts. In order to compare only those events in artifact free regions, prior to
comparison we remove artifacts reported by Ritornello from both MACS2 and GEM reported peaks. For each
comparison, we averaged the local distributions of read start positions (pileup) for the top 500 most significant
unique peaks of each algorithm (pileup plots in Figures 9 and 10) and found that: a) the characteristic pattern
associated with the highest intensities peaks reported by both algorithms (whose shape matches exactly the
impulse response function) is similar to the pattern obtained by aggregating the pileups of peaks uniquely
reported by Ritornello but in contrast is dissimilar to the aggregated pileups of peaks uniquely reported by
MAC2 or GEM. b) peaks uniquely reported by Ritornello have higher read count around the binding sites than
those uniquely reported by MACS2 or GEM. These results imply that reproducible peaks uniquely reported by
Ritornello are more likely to be true binding events than those uniquely reported by MACS2 or GEM.

Comparing Ritornello and alternative methods based on motif occurrence
rate

Availability of genuine validations of transcription factor binding events inferred by TF ChIP-seq peak callers
is limited. Therefore, one of the measures used by practitioners for assessing the quality of peak callers is
the fraction of predicted TF binding events that overlap with the characteristic binding motif of the relevant
transcription factor. Employing the same 28 public ChIP-seq samples, we compare the motif enrichment for
the top 1000 reproducible peaks reported by each algorithm as shown in (Figure 11). Predicted peaks whose
binding centers are within 50 bp from the TF sequence motif are classified as events that are occupied by the
motif. The peaks found by Ritornello had higher motif occurrence rate compared with MACS2 and GEM in 16
out of the 28 samples. MACS2 had higher motif occurrence rate compared with Ritornello and GEM in 6 out
of the 28 samples, and GEM had higher motif occurrence rate compared with Ritornello and MACS2 in 5 out of
the 28 samples. This suggests that Ritornello, which is a control free peak caller, is able to identify significant
true binding events.

Ritornello identifies true binding events in low quality samples

ENCODE recommends discarding low quality samples as determined by the NSC and RSC scores. Ritornello
discards read length artifacts that give rise to low RSC and uses a matched filtering approach that maximizes the
signal to noise ratio measured by the NSC, we therefore conjectured that Ritornello may be able to rescue these
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low quality samples. We compared the performance of Ritornello with that of MACS2 and GEM on samples
with suboptimal quality based on the NSC and RSC scores. The ENCODE Consortium has suggested repeating
experiments with NSC values less than 1.05 and RSC values less than 0.8. Using these criteria we identified
that out of the 28 samples we investigated, four samples have suboptimal quality. These four experiments
include: ATF2 H1 replicate 1 (NSC=1.04,RSC=0.62), ATF2 H1 replicate 2 (NSC=1.04,RSC=0.74), ELK1 K562
replicate 1 (NSC=1.03,RSC=0.64), and ELK1 K562 replicate 2 (NSC=1.05,RSC=0.73). We observed that in
these four samples, the pileups of reproducible peaks predicted by Ritornello have a characteristic bimodal shape
of transcription factor binding and have much stronger read coverage than their matched input controls (Figure
12a). This demonstrates that there are numerous significant binding events that can be captured in low quality
ChIP-seq samples. Additionally, the pileups of reproducible peaks reported by MACS2 or GEM have either
uniform read coverage or a narrow bimodal shape (similar to column artifacts) as in Figure 12b. This illustrates
that Ritornello reliably rescues peaks from low quality samples.

Ritornello obviates the need for a matched input control

Although matched input controls are optional for some methods, they are used by ChIP-seq peak calling al-
gorithms to avoid calling many spurious false positives. Both MACS2 and GEM have options to run with or
without the matched input control. Notably, Ritornello, which is a matched control free approach, avoids calling
these false positives. To show this, we curated lists of potential false positives from each of the 28 samples.
These lists were generated by considering the strongest peaks predicted by matched control free MACS2 (or
GEM) but not predicted by MACS2 or GEM. To further enrich for false positives, the lists were subsequently
filtered to exclude motif containing peaks. In most samples, Ritornello calls a small fraction of the false positive
peaks (median=0.04) as seen in Table 2. This demonstrates that while standard methods such as MACS2 and
GEM require matched control data in order to exclude false positives, Ritornello can discard most of these false
positives without matched control data.

We observed that in three samples (ATF2 replicate 2, CTCF replicate 1, and MAX hESC replicate 2 in Table
2), Ritornello had a non-negligible overlap with the potential false positive lists. To inspect whether the potential
false positives that Ritornello reported are actual false positives, we created a pileup for these peaks. We observed
in Figure 13, that these pileups closely resemble the most significant true binding event pileups, and are likely
not false positives. This suggests that using MACS2 or GEM with a matched negative control may result in false
negatives. Together, these results indicate that Ritornello both reduces the false positives in scenarios where
standard methods are used without matched control data and detects putative events that standard methods
using matched control data would fail to predict.

Discussion

In this work, we demonstrated that we could infer the entire fragment length distribution, rather than only
the mean fragment length, using a deconvolution approach from single-end TF ChIP-seq experiments. We
derived an experiment specific probabilistic model to mathematically describe the well-known bimodal shape
of TF binding. Using this bimodal shape, we applied the matched filter technique from signal-processing to
identify potential TF binding sites and used a Poisson GLM to deconvolve the binding intensities and test the
significance of each putative binding event. Our model efficiently deconvolves the effect of neighboring peaks
as well as noise to resolve multiple adjacent binding events. We compared Ritornello (a control-free approach)
with two popular algorithms recommended by ENCODE, MACS2 and GEM, which require matched controls
to reduce false positives. We found that Ritornello outperforms these other methods in terms of reproducibility
between biological replicates, motif enrichment of most significant reproducible peaks and the coverage pattern
of unique reproducible peaks.

We also identified artifactual binding regions where the local cross-correlation peaks at read length instead of
around fragment length. We elucidated that these artifactual regions contribute to the phantom peaks, associated
with poor experimental quality. Current peak calling algorithms, such as MACS2 and GEM, rely on matched
control samples to remove a substantial fraction of these artifacts. We provide an extensive description of this
specific category of artifacts and their origin, and offer an automated approach to filter out artifacts without
requiring matched controls. Taken together, Ritornello offers an alternative that obviates the need for a match
control, demonstrating that one can safely reduce the total experimental cost of TF ChIP-seq experiments, while
providing superior analytic results.

ENCODE provides a blacklist of genomic regions which contains artifactually high read coverage in different ChIP-
seq experiments [57]. This manually curated blacklist largely overlaps with repetitive regions in the genome [57].
The blacklist has several drawbacks: 1) it does not cover all artifactual regions, 2) it is not generalizable to
different cell types and 3) it is only available for human and mouse. We note that a few peak calling tools,
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such as PePr [58], optionally remove artifacts in regions where the local read coverage in the ChIP is similar
to that in the matched control. However, these methods still require a matched control. Ritornello is capable
of removing artifacts independently without requiring either prior knowledge of a blacklist or matched negative
controls.

Many variables influence the quality of ChIP-seq experiments and our ability to infer true binding events from
the data. These include factors such as antibody efficiency, DNA fragmentation, PCR amplification, sequencing
depth, read mapping quality etc. Each of these factors may vary from one sample to another. Ritornello is
designed to implicitly take into consideration these experiment specific parameters from raw data and is applicable
to a wide variety of protocols. Additionally, it does not require any tuning of parameters. One limitation of
Ritornello is that it is designed to detect point-source peaks such as TF binding events. For broad-source peaks,
such as epigenetic modifications, we recommend other peak callers.

We demonstrated that in TF ChIP-seq experiments that would otherwise be discarded due to low quality,
Ritornello reliably recovers true binding events. Often repeat experiments with the same reagents are of poor
quality according to ENCODE’s metric and thus algorithms capable of handling such data are required. If,
however, the repeated experiments were to improve results, the previous poor quality samples may still be of
value to strengthen the findings of the higher quality samples.

Software availability

Ritornello was programmed in C++ using the FFTW [59] library for fast computation of the Fourier transform
and the Samtools [60] library for interfacing with the sequence alignment/map format which has become the
standard in high throughput sequencing. Ritornello is freely available for download at
https://sourceforge.net/projects/ritornello/files/ . Further analysis and graphics were made using the R statis-
tical language [61].
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Figure 1: Overview of the Ritornello approach. Step 1: the reads are mapped to the genome and the
distributions of read starts Pr[Rp] and Pr[Rn] are calculated. Step 2: the fragment length distribution
Pr[F ] is calculated using only those areas where the requisite independence assumptions, Rp ⊥ F or
Rn ⊥ F , hold (background coverage). Step 3: the expected distribution of reads around a binding event
is calculated from a model including the fragment length distribution Pr[F ] as well as the distribution of
relative binding positions within fragments Pr[K]. Initially, K is modeled with a uniform distribution,
or equivalently K ∼ Beta(α, α) with α = 1. Step 4: the expected distribution of reads around a binding
event is used to locate candidate binding event peaks (e.g. bk−1, bk, and bk+1) by identifying the positions
with the highest match with impulse response function. Step 5: candidate binding events are classified
as either read length artifacts (e.g. bk+1) or are retained as putative binding events (e.g. bk−1 and
bk) based on the shape of the local cross-correlation between opposing strands. Step 6: the binding
intensity, βp

k +βn
k , of each peak, bk are deconvolved from the mixture of local peaks bk−1 and background

noise using a maximum likelihood approach. The likelihood ratio test is then applied to determine the
significance of the peak. Step 7: the distribution of relative binding positions within fragments ,Pr[K] ,
is updated using a maximum likelihood estimate of α, where K ∼ Beta(α, α). This is obtained using a
combined likelihood model for the top 200 most significant peaks. Steps 3-6 are repeated using the new
Pr[K].
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Figure 2: Ritornello captures the fragment length distribution from single-end sequencing data. Given
a set of fragments, singled end sequenced reads are a subsample of paired-end sequenced reads. When
enough single end fragments are sampled the distribution of read coverage on the positive and negative
strands Pr[Rp] and Pr[Rn] are equivalent to their paired-end counterparts. For ChIP-seq, outside of
binding events and artifacts, this occurs most often in areas where fragments share common start or
end positions. (a) an illustrative example of reconstruction of the fragment length distribution using
fragments sharing a common start position. Paired-end fragments are simulated to form a common start
position (panel 1 in subfigure a). Single end reads are subsampled from the same fragments used for
paired end (panel 2 of subfigure a). The distances between opposing strand single end reads originating
from a set of fragments that share a common start position mimic the fragment lengths (b) Accurate
fragment length distribution calculation from single end data depends on fragments with common start
or end positions. The fragment length distribution calculated by Ritornello from a paired-end EZH2
sample subsampled to simulated singled end data is shown in black. The fragment length structure is
lost when reads belonging to fragments that share common start or end positions are discarded (red
line). The fragment length distribution calculated from the subset of fragments that share a common
start (blue), closely approximates the true fragment length distribution (dark green).
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Figure 3: The presence of binding events and read length artifacts hinders reconstruction of the fragment
length distribution by deconvolution. Coverage patterns (positive strand in red, negative strand in blue)
were generated from reads sampled randomly from either end of simulated fragments. Equation 2 was
applied to infer the fragment length distribution, FLD (black). The actual FLD was calculated from the
simulated fragments (green). The read length is shown in gray. (a) The FLD, inferred from reads in
simulated binding regions, deviates from the true FLD. (b) The FLD, inferred from genomic background
coverage outside of binding events, agrees with the true FLD. (c) In the presence of read length column
artifacts, the inferred FLD deviates from the true FLD, and exhibits a “phantom peak” at read length.
(d) In the presence of read length missing-column artifacts, the inferred FLD deviates from the true
FLD, and exhibits a “phantom peak” at read length.
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Figure 4: Column and missing-column artifacts and the nonrandom fragment length distribution in their
neighborhoods. Examples of read length column (a) and missing-column (b) artifacts in a single-end
human GM12878 cell anti-SRF ChIP sample on chromosome 1. Examples of a read length column (c)
and missing-column artifact (d) in a paired-end MEF input control sample on chromosomes 1 and 18
respectively. Positive strand reads are shown in red while negative strand reads are shown in blue. The
artifact center positions x where the sample genome differs from the reference are marked with asterisks.
The paired-end scatterplots show each read’s position (x axis) and associated fragment length (y axis) to
demonstrate the dependence relationship between genomic position and fragment length. Every positive
strand read (red point) is accompanied by a negative strand read (blue point) originating from the same
fragment. For clarity, in the paired-end column artifact plot (c), we have plotted each fragment and
separated them to two groups such that in one group all fragments have positive strand reads within the
positive strand column (light red column) and in the other group all fragments have negative strand reads
within the negative strand column (light blue column). Explicitly, reads from fragments contributing
positive strand columns are shown between the pink lines, while those from fragments contributing to
the negative strand column are shown between cyan lines. The paired-end missing-column artifact (d)
has a column of missing reads on the positive strand followed by a column of missing reads on the
negative strand. The positive strand column of missing reads is linked to a diagonal of missing reads
on the negative strand, representing the associated missing downstream fragment ends, and are together
outlined in light red. Similarly, the negative strand column of missing reads is linked to a diagonal of
missing reads on the positive strand, representing the associated missing upstream fragment ends, and
are together outlined in light blue. We highlight two fragments to demonstrate the coupling between
reads on the positive strand and reads on the negative strand.
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Figure 5: Read length artifacts likely stem from mapping problems. Reads that map to their correct
locations do not give rise to artifacts (left). Differences between the reference and sequenced genomes can
produce missing-column artifacts, and additionally the coverage can be relocated to a region of higher
sequence similarity forming a column artifact (right).
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Figure 6: Local cross-correlation differentiates true binding events from read length artifacts (false
positives). (a) Local cross-correlation of a binding event in anti-ATF2 K562 ChIP sample peaks near
the average fragment length. (b) Local cross-correlation of a column artifact in anti-ATF2 K562 ChIP
sample peaks near the read length. (c) A scatterplot of the maximum local log cross-correlation up to 10
bp beyond the read length versus the maximum local log cross-correlation in the range of 10 bp beyond
the read length to 0.75Fmax (d) A scatterplot of the maximum local binarized cross-correlation (using
unique reads) up to 10 bp beyond the read length versus the maximum local binarized cross-correlation
in the range of 10 bp beyond the read length to 0.75Fmax.
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Figure 7: The parameterized filter closely matches the peak shape. Shown is an example peak in a
human SRF sample. The parameterized filter for this sample is shown in grey. The peak location as
determined by the filter is shown by a dashed line.
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Figure 8: Number of reproducible peaks as determined by IDR between two biological replicates obtained
by Ritornello, MACS2 and GEM. For each of the 14 experiments, we label in blue the algorithm that
outputs the largest number of reproducible peaks, light blue the algorithm that outputs the second largest
number reproducible peaks, and grey the algorithm that outputs the smallest number reproducible peaks.
Five experiments out of the 14 presented have duplicated matched controls. Reproducibility of false
binding in duplicated matched control (values in parentheses) demonstrates that Ritornello has a low
false positive rate.
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Figure 9: Pileup of read start positions for NRF1 reproducible peaks in K562 cells obtained by Ritornello
only, by MACS2 only and by GEM only, after having removed read length artifacts identified by Ritornello
from peaks identified by both MACS2 and GEM. The pileups of peaks common to Ritornello and MACS2
(left) or Ritornello and GEM (right) are shown in black. The pileups of read start positions for Ritornello
best match the pileups of common peaks.
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Figure 10: PPileup of read start positions for SRF reproducible peaks in GM12878 obtained by Ritornello
only, by MACS2 only and by GEM only, after having removed read length artifacts identified by Ritornello
from peaks identified by both MACS2 and GEM. The pileups of peaks common to Ritornello and MACS2
(left) or Ritornello and GEM (right) are shown in black. The pileups of read start positions for Ritornello
best match the pileups of common peaks.
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Figure 11: Occurrence of motifs within 50 bp of the top 1000 reproducible peaks obtained by Ritornello,
MACS2 and GEM. For each of the 28 experiments (replicates are denoted by rep1 and rep2), we label
in dark blue the algorithm that outputs the largest number of motif containing peaks, light blue the
algorithm that outputs the second largest number of motif containing peaks, and grey the algorithm
that outputs the smallest number of motif containing peaks.
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Figure 12: Pileup of read start positions for reproducible peaks identified by Ritornello, MACS2 and
GEM in samples of low quality and their matched controls. (a) The pileups of reproducible peaks called
by Ritornello in ChIP samples are shown in blue, and the pileups in the matched controls are shown in
black. The pileups of peaks detected by Ritornello show smooth bimodal shapes and have much stronger
read coverage in the ChIP as compared to their matched controls. (b) Pileups of read start positions
from peaks detected by MACS2 are shown in red. The pileups of reproducible peaks called by MACS2
have a narrow bimodal shape (column artifact) or uniform coverage shape. (c) Pileups of read start
positions from peaks detected by GEM are shown in green. The pileups of reproducible peaks by GEM
also have a narrow bimodal shape or irregular spike like in the negative controls.
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Figure 13: Ritornello rescues false negative events. Here false negatives are defined as reproducible peaks
picked up by MACS2 or GEM without input, but discard by MACS2 and GEM with input. Ritornello
also identifies these events in both biological replicates, which are likely to represent actual binding events
because their pileups are similar to those of true binding events.
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Table 1: Transcription factor ChIP-seq experiments (two replicates each)

TF Cell type
NRF1 K562

SRF GM12878
REST H1
MAX K562
ATF2 H1
E2F4 GM12878

GATA1 MEL
MYC MEL

CTCF Myotube
ELK1 K562

SRF H1
MAX H1
YY1 H1

REST K562
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Table 2: Ritornello outputs a small fraction of peaks discarded by the use of a matched control. The
proportion of motif-free reproducible peaks predicted by MACS2 (or GEM) without a matched control
that are predicted by Ritornello but discarded by MACS2 (or GEM) when using matched control. This
proportion is explicitly defined as r ≡ R∩(MX−MX∩MI )

(MX−MX∩MI ) where R are the peaks reported by Ritornello,
MX are the peaks reported by MACS2 (or GEM) without a matched control that do not overlap a motif
and MI are the peaks reported by MACS2 (or GEM) with a matched control.

rMACS2 rGEM

NRF1 K562 rep1 0.00 0.00
NRF1 K562 rep2 0.02 0.03

SRF GM12878 rep1 0.15 0.12
SRF GM12878 rep2 0.03 0.02

REST H1 rep1 0.03 0.02
REST H1 rep2 0.03 0.02

MAX K562 rep1 0.03 0.02
MAX K562 rep2 0.04 0.09

ATF2 H1 rep1 0.02 0.01
ATF2 H1 rep2 0.33 0.20

E2F4 GM12878 rep1 0.00 0.01
E2F4 GM12878 rep2 0.19 0.09

GATA1 MEL rep1 0.07 0.05
GATA1 MEL rep2 0.08 0.07

MYC MEL rep1 0.13 0.04
MYC MEL rep2 0.15 0.05

CTCF Myotube rep1 0.28 0.16
CTCF Myotube rep2 0.06 0.05

ELK1 K562 rep1 0.00 0.00
ELK1 K562 rep2 0.00 0.00

SRF H1 rep1 0.20 0.01
SRF H1 rep2 0.02 0.00

MAX H1 rep1 0.11 0.09
MAX H1 rep2 0.27 0.18
YY1 H1 rep1 0.00 0.02
YY1 H1 rep2 0.02 0.02

REST K562 rep1 0.01 0.04
REST K562 rep2 0.11 0.09
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Table S1: ChIP-seq samples

TF Cell type ChIP ChIP
Depth

Control Control
Depth

Input/IgG

NRF1 K562 ENCFF000YVE 14422328 ENCFF000YQR 20216505 IgG
NRF1 K562 ENCFF000YVG 13140831 ENCFF000YQR 20216505 IgG
SRF GM12878 ENCFF000OFD 22677401 ENCFF000ODH 27578721 Input
SRF GM12878 ENCFF000OFG 31168812 ENCFF000ODH 27578721 Input
REST H1 ENCFF000OQE 15153099 ENCFF000OSE 66830473 Input
REST H1 ENCFF000OQH 20842565 ENCFF000OSE 66830473 Input
MAX K562 ENCFF000YTD 8120174 ENCFF000YQR 20216505 IgG
MAX K562 ENCFF000YTJ 20023038 ENCFF000YQR 20216505 IgG
ATF2 H1 ENCFF000OME 38468114 ENCFF000OSH 55951481 Input
ATF2 H1 ENCFF000OMH 42553524 ENCFF000OSF 27548706 Input
E2F4 GM12878 ENCFF000VUG 20373471 ENCFF000VWA 6211790 IgG
E2F4 GM12878 ENCFF000VUH 23847999 ENCFF000VWB 5526289 IgG
GATA1 MEL ENCFF001NSH 13589299 ENCFF001NUG 29225622 IgG
GATA1 MEL ENCFF001NSI 14533141 ENCFF001NUG 29225622 IgG
MYC MEL ENCFF001NPX 13253064 ENCFF001NUD 20400132 IgG
MYC MEL ENCFF001NPY 12649437 ENCFF001NUD 20400132 IgG
CTCF Myotube ENCFF000BNJ 13786817 ENCFF000BNE 42199165 Input
CTCF Myotube ENCFF000BNL 18693675 ENCFF000BNF 31202572 Input
ELK1 K562 ENCFF000YMM 20476073 ENCFF000YQR 20216505 IgG
ELK1 K562 ENCFF000YMP 14999686 ENCFF000YQR 20216505 IgG
SRF H1 ENCFF000OUH 25965316 ENCFF000OSE 66830473 Input
SRF H1 ENCFF000OUM 21984384 ENCFF000OSE 66830473 Input
MAX H1 ENCFF000OPO 28332084 ENCFF000OSH 55951481 Input
MAX H1 ENCFF000OPR 31783032 ENCFF000OSF 27548706 Input
YY1 H1 ENCFF000OWG 30394170 ENCFF000OSE 66830473 Input
YY1 H1 ENCFF000OWI 15877505 ENCFF000OSE 66830473 Input
REST K562 ENCFF000QCL 27965664 ENCFF000QER 13847077 Input
REST K562 ENCFF000QCM 26398569 ENCFF000QES 20248824 Input
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