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Abstract 

Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the 
potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), 
a simple modelling technique that can be implemented using summary-level data from the discovery 
samples. We herein propose modifications to improve the performance of PRS. We introduce 
threshold-dependent winner’s-curse adjustments for marginal association coefficients that are used to 
weight the SNPs in PRS. Further, as a way to incorporate external functional/annotation knowledge 
that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for 
SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. 
Across all diseases, a simple winner’s curse correction uniformly led to enhancement of performance 
of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. 
Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in 
efficiency (25-50% increase in the prediction R2) for 5 of 14 diseases. As an example, for GWAS of 
type 2 diabetes, winner’s curse correction improved prediction R2 from 2.29% based on the standard 
PRS to 3.10% (P=0.0017) and incorporating functional annotation data further improved R2 to 3.53% 
(P=2×10-5).  Our simulation studies illustrate why differential treatment of certain categories of 
functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to 
proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium 
structure. 
 
Keywords: winner’s curse correction, polygenic risk score, genome-wide association studies, genetic 
risk prediction 
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Introduction 1 

Large genome-wide association studies (GWAS) have accelerated the discovery of dozens or 2 

even hundreds of common single nucleotide polymorphisms (SNPs) associated with individual 3 

complex traits and diseases, such as height1; 2, body mass index3 and common cancers (e.g., 4 

breast4 and prostate5 cancers). Although individual SNPs typically have small effects, cumulative 5 

results have provided insight about underlying biologic pathways and for some common diseases 6 

like breast cancer have yielded levels of risk-stratification that could be useful as part of 7 

prevention efforts6. Analyses of GWAS heritability using algorithms such as GCTA7; 8 have 8 

shown that common SNPs have the potential to explain substantially larger fraction of the 9 

variation of many traits.   10 

The future yield of GWAS studies, for both discovery and prediction, depends heavily on the 11 

underlying effect-size distribution (ESD) of susceptibility SNPs9; 10,6.  A number of alternative 12 

types of analyses of ESD now point towards a polygenic architecture for most complex traits, in 13 

which thousands or even tens of thousands of common SNPs, each with small estimated effect 14 

sizes together can explain a substantial fraction of heritability11; 12. Mathematical analyses of 15 

power indicates that because of the polygenic nature of complex traits, future studies will need 16 

large sample sizes, often by an order of magnitude higher than even some of the largest studies to 17 

date, for improving accuracy of genetic risk-prediction10; 11. Nevertheless, for current datasets, 18 

there remains an opportunity to develop more efficient algorithms for improving the models. 19 

Available algorithms for polygenic risk score (PRS) prediction models have varying degrees of 20 

complexity. The simplest of these methods, widely implemented in large GWAS, selects SNPs 21 

based on a threshold for the significance of the marginal association test-statistics and then the 22 

cumulative weighting of these SNPs by their estimated marginal strength of association is 23 
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applied13. The threshold for SNP selection can be optimized to improve the predictive 24 

performance in an independent validation dataset. For a number of traits with large GWAS 25 

sample sizes, it has been shown that an optimally selected threshold can improve risk prediction 26 

compared to that based on the genome-wide significance threshold used for discovery14.  A 27 

number of newer methods involving the joint analysis of all SNPs using sophisticated mixed-28 

effect modeling techniques have recently been developed and may lead further increases in 29 

model performance15-17. 30 

In this report, we propose simple modifications to the widely used PRS modeling techniques 31 

using only GWAS summary-level data. Drawing from the lasso18 algorithm, we propose a simple 32 

threshold dependent winner’s curse adjustment for marginal association coefficients that can be 33 

used to weight the SNPs in PRS. Second, to exploit external functional knowledge that might 34 

identify subsets of SNPs highly enriched for association signals, we consider using multiple 35 

thresholds for SNPs selection based on group membership and identify an optimal set of 36 

thresholds through an independent validation dataset.  We demonstrated the value of our new 37 

method using summary-level results from large GWAS across a spectrum of traits, some with 38 

available independent validation datasets to assess the performance of these methods. Available 39 

resources, such as annotation databases, expression and methylation quantitative trait locus 40 

(QTL) analyses were employed to identify groups of SNPs that are likely to be enriched with the 41 

trait of interest. We evaluated the utility of this information for risk-prediction for respective 42 

outcomes. We also report on the performance of new algorithm using simulation studies that 43 

incorporate realistic genetic architecture, linkage disequilibrium pattern and enrichment factor 44 

for underlying functional SNPs.  45 
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Material and Methods 46 

PRS construction 47 

Let Zm , mP , mβ̂ , and mσ̂ ),,1( Mm L=  denote the univariate �-statistics, the two-sided P-48 

values, the estimated association coefficients and their standard deviations available as part of 49 

summary-level results for M SNPs from a GWAS.  We assume that each genotypic value is 50 

normalized to have mean zero and unit variance and that mβ̂  is rescaled to correspond to the 51 

normalized genotypic values. Let img  be the genotype of SNP � for subject �. The simplest and 52 

most popular form of the PRS for GWAS has the form  53 

                                  imm
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mimm
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where the threshold α  for the P-values, or equivalently mσαλ ˆ)2/1(1 −Φ= − in the �-scale 55 

(Appendix A), can be chosen to optimize the predictive performance of PRS in an independent 56 

validation dataset. Here, )(⋅I is an indicator function and )(⋅Φ  is the cumulative density function 57 

of the standard normal distribution.  58 

Motivated from the simplification of the popular machine learning algorithm lasso18 in the 59 

orthonormal case, we propose considering a lasso-type thresholding for constructing PRS in the 60 

form 61 
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The adjustment of the association coefficient by the threshold parameter in the form of a 63 

location-shift can be viewed as a “winner’s curse” bias correction due to nature of the selection 64 

of the SNPs. We also considered a more formal approach to winner’s curse bias-correction19 by 65 

maximizing a conditional likelihood ( )λββ >|ˆ|ˆ
mmP  (Appendix A). Let )(ˆ λβ mle

m  be the 66 

maximum likelihood estimate of mβ based on the conditional likelihood. We propose a PRS as 67 

                                                 .)|ˆ(|)(ˆ)(
1

imm

M

m

mle
m

mle
i gIPRS λβλβλ >=∑

=

                                        (3) 68 

It is, however, critical that for selection of the optimal threshold parameter, bias correction is 69 

performed simultaneously with SNP selection for different values of the threshold parameters. 70 

We have previously studied the theoretical power for use of such lasso-type winner’s curse 71 

correction for developing PRS when SNPs are independent and concluded that under realistic 72 

polygenic architecture this simple correction has the potential to improve predictive performance 73 

of PRS11. The performance of such an algorithm in real GWAS data, where independent SNPs 74 

need to be selected after linkage disequilibrium (LD)-filtering, has not been evaluated. 75 

Information from various functional studies, annotation databases and GWAS from various traits 76 

is increasingly available to allow identification of subset of SNPs that can be considered to have 77 

potential high-prior probability for association with a given trait. Various types of enrichment 78 

analyses, whether based on distribution of summary-level statistics20 or on more advanced 79 

heritability-partitioning analyses21; 22, have shown empirical evidence of strong enrichment of 80 

GWAS association signals for different categories of SNPs which represent only a relatively 81 

small fractions of all GWAS SNPs. However, very few systematic studies have examined 82 

whether and how such enrichment information can be utilized to improve models for genetic risk 83 
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prediction. We consider a simple modification to PRS to explore this issue. We assume that the 84 

set of M SNPs can be partitioned into two mutually exclusive groups, S1 and S2, where S1 85 

represents a relatively small subset representing “high-prior” SNPs (referred to as HP) and the 86 

second group S2 represents the remainder of the GWAS SNPs (referred to as “low-prior” SNPs 87 

or LP) that can be considered part of an “agnostic” search. We allow differential treatment of the 88 

SNPs in the PRS: 89 

                   imm
Sm

mimm
Sm

mi gIgIPRS )|ˆ(|
~

)|ˆ(|
~

),( 2121

21

λββλββλλ >+>= ∑∑
∈∈

                                    (4) 90 

and select the optimal set of threshold parameters based on independent validation dataset(s). We 91 

refer to the PRS selecting SNPs with two separate thresholds as two-dimensional PRS or 2D 92 

PRS. Here, mβ~ can be chosen as the original estimate mβ̂ , the lasso-type correction 93 

+−= )|ˆ)(|ˆ(ˆ λβββ mm
lasso
m sign or the MLE correction, mle

mβ̂ . The PRS in (1), (2) and (3) using a 94 

single threshold is referred to as 1D PRS.  95 

Following analytic techniques similar to those derived for 1D PRS11, we can characterize the 96 

theoretical predictive performance of 2D PRS and the corresponding optimal set of thresholds 97 

based on the genetic architecture parameters of the two sets of SNPs assuming independence 98 

(Appendix B). Using simulation studies, we study performance of the method with realistic LD 99 

pattern among SNPs. 100 

LD-pruning and LD-clumping 101 

The performance of PRS is typically improved if genetic markers are pruned for LD23. LD-102 

pruning procedures that ignore GWAS P-values frequently prune out the most significant SNPs 103 
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and may reduce performance. Instead, we use the LD-clumping procedure implemented in 104 

PLINK23 that chooses the most significant SNP from a set of SNPs in LD guided by GWAS P-105 

values. After LD-clumping, no SNPs with physical distance less than 500kb have LD �� � 0.1. 106 

Expanding HP SNP set through LD 107 

Suppose S1 is a given HP set defined based on external annotation data (see section Annotation 108 

datasets). Any SNP in high LD with a SNP in S1 is also considered to be an HP SNP. Thus, we 109 

expanded S1 by including all SNPs that were in high LD (�� ≥ 0.8) with any SNP in the original 110 

S1. 111 

Simulation Scheme 112 

We performed simulations to evaluate the performance of six PRS prediction methods: 1D and 113 

2D PRS without winner’s curse correction and with lasso/MLE winner’s curse correction. To 114 

make simulations realistic in terms of the distribution of minor allele frequencies (MAF) and LD, 115 

we simulated quantitative traits with specific genetic architecture by conditioning on the 116 

genotypes of a lung cancer GWAS24, which had 11,924 samples of European ancestry and 117 

485,315 autosomal SNPs after quality control.  The simulation scheme is summarized in the 118 

following steps: 119 

(1) We performed LD-pruning implemented in PLINK so that no SNPs within 500kb were in 120 

LD at threshold �� � 0.1. After LD-pruning, � � 53,163 autosomal SNPs (denoted as 121 


) were left. 122 

(2) Denote 1S  as the putative HP SNP set and 12 \ SSS =  as the LP SNP set. We selected a 123 

set of 5000 “causal” SNPs (denoted as C ) from the pruned SNP set S . If C  is randomly 124 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2016. ; https://doi.org/10.1101/034082doi: bioRxiv preprint 

https://doi.org/10.1101/034082
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

selected, i.e., 1S  is not enriched with causal SNPs, we expect MSCCS /|||||| 11 =∩ SNPs 125 

overlapping between 1S  and C . Thus, we defined the enrichment fold change for 1S  as  126 

MSC

CS

/||||

||

1

1 ∩=Δ . 127 

The enrichment fold change Δ ranged from 2 to 4 in simulations. 128 

(3) We simulated quantitative traits according to ∑ ∈
+=

Ct iitti gy εβ , where stβ  were 129 

simulated independently from a Gaussian mixture distribution 130 

),0()1(),0(~ 2
2

2
1 σπσπβ NNt −+ with .1.0=π  Here, 2

1σ , 2
2σ and )( iVar ε were scaled so 131 

that .1)( =iyVar  The phenotypic variances explained by the two components were  132 

1.0|| 2
1

2
1 == πσCh  and 4.0)1(|| 2

2
2
2 =−= σπCh .  We assume the same effect-size 133 

distribution for both HP and LP causal SNPs, but the proportions of causal SNPs are 134 

higher in the former than the later group. Under this assumption, Δ also reflects the ratio 135 

of heritability explained at a per SNP basis in the HP set compared to LP set. 136 

(4) We randomly selected 10,000 samples as a discovery set and 1,924 as a validation set. 137 

We performed GWAS association analysis for all 485,315 autosomal SNPs in the 138 

discovery sample. The summary statistics were used to calculate PRS for each sample in 139 

the validation sample. The prediction 2R  was calculated as )),((max 2
ii yPRScor λλ  for 140 

1D PRS methods and )),,((max 21
2

, 21 ii yPRScor λλλλ  for 2D PRS methods. We repeated 141 

the simulation 50 times for each set of parameters and report the average prediction 2R .  142 
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Recently, Finucane et al.22  reported the heritability explained by common SNPs in multiple 143 

functional categories for 17 traits. Interestingly, they found that common SNPs located in regions 144 

that are conserved in mammals25 accounted for about 2.6% of total common SNPs but explained 145 

approximately 35% of total heritability in average across these traits, suggesting a 13.5-fold 146 

enrichment. Thus, we were motivated to investigate whether SNPs related with the conserved 147 

regions (CR) may be useful for 2D PRS methods. We downloaded the CR annotations (see Web 148 

Resources), identified common SNPs located in any CR and also identified their LD SNPs with 149 

�� � 0.8. These SNPs are referred as CR-SNPs, which were used as HP 1S  in simulations. We 150 

found 9,940 CR-SNPs overlapping with the 53,163 LD-pruned SNPs. To investigate whether 151 

specific genomic locations of CR-SNPs influence the performance of 2D-PRS, we also 152 

performed simulations using a set  �� of random SNPs that has the same size and associated 153 

heritability as the CR-SNPs.  154 

  155 
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GWAS datasets for risk prediction 156 

The information for GWAS data sets and functional annotation data are summarized in Tables 157 

S1A and S1B.  158 

WTCCC GWAS data 159 

The Wellcome Trust Case Control Consortium26 (WTCCC) data consisted of two control data 160 

sets (1958 Cohort samples and NBS control samples) and seven diseases: bipolar disorder (BD), 161 

coronary artery disease (CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid arthritis 162 

(RA), Type 1 diabetes (T1D) and Type 2 diabetes (T2D). Since we analyzed T2D using a much 163 

larger discovery sample, we did not analyze the T2D data in WTCCC. Because cases and 164 

controls were genotyped in different batches, differential errors between cases and controls 165 

might cause a serious overestimate of the risk prediction. Thus, we performed very rigorous 166 

quality control (QC) by removing duplicate samples, first or second degree relatives, samples 167 

with missing rate greater than 5% and non-European samples identified from EigenStrat27 168 

analysis. For each disease, we excluded SNPs with MAF<5%, missing rate >2%, missing rate 169 

difference >1% between cases and controls or PHWE<10-4 in the control samples. After QC, we 170 

had 2,928 controls, 1,817 BD cases, 1,878 CAD cases, 1,729 CD cases, 1,934 HT cases, 1,894 171 

RA cases and 1,939 T1D cases. For each PRS method and each disease, we estimated the 172 

prediction R2 by five-fold cross-validation.  173 

Three cancer GWAS with individual genotype data 174 

We analyzed three cancer GWAS with individual level genotype data: the bladder cancer28; 29 175 

GWAS of European ancestry including 5,937 cases and 10,862 controls, the pancreatic cancer 176 

GWAS30 of European ancestry (after excluding samples with Asian or African ancestry) 177 
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including 5,066 cases and 8,807 controls, and the Asian non-smoking female lung cancer 178 

GWAS31 with 5,510 cases and 4,544 controls. After QC, the bladder cancer GWAS had 463,559 179 

autosomal SNPs and the Asian lung cancer GWAS had 329,703 autosomal SNPs. The pancreatic 180 

cancer GWAS included samples from three studies that used different genotyping platforms. For 181 

convenience, we analyzed 267,935 autosomal SNPs that overlapped in all three platforms. The 182 

prediction performance was evaluated using ten-fold cross-validation. 183 

Five large GWAS with summary statistics and independent validation samples 184 

For T2D, we downloaded the summary statistics of the DIAGRAM (DIAbetes Genetics 185 

Replication And Meta-analysis) consortium32 with 12,171 cases and 56,862 controls for 2.5 186 

million SNPs imputed to the Hapmap2 reference panel. We also downloaded the GERA (Genetic 187 

Epidemiology Research on Adult Health and Aging) GWAS data of European ancestry with 188 

7,131 T2D patients and 49,747 samples without T2D (but may have other medical conditions, 189 

e.g., 27.4% with cancers, 25.4% with asthma, 25.4% with allergic rhinitis  and 12.4% with 190 

depression). Although these non-T2D samples were not perfect healthy controls, we found that 191 

most of the genome-wide significant SNPs in DIAGRAM could be replicated in GERA (data not 192 

shown). We randomly selected 5,631 T2D patients and 48,247 non-T2D subjects from GERA as 193 

discovery set, performed association analysis adjusting for top 10 PCA scores and meta-analyzed 194 

with the summary statistics from DIAGRAM for 353,196 autosomal SNPs overlapping between 195 

the two studies. The resulting summary statistics were used to build PRS risk models, which 196 

were validated in the remaining 1500 T2D patients and 1500 non-T2D subjects in GERA.  197 

The PGC2 (Psychiatric Genetics Consortium) schizophrenia GWAS meta-analysis consisted of 198 

34,241 cases and 45,604 controls33. Summary statistics were obtained by meta-analyzing all 199 
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PGC2 schizophrenia GWAS except the MGS34 (Molecular Genetics of Schizophrenia) subjects 200 

of European ancestry. The summary statistics were used to build PRS models, which were 201 

validated in MGS samples with 2,681 cases and 2653 controls.  202 

The TRICL (Transdisciplinary Research in Cancer of the Lung) GWAS consortium consisted of 203 

12,537 lung cancer cases and 17,285 controls35; 36. We performed meta-analysis using TRICL 204 

samples excluding the samples from the PLCO24 (Prostate, Lung, Colon, and Ovary Cohort 205 

Study) study. The summary statistics based on 11,300 cases and 15,952 controls were used to 206 

build risk models, which were validated in the PLCO lung GWAS samples with 1,237 cases and 207 

1,333 controls. 208 

For colorectal cancer, we performed meta-analysis for the GECCO (Genetics and Epidemiology 209 

of Colorectal Cancer Consortium)37 GWAS data after excluding the PLCO GWAS data. The 210 

PLCO samples were genotyped using two different genotyping platforms with different marker 211 

densities: one had approximately 500K SNPs and the other had only 250K SNPs. Thus, we first 212 

imputed the genotypes to the Hapmap2 reference panel using IMPUTE238 and selected SNPs 213 

with imputation �� � 0.9 for risk prediction. The discovery sample consisted of 9,719 cases and 214 

10,937 controls from 19 studies. The PLCO validation sample had 1,000 cases and 2,302 215 

controls. 216 

The summary statistics for prostate cancer were obtained from the PRACTICAL (PRostate 217 

cancer AssoCiation group To Investigate Cancer Associated aLterations) consortium and The 218 

GAME-ON/ELLIPSE (Elucidating Loci Involved in Prostate Cancer Susceptibility) Consortium 219 

with samples from populations of European, African, Japanese and Latino ancestry5. The 220 

discovery samples consisted of 38,703 cases and 40,796 controls after excluding the NCI Pegsus 221 
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GWAS samples with 4,600 cases and 2,941 controls, which were used for validation. We 222 

analyzed 536,057 autosomal SNPs after QC that overlapped between the validation and the 223 

discovery sample summary statistics.   224 

Annotation datasets 225 

For many traits, GWAS risk SNPs have been reported to show enrichment for eQTLs, 226 

methylation QTLs (meQTLs) and cis-regulatory elements (CREs). In addition, recent studies 227 

have reported extensive genetic pleiotropy across diseases and traits, e.g. psychiatric diseases39; 
228 

40, schizophrenia and cardiovascular-disease risk factors, including blood pressure, triglycerides, 229 

low- and high-density lipoprotein, body mass index (BMI) and waist-to-hip ratio (WHR)41. Thus, 230 

we defined the HP SNP set �� using eQTL SNPs (referred to as eSNPs) in blood, tissue specific 231 

eSNPs and meQTL SNPs (referred to as meSNPs), SNPs related with CREs (referred to as CRE-232 

SNPs), SNPs related with genomic regions conserved across mammals (referred to as CR-SNPs) 233 

and SNPs identified by pleiotropic analyses (referred to as PT-SNPs). We expanded each SNP 234 

set by including LD SNPs with �� � 0.8 in the local 1M region for each SNP. Here, LD was 235 

calculated based on the genotype data of relevant ancestry in The 1000 Genomes Project42.  236 

eSNPs and meSNPs: Blood cis-eSNPs were identified from two large-scale eQTL studies in 237 

European populations. One study involved a transcriptome sequencing project of 922 subjects43 238 

and the other involved a microarray study of 5,311 subjects44. Because of its very large sample 239 

size, the second study had the power to detect eSNPs with even tiny effect sizes which may not 240 

have meaningful functional importance. Thus, we included eSNPs with association P-value <10-6 241 

with any gene in the cis region in the second study. For both Asian and European lung cancer 242 

GWAS data, we used eSNPs45 and meSNPs46 based on lung tissues. For T2D, we used eSNPs47 243 
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and meSNPs48 based on adipose tissues. Furthermore, detected trans-SNPs are much fewer than 244 

cis-SNPs and the replication rate of trans-eSNPs was much lower than cis-SNPs47, suggesting 245 

that including trans-SNPs would be unlikely to improve risk prediction. Thus, we did not include 246 

trans-SNPs. 247 

CRE-SNPs: CREs are regions of noncoding DNA regulating the transcription of nearby genes. 248 

SNPs located in CREs may change the binding of specific transcription factors and thus the 249 

expression of the target genes. Typically, CREs are identified through ChIP-Seq experiments of 250 

histone modifications. We downloaded “peak” data (each peak represents one CRE) of specific 251 

sets of histone methylation markings, acetylation markings and DNase I hypersensitive sites 252 

(DHSs) from the ROADMAP project website for relevant cell lines. For each identified CRE 253 

(‘peak’), we identified common SNPs with MAF>1%. For prostate cancer, we used the ChIP-254 

Seq data for H3K27Ac and the transcription factor TCF7L249 to define HP SNP sets.  255 

PT-SNPs: The summary statistics for height1; 2, BMI and obesity3; 50, WHR51, waist 256 

circumference (WC)51, hip circumference (HIP)51 were downloaded from the GIANT consortium 257 

website. The summary statistics for GWAS meta-analysis of cardiovascular-disease risk 258 

factors52, including triglycerides (TG),  low-density lipoprotein (LDL) and high-density 259 

lipoprotein (HDL), were also used for 2D PRS. 260 

We investigated whether or not each tentative HP SNP set was enriched for GWAS associations 261 

by examining the quantile-quantile (QQ) plot, which was made for HP SNPs vs. LP SNPs after 262 

LD-clumping. The SNP sets not enriched for GWAS associations were not expected to improve 263 

risk prediction in 2D PRS. Thus, for each disease, we only included HP SNP sets for 2D PRS 264 

when they showed strong enrichment in QQ plots. Interestingly, blood eSNPs were enriched for 265 
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almost all diseases. CR-SNPs showed modest enrichment for majority of the diseases. Thus, 266 

blood eSNPs and CR-SNPs were used for 2D PRS for all diseases. In addition, eSNPs and 267 

meSNPs derived in lung tissues were enriched in lung cancer GWAS of both European and 268 

Asian ancestry. The SNPs related in enhancer and active promoter regions (characterized by 269 

H3K4me3, H3K9-14Ac, H3K36me3, H3K4me1, H3K9ac and H3K9me3) were enriched for 270 

GWAS associations but SNPs related with the repressive regions (characterized by H3K27me3) 271 

were not. Thus, we included SNPs related with these enhancer and active promoter regions for 272 

2D PRS. DHS SNPs were not strongly enriched and thus were excluded. Recently, we have 273 

shown significantly shared genetic component between lung cancer and bladder cancer risk53. 274 

Thus, we also used HP SNPs derived based on lung tissues or cell lines for predicting bladder 275 

cancer risk. Furthermore, we found that SNPs identified through pleiotropic analysis were 276 

enriched in multiple diseases. For example, SNPs with P-value <0.001 in GWAS of height, 277 

HDL, LDL, TC, TG, WC, obesity, HIP and T2D were enriched in lung cancer GWAS. Because 278 

our 2D PRS methods required a relatively large number of HP SNPs to achieve improvement, we 279 

combined the SNPs with P-value <10-3 (or 10-2) in at least one trait into a HP SNP set referred as 280 

PT-0.001 (or PT-0.01).  281 

Testing the statistical significance of improvement for risk prediction 282 

For WTCCC and three cancer GWAS data sets with individual genotype data, we used K-fold 283 

cross-validation to estimate prediction R2. Here, K=5 for WTCCC data and K=10 for cancer 284 

GWAS data. We were interested in testing whether the prediction of a new PRS method was 285 

significantly better than that of the standard 1D PRS defined in equation (1). For the 
�� cross-286 

validation, we denote ��,�
�  as the maximum prediction for the standard 1D PRS optimized across 287 
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P-value thresholds, ��,�
�  as the maximum prediction for a new PRS method optimized across all 288 

P-value thresholds for 1D PRS and all pairs of P-value thresholds for 2D PRS. We defined 289 

�� 
 ��,�
� � ��,�

�  and estimated its variance as ��� 
 ∑ ��� � ����/�� � 1��
�	�  with �� 
 ∑ ��

�
�	� /�. 290 

We calculated the statistic � 
 ��/����/� and evaluated its significance using the t-distribution. 291 

For the five diseases with independent validation samples, we used bootstrap to estimate the 292 

variance of the R2 estimates to test significance42.  293 

Results 294 

Theoretic investigation of 2D PRS performance assuming independent SNPs  295 

Figure 1A shows the theoretically-derived AUC for a binary trait based on 1D PRS and 2D PRS 296 

without applying a winner’s curse correction. For all PRS models, the AUC increases with the 297 

sample size of the discovery dataset. The 2D PRS can improve the 1D PRS in which the 298 

magnitude depends on the sample size in the discovery sample and also the enrichment of the HP 299 

SNPs. Figure 1B shows the optimal P-value thresholds for including SNPs that maximize the 300 

prediction of 2D PRS. The optimal P-value threshold for including HP SNPs is more liberal than 301 

that for LP SNPs and the difference diminishes as the training sample size becomes very large.  302 

Polygenic risk prediction of T2D 303 

Figure 2A presents the 1D PRS results for T2D. The standard 1D PRS without winner’s curse 304 

correction had a prediction R2=2.29% by including SNPs with P�2×10-3. The winner’s curse 305 

correction improved R2 to 3.10% using the lasso-type correction and 2.67% using the MLE 306 

correction.  307 
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Next, we investigated whether functional annotation could further improve risk prediction. We 308 

considered CR-SNPs, eSNPs and meSNPs in adipose tissue, and SNPs related with different 309 

histone marks and their combinations as HP SNP sets. These SNPs were enriched in T2D 310 

GWAS, exemplified by the QQ plot in Figure 2B for a HP SNP set comprising of 311 

eSNPs/meSNPs in adipose tissue and SNPs related with H3K4me3 in the pancreatic islet cell 312 

line. Note that the SNPs have been pruned to have LD r2
≤0.1, so the observed enrichment was 313 

unlikely due to an artifact related to extensive LD. Figure 2C illustrates how the prediction R2 of 314 

a 2D PRS depends on the P-value thresholds for the HP and LP SNPs. The prediction R2 was 315 

maximized using a more liberal P-value threshold 0.03 for HP SNPs and a more rigorous 316 

threshold 0.005 for LP SNPs. This optimal 2D PRS had 8,018 HP SNPs and 2,033 LP SNPs.  317 

Figure 2D reports the prediction R2, AUC and the significance for testing of whether an 318 

alternative PRS method could improve the standard 1D PRS. The best predictions were achieved 319 

by the 2D PRS with lasso-type correction: R2=3.48% using eSNPs/meSNPs and CR-SNPs and 320 

R2=3.53% using eSNPs/meSNPs and H3K4me3 SNPs in pancreatic islet cell line (52.0% and 321 

54.1% efficiency gain compared to 2.29% using standard 1D PRS, respectively). These 322 

improvements were statistically significant compared to the 1D standard PRS (P=0.00002 and 323 

0.00004, respectively). Of note, the recently developed method LD-pred54 that models the LD 324 

information only slightly improved prediction R2 from 2.47% to 2.73% (10.5% efficiency gain) 325 

using DIAGRAM summary statistics as discovery. 326 

  327 
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Results for WTCCC data 328 

The prediction R2 values for six diseases in WTCCC data are reported in Figure 3A. The AUCs 329 

and Nagelkerke R2 are summarized in Table S2. Optimal thresholds for SNP selection are in 330 

Table S3. The lasso-type winner’s curse correction improved the 1D PRS predictions for CD 331 

(6.65% to 8.22%), RA (7.24% to 8.60%) and T1D (18.2% to 18.5%) and was slightly better than 332 

the MLE winner’s curse correction. The 2D PRS improved the prediction for CD (6.65% to 333 

7.71% using blood eSNPs). Combining functional data and lasso-type correction gave a 334 

prediction R2=8.75% for CD (31.6% efficiency gain over the standard 1D PRS). Note that our 335 

method of winner’s curse correction together 2D PRS performed at least as well as the standard 336 

1D PRS. However, because of the small sample size in the validation sample, the improvements 337 

were not statistically significant.  338 

Results for three cancer GWAS with individual genotype data 339 

Results are summarized in Figure 3B (prediction R2), Table S4 (AUC and Nagelkerke R2), Table 340 

S5 (P-value for testing significance of improvement) and Table S6 (optimal thresholds for SNP 341 

selection). The standard 1D PRS achieved an R2=1.12% for bladder cancer, 2.35% for Asian 342 

nonsmoking female lung cancer and 2.2% for pancreatic cancer, indicating the difficulty of 343 

genetic risk prediction for these cancers. The lasso-type correction improved the 1D PRS for all 344 

three cancers: R2 from 1.12% to 1.29% for bladder cancer, 2.35% to 2.51% for Asian female 345 

nonsmoking lung cancer and 2.20% to 2.54% for pancreatic cancer. Our 2D PRS methods 346 

further improved the prediction although the various annotation datasets gave different 347 

improvement. For bladder cancer, the greatest efficiency gain (R2=1.64%, 46.4% efficiency gain 348 

over the standard 1D PRS and 27.1% efficiency gain over the 1D PRS with lasso-type 349 
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correction) was achieved with the SNPs related to the lung tissue/cell line expression data 350 

(eSNPs, meSNPs, H3K4me3 SNPs in SAEC), which performed slightly better than the SNPs 351 

related with histone marks in bladder cell line (R2=1.46%). For non-smoking female Asian lung 352 

cancer, the 2D PRS incorporated with PT-0.001 SNPs or H3K4me3 SNPs in HAEC improved R2
 353 

to 2.84%. For pancreatic cancer, the 2D PRS incorporated with CR-SNPs, SNPs related with 354 

histone marks of pancreatic islet and adipose eSNPs/meSNPs improved prediction R2 by 355 

approximately ~30% compared with the standard 1D PRS. Many of the improvements over the 356 

standard 1D PRS were statistically significant (Table S5), e.g., P=0.025 for 2D PRS with 357 

H3K4me3 SNPs in HAEC for bladder cancer, P=0.025 for 2D PRS with PT-0.001 SNPs for 358 

Asian lung cancer and P=0.047 (0.023, 0.023) for 2D PRS with CR-SNPs (PT-0.001, PT-0.01 359 

SNPs) for pancreatic cancer.      360 

Results for four large-scale summary-statistics datasets 361 

Prediction results are reported in Figure 3C (prediction R2), Table S7 (AUC and Nagelkerke R2), 362 

Table S8 (P-values for testing whether improvements were significant), Table S9 (optimal p-363 

value thresholds for SNP selection in 2D PRS) and Figure S2. For lung cancer, the standard 1D 364 

PRS had an R2=1.13%. The best prediction R2=1.65% (a 46.0% efficiency gain compared with 365 

the standard 1D PRS) was achieved by lasso-corrected 2D PRS with eSNPs/meSNPs in lung 366 

tissues, blood eSNPs and SNPs related with H3K4me3 in SAEC. To achieve this prediction 367 

accuracy, the optimal P-value threshold for the 2D PRS should be 0.008 for HP SNPs and 5×10-6 368 

for LP SNPs. However, the improvement was not statistically significant. For schizophrenia, the 369 

lasso-type correction improved 1D PRS R2 from 14.01% to 14.94%; the 2D PRS with CR-SNPs 370 

further improved the R2 to 15.37% and the improvement was highly statistically significant 371 
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(P=3.2×10-10). The optimal p-value threshold was 0.6 for CR-SNPs and 0.1 for other SNPs in 2D 372 

PRS with lasso-type correction. For CRC and prostate cancer, neither winner’s curse correction 373 

nor 2D PRS improved prediction. 374 

 375 

Simulation results 376 

The simulation results are summarized in Figure 4. First, the winner’s curse corrections, both 377 

lasso-type correction and MLE correction, slightly improved prediction in most if not all 378 

simulations and in particular improved more for the 1D PRS than the 2D PRS. We also observed 379 

that the two winner’s curse correction methods performed similarly. Second, if HP SNPs were 380 

chosen randomly in the LD-pruned SNP set and were strongly enriched for causal SNPs, the 2D 381 

PRS methods substantially improved the prediction over the 1D PRS methods. As expected, the 382 

improvement increased quickly with the enrichment fold change Δ. Without winner’s curse 383 

correction, 1D PRS had R2=1.38% and 2D PRS improved R2 to 2.13% for Δ=2, 2.86% for Δ=3 384 

and 4.22% for Δ=4. Consistent with theoretical analysis assuming independent SNPs (Figure 385 

1B), the optimal P-value threshold for HP SNPs was more liberal than that for LP SNPs (Table 386 

S10).  387 

However, when we used CR-SNPs as the HP SNPs, the improvement of 2D PRS was less 388 

compared to the simulations with randomly selected HP SNPs, even with the same enrichment 389 

fold change. As a numerical example, when Δ=4, the 2D PRS method without winner’s curse 390 

correction improved R2 from 1.38% to 1.73% for CR-SNPs as HP SNPs while from 1.38% to 391 

4.22% for random HP SNPs. To investigate whether the difference was caused by different local 392 

LD structure, for each SNP, we counted the number of SNPs located less than 1Mb from the 393 

given SNP and had �� � 0.8 with the SNP in the 1000 Genomes Project. For 9,940 CR-SNPs 394 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2016. ; https://doi.org/10.1101/034082doi: bioRxiv preprint 

https://doi.org/10.1101/034082
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

used for our simulations, the average number of LD SNPs is 22.4 (median=12) while the average 395 

number is 6.4 (median=2) for non-CR SNPs.  See also the histograms in Figure S1. Thus, CR-396 

SNPs are enriched in regions with strong LD and may suggest a possible explanation why CR-397 

SNPs (and other functional categories with similar LD structure) may not lead to improvement in 398 

risk prediction as much as would be expected based on enriched heritability.  399 

Discussion 400 

Our study demonstrates that the predictive performance of GWAS PRS models can be improved 401 

based on a combination of a simple adjustment to the threshold levels of SNP selection and 402 

weights of selected SNPs. The degree of gain, however, is not uniform and depends on multiple 403 

factors, including the genetic architecture of the trait, sample size of the discovery sample set, 404 

degree of enrichment of association in selected set of “high-prior” SNPs and the linkage 405 

disequilibrium patterns of these SNPs with the rest of the genome.  406 

The simple winner’s curse correction of SNP weights using the lasso-type method leads to an 407 

improvement in performance of PRS uniformly across all studied diseases. For some diseases, 408 

such as type-2 diabetes (Figure 2 and Table S7) or Crohn’s disease (Figure 3 and Table S2), this 409 

correction alone led to notable improvement in the performance of PRS.  The optimal weighting 410 

of SNPs would depend on the true effect size distribution of the underlying susceptibility SNPs. 411 

Lasso-type weights can be expected to be optimal under a double exponential distribution18; 55, 412 

and it is possible that the weighting could be improved further under alternative models of effect-413 

size distribution. It is, however, encouraging that irrespective of what might be the true effect-414 

size distribution, which is likely to vary across the diseases of study, our simple lasso-correction 415 
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improves over the standard PRS methodology without adding any additional computational 416 

complexity.  417 

The effect of using various threshold levels for different functional categories of SNPs on the 418 

performance of the model varied by disease as well as the functional annotation of external data 419 

sets employed in our analytical approach. After adjustment with lasso-type weights, the use of 420 

two-dimensional threshold based on prioritized SNPs led to notably higher values of R2 for lung 421 

cancer in Caucasians (increase by 46% using eSNPs, meSNPs and SNPs related with H3K4me3 422 

in SAEC as high priority set), bladder cancer (increased by 27.1% using high priority SNPs in 423 

lung tissue or cell lines), type-2 diabetes (increased by 13.9% using eSNPs, meSNPs and SNPs 424 

related with H3K4me3 mark in islet cell line) and pancreatic cancer (increased by 10.6% using 425 

SNPs related with histone modification marks in pancreatic or islet cell lines). Consistent with 426 

theoretical expectations, for each of the traits, the optimal thresholds selected were more liberal 427 

for the associated category of high-prior SNPs than those for complementary set.   428 

Our simulation study illustrated how the improvement in performance of the PRS model due to 429 

differential treatment of certain categories of SNPs is modest even when these SNPs have been 430 

categorized to be highly enriched for heritability21.  For example, recent heritability partitioning 431 

analysis has identified SNPs in conserved DNA regions, representing 2.6% of the genome, to be 432 

highly enriched for GWAS heritability for many diseases (explaining 35% heritability on 433 

average). Our theoretical calculations suggest that if only independent SNPs are analyzed, use of 434 

a subset of SNPs similarly enriched for heritability is expected to yield much higher 435 

improvement in the performance of the model (Figure 1). Our simulation studies showed that a 436 

similarly large gain is expected even in the presence of naturally occurring LD pattern if these 437 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2016. ; https://doi.org/10.1101/034082doi: bioRxiv preprint 

https://doi.org/10.1101/034082
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

SNPs are selected randomly from the genome. However, when we simulated high-prior SNPs 438 

based on the exact location of the CR-SNPs, the improvement was modest, within the range of 439 

observed data. The CR-SNPs represent a highly unusual linkage disequilibrium pattern in that 440 

they are in high degree of LD with an unusually large number of neighboring SNPs (Figure S1).   441 

In the future, more detailed and accurate assessment of the functional annotation of SNPs should 442 

improve performance of PRS models. Our method requires only simple modifications to the 443 

standard PRS algorithm and can thereby be used to rapidly evaluate the effectiveness of many 444 

alternative strategies. In the current study, we used physical location information pertaining to 445 

histone marks to define high-priority SNP. However, a SNP located in histone marks does not 446 

necessarily cause the variation in histone binding. Thus, a more reasonable approach is to 447 

identify genetic variants associated with histone variation across subjects in order to define high-448 

priority SNP sets. These types of histone QTLs have recently been reported in small-scale 449 

studies based on HapMap samples56; 57. We expect that histone QTL SNPs identified in future 450 

large-scale tissue specific studies might be more informative for risk prediction. 451 

 We have investigated the performance of the various algorithms using criteria that reflect how 452 

much of the variability of the observed outcomes can be explained by the PRS in the validation 453 

dataset. For clinical applications of risk-models, however, it is important to evaluate whether 454 

models are well calibrated that is to what extent they can produce unbiased estimates of risk for 455 

individuals with different SNP profiles. Earlier studies have noted that the standard PRS can be 456 

mis-calibrated and additional calibration steps may be needed when applying PRS in a clinical 457 

setting. In this regard, we find that a winner’s curse correction can alleviate calibration bias of 458 

the standard PRS, but substantial residual bias remains in some situations (Table S11).  The 459 
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regression relationship between overall PRS and disease status can be estimated based on a 460 

relatively small validation sample and can also be used to re-scale PRS for producing calibrated 461 

risk estimates. 462 

We used several different metrics for evaluating the potential impact of an improved PRS for 463 

risk-stratification.  The percentage gain in prediction R2 due to improved PRS is substantial for 464 

several diseases. For these diseases, the impact of an improved PRS on overall discriminatory 465 

performance of the models is noticeable but small (increase in AUC value between 1-2%). 466 

However, even a modest increment in AUC value can lead to identification of substantially 467 

higher fraction of individuals who are at the tails of risk distribution and hence likely to consider 468 

clinical decisions (Table S12). 469 

A limitation of our method is that we use stringent LD-pruning for creating sets of independent 470 

SNPs. However, this may result in loss of predictive power of models as SNPs in moderate or 471 

low LD may still harbor independent association signals. The LD-pred54 method has been 472 

proposed to better account for correlated SNPs in building PRS using GWAS summary-level 473 

data and has been shown to lead to improved performance over standard PRS for some diseases 474 

such as schizophrenia.  The LD-pred method also uses a specific form of prior distribution for 475 

obtaining “shrunken” estimates of the regression coefficients for the SNPs in the model. 476 

Although we did not make direct comparisons, it appears that the LD-pred method gains over 477 

standard PRS by improving the accounting for correlation between risk SNPs. In contrast, in our 478 

algorithm, which used stringent LD pruning, the gain in performance over the standard PRS 479 

mainly came from the lasso-type winner’s curse correction and the use of variable thresholds to 480 
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account for HP and LP SNPs. Thus it is possible that in the future the complementary strengths 481 

of the algorithms can be combined to develop more powerful PRS. 482 

In conclusion, we have proposed a set of simple methods for constructing PRS for genetic risk 483 

prediction using GWAS summary-level data. The proposed methods are computationally not 484 

onerous and yet show a noteworthy gain in performance. A major strength of our study is that we 485 

evaluated the proposed methods across a large number of scenarios reflecting a spectrum of 486 

underlying genetic architectures for different complex diseases, sample size of the study and 487 

available functional annotation. These studies and additional simulations provide comprehensive 488 

insights to promises and limitations of genetic risk prediction models in the near future. 489 

 490 

491 
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Appendices 492 

Appendix A: Winner’s curse correction 493 

Lasso-type winner’s curse bias correction estimator 494 

Suppose that for a given SNP, we have the two-sided P-value ��, the regression coefficient ���, its 495 

standard deviation ���  and the  -statistic  � 
 ���/���  .  The SNP is included in a risk prediction 496 

model if �� � ! or equivalently | �| � Φ
��1 � !/2�  or equivalently |���| � %�!, ���� 
497 

Φ−11−�/2��. Here, Φ() is the cumulative distribution function of �(0,1). The lasso-type 498 

shrinkage estimator conditioning on �� � ! is given as ���
��

� 
 '
()�����*|���| � %�!, ����+�

. 499 

Note that the bias correction depends on the p-value threshold ! for including SNPs.  500 

Maximum likelihood estimator to reduce winner’s curse bias 501 

Following Zhong and Prentice19, we assume  ���~-���, ��
�� with ��

� approximated by ���
�. By 502 

conditioning on �� � !  or equivalently |���| � %,  ��� follows a truncated normal distribution with 503 

an explicit density function 504 

�

��
������
���/���

����/��
�/���� ��
��/��
�/���
 .�|���|� %�!, �����. 505 

We derived the estimator ���
��� by maximizing the conditional likelihood numerically using R. 506 

Again, ���
��� depends on the p-value threshold ! for including SNPs. For computational 507 

efficiency, we pre-calculated ���
��� at a required precision for all predefined p-value thresholds.    508 

Appendix B: Theoretical prediction performance assuming independent SNPs 509 

Suppose that for a given trait of interest /, there are two predefined SNP sets: the high priority 510 

(HP) SNP set �� and the low priority (LP) SNP set ��. SNPs have been pruned and are in linkage 511 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2016. ; https://doi.org/10.1101/034082doi: bioRxiv preprint 

https://doi.org/10.1101/034082
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

equilibrium. We assume that �� has 0� independent susceptibility SNPs and 0� null SNPs while 512 

�� has 0� susceptibility SNPs and 0� independent null SNPs. Following Chatterjee et al.11, we 513 

assume that the true relationship between outcome / and independent susceptibility SNPs is 514 

modeled as follows: 515 

/ 
 1 ���(��

��

�	�

2 1 ���(��

��

�	�

2 1 0 3 (� 

��

 	�

2 1 0 3 (��

��

�	�

2 4, 

where all / and the genotypic values (’s are standardized so that 5�/� 
 0, 67��/� 
 1, 516 

5�(� 
 0 and 67��(� 
 1, and the error term 4~-�0, ��� and is independent of the genotypic 517 

values.  518 

From a discovery GWAS data set of size -, we have regression coefficient  �8
�
 and two-sided p-519 

value �� for each SNP. We build an additive prediction model by including SNPs in �� with P-520 

value � !� and SNPs in �� with P-value � !� 9  521 

/:�α�, α�� 
 1 ����<���!��(��

��

�	�

2 1 ����<���!��(��

��

�	�

2 1 ��� <� �!��(� 

��

 	�

2 1 ����<���!��(��

��

�	�

, 

where <�!� 
 .�� � !� with .�3� being an indicator function.    522 

The predictive correlation coefficient (PCC) for the predictive model can be expressed as 523 

�==�α�, α�� 
 >?��/, /:�α�, α���


 ∑ �������<���!����

�	� 2 ∑ �������<���!����

�	�

@∑ ����
� <���!����

�	�
2 ∑ ����

� <���!����

�	�
2 ∑ ��� 

� <� �!����

 	�
2 ∑ ����

� <���!����

�	�
 
.  
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Following Chatterjee et al. (2014), one can verify that PCC follows a normal distribution by the 524 

central limit theorem and the strong law of large numbers. Therefore, the expected value of PCC 525 

can be approximated as 526 

������α�, α���

� ∑ 
�	�
,���
�	�
�

	�� pow��, 
�	, ��� �  ∑ 
���
,���
���
�

��� pow��, 
�� , ���
�∑ �
,���
�	�
�

	��
pow��, 
�	, ��� � ∑ �
,���
���
�

���
pow��, 
�� , ��� � �����
,���0� � �����
,���0�

, 

� �� � 
�
,���
�pow��, 
, ������
��
 � �� � 
�
,���
�pow��, 
, ������
��

��� � 
�
,���
�pow��, 
, ������
��
 � �� � 
�
,���
�pow��, 
, ������
��
 � �����
,���0� � �����
,���0�

 

where A!,"��� 
 5���|<�!� 
 1�, B!,"��� 
 5����|<�!� 
 1�, pow�-, �, !� is power to detect 527 

a SNP with effect size � at a significance level α in a GWAS with size -, and F��3� and F��3� are 528 

effect-size distributions for HP and LP susceptibility SNPs, respectively.  529 

In our numerical calculations, we assumed that the effect sizes of the susceptibility SNPs in the 530 

HP and LP sets followed the same distribution �~G-�0, ��
�� 2 �1 � G�-�0, ��

��, consistent with 531 

simulations. We performed grid search to identify the p-value thresholds �α�, α�� that maximizes 532 

5��==�α�, α���. For binary disease outcomes, the area under the curve (AUC) can be expressed 533 

as a function of PCC, as shown in Chatterjee et al. (2014).  534 
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Annotation for conserved genomic regions: http://compbio.mit.edu/human-constraint/data/gff/ 553 

DIAGRAM type 2 diabetes summary statistics, http://diagram-consortium.org/downloads.html  554 

GERA GWAS data; http://www.ncbi.nlm.nih.gov/projects/gap/cgi-555 

bin/study.cgi?study_id=phs000674.v1.p1  556 

IMPUTE2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html  557 

Psychiatric Genomic Consortium (PGC2), schizophrenia summary statistics, 558 

http://www.med.unc.edu/pgc/downloads  559 

Histone mark and DHS peak data, http://www.roadmapproject.org/  560 

Conserved genomic regions, http://compbio.mit.edu/human-constraint/data/gff/  561 

Height, BMI, WC, WHP, obesity summary statistics from GIANT consortium, 562 

http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium  563 

LDL, HDL, TC and triglycerides summary statistics, 564 

http://www.broadinstitute.org/mpg/pubs/lipids2010/  565 

eQTL and meQTL in adipos, http://www.muther.ac.uk/Data.html  566 

Blood eQTL, http://genenetwork.nl/bloodeqtlbrowser/  567 

SNAP, http://www.broadinstitute.org/mpg/snap/ 568 

Transdisciplinary Research In Cancer of the Lung (TRICL), http://u19tricl.org/  569 

The code for PRS data analysis is available at http://dceg.cancer.gov/tools/analysis/functionalPRS   570 
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Figure legend 747 

Figure 1. Theoretic investigation of prediction performance and optimal thresholds for 748 

SNP selection in 2D PRS.   749 

The theoretic calculation assumes 0 
 53,163 independent SNP, of which 5,000 are causal for 750 

a binary trait, similar to simulation studies. The high-prior (HP) SNP set has 5,000 SNPs and the 751 

low-prior (LP) SNP set has 48,163 SNPs.  Δ is the enrichment fold of HP SNPs in the causal 752 

SNP set.  (A) The prediction AUC for 1D PRS and 2D PRS. (B) The optimal P-value thresholds 753 

for including HP and LP SNPs in 2D PRS. For both plots, x-coordinate is the discovery sample 754 

size, assuming equal number of cases and controls.   755 

Figure 2. Genetic risk prediction for type-2 diabetes. PRS models were built based on the 756 

summary statistics from a meta-analysis of DIAGRAM consortium and GERA data (17,802 757 

cases and 105,109 controls in total) and validated in independent 1500 cases and 1500 controls in 758 

GERA. (A) Prediction R2 (observational scale) for 1D PRS with or without winner’s curse 759 

correction. “NO”: no winner’s correction for association coefficients; “Lasso”: regression 760 

coefficients were modified by a lasso-type correction; “MLE”:  association coefficients were 761 

modified by maximizing a likelihood function conditioning on selection. (B) Quantile-quantile 762 

plot for � log����� for high priority (HP) SNPs v.s. low priority (LP) SNPs. SNPs were pruned 763 

to have pairwise 1.02 ≤r  . Here, the HP SNPs were eSNPs/meSNPs in adipose tissue or SNPs 764 

related with the H3K4me3 mark in pancreatic islet cell line with data downloaded from the 765 

ROADMAP project. The HP SNPs were strongly enriched in the discovery data. (C) Prediction 766 

R2 for 2D PRS with lasso-type winner’s curse correction. The SNP set was the same to (B). The 767 

best prediction (R2=3.53%) was achieved when we included HP SNPs using criterion � � 0.03 768 

and HP SNPs with � � 0.005. (D) The prediction R2, the area under the curve (AUC) and the 769 

significances for testing whether an alternative PRS was better than the standard 1D. The 770 

Nagelkerke R2 values were reported in Tables S4. 771 

Figure 3. Comparison of polygenic risk prediction methods for 13 complex diseases. For all 772 

figures, the y-coordinate is the prediction R2 in the observational scale. “1D” denotes 1D PRS; 773 

“2D, blood eSNPs” denotes 2D PRS using blood eSNPs as high-prior SNP set. In the x-axis, 774 

“NO” denotes PRS without winner’s curse correction; “LASSO” and “MLE” denote lasso-type 775 

and MLE winner’s curse correction, respectively.  (A) Prediction R2 values for six diseases in 776 

WTCCC data, estimated based on five-fold cross-validation. (B) Prediction R2 values for three 777 

GWAS of cancers, estimated based on ten-fold cross-validation. (C) Prediction R2 values for 778 

four complex diseases estimated based on independent validation samples. 779 

 780 
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Figure 4.  Simulation results for comparing polygenic risk prediction methods and 781 

different high priority SNP sets. Quantitative traits were simulated conditioning on the 782 

genotypes of LD-pruned SNPs in lung cancer GWAS with 10,000 discovery samples and 1,924 783 

validation samples. For each simulation, we used 5,000 causal SNPs and 9,940 high priority 784 

(HP) SNPs (either randomly selected or the SNPs related with conserved regions). Δ  denotes the 785 

enrichment fold change of the HP SNP. In the x-axis, “1D” denotes 1D PRS without winner’s 786 

curse correction; “1D-LASSO(MLE)” denotes 1D PRS with lasso-type (MLE)  correction; “2D-787 

random” indicates 2D PRS with HP SNP sets randomly selected from the LD-pruned SNPs in 788 

the genome; “2D-CR” indicates 2D PRS using SNPs in conserved regions as HP SNPs.  789 
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PRS and high-priority 

SNPs for 2D PRS

Prediction R2 AUC Significance

NO Lasso MLE NO Lasso MLE NO Lasso MLE

1D 2.29% 3.10% 2.67% 0.582 0.597 0.590 0.0017 0.027

2D, CR-SNPs 2.73% 3.32% 3.11% 0.594 0.600 0.600 0.045 0.0003 0.0031

2D, histone SNPs, pancreatic islet 2.58% 3.23% 2.81% 0.590 0.600 0.594 0.074 0.00059 0.015

2D, eSNPs/meSNPs 2.58% 3.28% 2.83% 0.587 0.600 0.593 0.130 0.00048 0.019

2D, eSNPs/meSNPs and H3K4me3 in islet 2.90% 3.53% 3.13% 0.598 0.605 0.598 0.015 0.00002 0.0026

2D, eSNPs/meSNPs, CR-NPs 2.92% 3.48% 3.30% 0.594 0.602 0.601 0.012 0.00004 0.00038
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