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Understanding the causes of cis-regulatory variation is a long-standing aim in 28 

evolutionary biology. Although cis-regulatory variation has long been considered 29 

important for adaptation, we still have a limited understanding of the selective 30 

importance and genomic determinants of standing cis-regulatory variation. To 31 

address these questions, we studied the prevalence, genomic determinants and 32 

selective forces shaping cis-regulatory variation in the outcrossing plant Capsella 33 

grandiflora. We first identified a set of 1,010 genes with common cis-regulatory 34 

variation using analyses of allele-specific expression (ASE). Population genomic 35 

analyses of whole-genome sequences from 32 individuals showed that genes with 36 

common cis-regulatory variation are 1) under weaker purifying selection and 2) 37 

undergo less frequent positive selection than other genes. We further identified 38 

genomic determinants of cis-regulatory variation. Gene-body methylation (gbM) 39 

was a major factor constraining cis-regulatory variation, whereas presence of 40 

nearby TEs and tissue specificity of expression increased the odds of ASE. Our 41 

results suggest that most common cis-regulatory variation in C. grandiflora is 42 

under weak purifying selection, and that gene-specific functional constraints are 43 

more important for the maintenance of cis-regulatory variation than genome-44 

scale variation in the intensity of selection. Our results agree with previous 45 

findings that suggest TE silencing affects nearby gene expression, and provide 46 

novel evidence for a link between gbM and cis-regulatory constraint, possibly 47 

reflecting greater dosage-sensitivity of body-methylated genes. Given the 48 

extensive conservation of gene-body methylation in flowering plants, this 49 

suggests that gene-body methylation could be an important predictor of cis-50 

regulatory variation in a wide range of plant species.  51 
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Significance 52 

Despite long-standing interest in the contribution of cis-regulatory changes to 53 

adaptation, we still have a limited understanding of the selective importance and 54 

genomic determinants of cis-regulatory variation in natural populations. Using a 55 

combination of analyses of allele-specific expression and population genomic 56 

analyses, we investigate the selective forces and genomic determinants of cis-57 

regulatory variation in the outcrossing plant species Capsella grandiflora. We 58 

conclude that gene-specific functional constraints shape cis-regulatory variation and 59 

that genes with cis-regulatory variation are under relaxed purifying selection 60 

compared to other genes. Finally, we identify a novel link between gene-body 61 

methylation and the extent of cis-regulatory constraint in natural populations. 62 

 63 

Introduction 64 

Understanding the causes of regulatory variation is of major importance for many 65 

areas of biology and medicine (1). Much interest has centered on cis-regulatory 66 

variation, which has long been thought to be particularly important for adaptation (2-67 

5). Like other quantitative traits, cis-regulatory variation is expected to be shaped by 68 

the interplay of mutation, selection, and drift. However, the relative importance of 69 

these forces remains unclear in most species.  70 

Recently, prospects for quantifying cis-regulatory variation have greatly 71 

improved, and as a result, ample heritable cis-regulatory variation has been identified 72 

in many species (reviewed in (6)). This is resulting in a growing consensus that a 73 

large amount of standing cis-regulatory variation is under weak purifying selection (7-74 

9). Clarifying why the impact of purifying selection varies across the genome is 75 

therefore important to understand the maintenance of cis-regulatory variation. 76 

Variation in the intensity of purifying selection across the genome can result 77 

from differences in selective constraint that are due to the specific functions of the 78 

genes involved. For example, according to the dosage balance hypothesis, genes that 79 

encode interacting proteins are expected to experience stronger constraint than other 80 

genes (10). In yeast, there is empirical evidence that purifying selection on expression 81 

noise constrains regulatory evolution of dosage-sensitive genes (11-13) and in plants, 82 

dosage-sensitivity affects the retention of duplicate genes following whole-genome 83 

duplication (14). However, many other genomic features, including expression level, 84 
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tissue specificity and gene-body methylation (gbM), are also known to be associated 85 

with constraint (15-18) and could affect cis-regulatory variation.  86 

Variation in purifying selection can also result from broad, genome-scale 87 

forces that affect genes mainly as a result of their genomic environment, and not due 88 

to their specific function. For instance, in the self-fertilizing species Caenorhabditis 89 

elegans, variation in the impact of background selection across the genome had a 90 

major effect on the distribution of cis-regulatory variation across the genome (8). If 91 

background selection is important, then one might generally expect levels of cis-92 

regulatory variation to be associated with recombination rate and/or gene density (19). 93 

At present however, the relative importance of gene-level constraint vs. genome-scale 94 

evolutionary forces for the distribution of cis-regulatory variation remains unclear in 95 

most species. 96 

In this study, we have investigated the selective importance and genomic 97 

correlates of common cis-regulatory variation in the outcrossing crucifer species 98 

Capsella grandiflora. This species is particularly well suited for studying differences 99 

in the impact of selection across the genome, as it has relatively low population 100 

structure (20) and a large, stable effective population size (21, 22). Indeed, selection 101 

on both protein-coding (23) and regulatory regions (18) is highly efficient in C. 102 

grandiflora, and high levels of polymorphism enhance the power to detect cis-103 

regulatory variation and quantify selection. Genomic studies are facilitated by the 104 

close relationship between C. grandiflora and the selfing species Capsella rubella, for 105 

which a genome sequence is available (22). 106 

Here, we identified genes with common cis-regulatory variation in C. 107 

grandiflora based on analyses of allele-specific expression (ASE) in deep 108 

transcriptome sequencing data. To quantify the impact of positive and purifying 109 

selection on genes with cis-regulatory variation, we conducted population genomic 110 

analyses of high-coverage whole genome resequencing data from 32 C. grandiflora 111 

individuals. Finally, we identified genomic predictors of cis-regulatory variation. Our 112 

results show that there is pervasive cis-regulatory variation in C. grandiflora, and 113 

genes that harbor cis-regulatory variation are under weaker purifying selection and 114 

undergo less frequent positive selection than other genes. We find no evidence for a 115 

role of recombination rate or gene density in shaping cis-regulatory variation, 116 

suggesting that gene-specific variation in functional constraint is more important in 117 

this species. We further identify gbM as a major factor constraining cis-regulatory 118 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 29, 2016. ; https://doi.org/10.1101/034025doi: bioRxiv preprint 

https://doi.org/10.1101/034025
http://creativecommons.org/licenses/by-nc-nd/4.0/


variation, whereas presence of nearby TEs and tissue specificity of expression 119 

increase the odds of ASE. Our results provide novel evidence for a link between gbM 120 

and cis-regulatory constraint, possibly reflecting greater dosage-sensitivity of body-121 

methylated genes.  122 

 123 

Results  124 

 125 

Widespread cis-regulatory variation in C. grandiflora 126 

To identify genes with cis-regulatory variation, we quantified allele-specific 127 

expression based on deep whole transcriptome sequencing data (total 93.5 Gbp with 128 

Q≥30) from flower buds and leaves of three C. grandiflora F1s (Supplementary Table 129 

S1). Each F1 harbored an average of about 235,700 high-confidence heterozygous 130 

coding SNPs, which were phased prior to analyses of ASE. After filtering, on average 131 

approximately 13,400 genes per F1 were amenable to ASE analyses (Table 1).  132 

We assessed ASE using a Bayesian method (24), accounting for technical 133 

variation in allelic counts using high-coverage whole genome resequencing data for 134 

each F1 (mean coverage of 40x, total 26.6 Gbp with Q≥30; Supplementary Table S2). 135 

We estimated that a mean of 35% (range 33-39%) of analyzed genes show ASE in 136 

individual C. grandiflora F1s (Table 1). Similar proportions of genes had ASE in both 137 

leaves and flower buds (Table 1) and allelic expression biases were moderate for most 138 

genes with ASE, with strong allelic expression biases (0.2 ≤ ASE ratio ≥ 0.8) shown 139 

by an average of 5.1% of genes (Figure 1, Supplementary Figures S1 and S2).  140 

Out of a total of 11,532 genes that were amenable to analysis of ASE in all 141 

F1s, there were 1,010 genes that showed ASE in either leaves or flower buds, 313 142 

genes showed ASE in flower buds but not leaves, 404 genes showed ASE in leaf 143 

samples but not flower buds, and 293 genes had ASE in both flower buds and leaves 144 

of all F1s (Supplementary Figure S3). Among the 1,010 genes with ASE leaves or 145 

flower buds of all F1s, one GO category, GO:0006952, "defense response" was 146 

significantly enriched at FDR ≤ 0.01. This was likely driven by genes with ASE in 147 

leaves, as there was no significant enrichment of Gene Ontology (GO) terms among 148 

genes with ASE in flower buds, whereas six biological process GO terms associated 149 

with photosynthesis and defense responses were significantly enriched (FDR ≤0.01) 150 

among genes with ASE in leaves (Supplementary Table S3). Among control genes, 151 
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there was a nominally significant enrichment of genes in only two GO terms, protein 152 

binding (GO:0005515) and zinc ion binding (GO:0008270) (Weighted Fisher P ≤ 153 

0.01), but this was not significant at FDR ≤ 0.01. 154 

 155 

Lower intensity of purifying selection on genes with cis-regulatory variation 156 

To assess the impact of selection on genes showing cis-regulatory variation in C. 157 

grandiflora, we sequenced the genomes of 21 individuals from one population in the 158 

Zagory region of Greece (the 'population sample') as well as 12 individuals from 159 

separate populations across the species range (the 'range-wide sample') using 233.2 160 

Gbp of high-quality (Q≥30) paired-end 100 bp Illumina reads and a mean coverage of 161 

25x per individual (Supplementary Table S2). We called variants using GATK best 162 

practices and filtered genomic regions as previously described (25) to identify a total 163 

of 6,492,075 high-quality SNPs, most of which (5,240,485) were also segregating in 164 

the population sample. 165 

We compared levels of polymorphism at genes that show ASE in all of our 166 

F1s (1,010 genes; 'ASE genes'), using as a control set the 10,552 genes that were 167 

amenable to ASE analyses in all F1s but did not show significant ASE (termed 168 

'control genes') (Supplementary Figure S3). To reduce bias resulting from the 169 

requirement of expressed polymorphisms for analyses of ASE, all population genetic 170 

analyses were conducted only on these paired gene sets, and genes that were not 171 

amenable to analysis of ASE were not included. ASE genes had elevated 172 

polymorphism levels compared to the control at all investigated site classes, as well as 173 

an elevated ratio of nonsynonymous to synonymous polymorphism (Table 2; 174 

Supplementary Table S4), suggesting that the impact of purifying selection might 175 

differ between ASE and control gene sets (Table 2; Supplementary Table S4).  176 

To quantify the impact of purifying selection on ASE genes and control genes, 177 

we used the DFE-alpha method (26, 27), which allows estimation of a gamma-178 

distribution of negative fitness effects based on site frequency spectra (SFS) at 179 

putatively neutral and selected sites. We found that ASE genes have a significantly 180 

higher proportion of nearly neutral nonsynonymous mutations than control genes, as 181 

well as a significantly reduced proportion of nonsynonymous mutations under strong 182 

purifying selection (strength of purifying selection Nes>10) (Figure 2). This result 183 

applies broadly, both for the population and the range-wide samples, and when 184 
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assuming a constant population size as well as after correcting for population size 185 

change (Supplementary Figure S4). The result also holds after controlling for 186 

differences in the expression level among genes with and without ASE 187 

(Supplementary Figure S5), and when classifying genes based on a single F1 188 

individual (Supplementary Figure S6), suggesting that the results hold broadly for 189 

common cis-regulatory variation. Our results further remain unchanged after 190 

removing defense-response genes (GO:0006952) with ASE (Supplementary Figure 191 

S7) prior to DFE-alpha analyses, and thus strong balancing selection on these genes 192 

does not drive the patterns we observe.  193 

In contrast to the clear evidence for weaker purifying selection at 194 

nonsynonymous sites for genes with ASE, there were no significant differences in the 195 

DFE depending on ASE status at 5'-UTRs (Supplementary Figure S8). For introns, 196 

results were inconsistent, with some but not all analyses pointing to weaker purifying 197 

selection on control genes (Figure 2, Supplementary Figure S9, Supplementary Table 198 

S5). This could suggest that patterns of selection differ among coding and noncoding 199 

regions. However, at other noncoding regions than introns, such as promoter regions 200 

500 bp upstream of the TSS and at 3'-UTRs, there was some evidence for relaxed 201 

purifying selection at ASE genes (Figure 2; Supplementary Figures S10-S11, 202 

Supplementary Table S5). These results held only under the 1-epoch model, which 203 

could in part be due to a lack of power, as regulatory motifs are expected to make up a 204 

small fraction of the analyzed sites. Consistent with this, we infer weaker purifying 205 

selection on upstream regions and UTRs than on nonsynonymous mutations 206 

(Supplementary Figures S8-S11; Supplementary Table S5).  207 

 208 

Genes with cis-regulatory variation undergo less frequent adaptive evolution  209 

To investigate the impact of positive selection on genes with and without ASE we 210 

obtained estimates of ωa, the rate of adaptive substitutions relative to neutral 211 

divergence (28) in DFE-alpha. For this purpose, we relied on genome-wide 212 

divergence between Capsella and Arabidopsis, with 4-fold synonymous sites 213 

considered to be evolving mainly neutrally (see Methods for details). Using this 214 

method, we find that ASE genes show a significantly lower proportion of adaptive 215 

nonsynonymous substitutions than control genes (Figure 3). In contrast, we found no 216 

significant differences in ωa among ASE genes or control genes for UTRs or regions 217 

500 bp upstream of the TSS (Supplementary Table S5). Second, we estimated α, the 218 
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proportion of adaptive fixations in the selected site class, based on the approximate 219 

method of (29), designed to yield accurate estimates in the presence of linked 220 

selection. Results generated with this method were consistent with DFE-alpha, with a 221 

significantly lower estimate of the proportion of adaptive nonsynonymous 222 

substitutions at genes with cis-regulatory variation than at control genes in C. 223 

grandiflora (Figure 3). 224 

 225 

Determinants of cis-regulatory variation in C. grandiflora 226 

To identify genomic factors and potential drivers of cis-regulatory variation, we 227 

conducted logistic regression analyses with presence/absence of ASE as the response 228 

variable. We included a total of 12 predictor variables, chosen to include proxies for 229 

variation in mutation rate, recombination rate, gene density, expression level and 230 

degree of constraint, which could be expected to affect levels of cis-regulatory 231 

variation (see Methods for details). The best-fit model retained eight of these 232 

predictor variables (Table 3). In this model, gbM had the greatest effect on cis-233 

regulatory variation, resulting in a reduction of 49% in the odds of observing ASE 234 

(Table 3), whereas the presence of polymorphic TEs within 1 kb of the gene also had 235 

a substantial effect, increasing the odds of ASE by 38%, followed in turn by tissue 236 

specificity of expression, promoter diversity, expression level, gene length and 237 

nonsynonymous/synonymous polymorphism, all of which increased the odds of ASE 238 

(Table 3). Including network connectivity improved model fit, although the effect was 239 

not individually significant (Table 3). Notably, gene density and recombination rate, 240 

which affect the intensity of linked selection, were not included in the best-fit model. 241 

Similar results were obtained in an analysis that followed the approach of (30) to 242 

ensure orthogonality of predictors by using principal components of all continuous 243 

predictors in logistic regression analyses (Supplementary Tables S6 and S7). These 244 

analyses suggest that variation in gene-specific constraint are important for shaping 245 

the distribution of cis-regulatory variation across the C. grandiflora genome, and that 246 

gbM and presence of nearby TEs are strong predictors of cis-regulatory constraint.  247 

 248 

Discussion 249 

Our results show that genes that harbor common cis-regulatory variation in C. 250 

grandiflora are under weaker purifying selection, and experience less frequent 251 

positive selection than other genes. We further find that gene-specific features that are 252 
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likely to reflect the degree of functional constraint and mutational input are better 253 

predictors of cis-regulatory variation than those that are expected to shape the broad 254 

impact of linked selection across the genome. These functional constraints do not 255 

appear to limit the potential for adaptation at coding sequences, as positive selection 256 

had a greater impact on coding divergence at genes that did not exhibit common cis-257 

regulatory variation in C. grandiflora.  258 

Our findings support the view that most standing cis-regulatory variation in 259 

natural populations is weakly deleterious (7), and our robust inference of relaxed 260 

purifying selection on genes with common cis-regulatory variation agrees well with 261 

those of a recent eQTL mapping study in C. grandiflora (9). Our inference of relaxed 262 

purifying selection on genes with common cis-regulatory variation do not appear to be 263 

driven by balancing selection or conditional neutrality affecting a subset of defense-264 

related genes that show ASE, as our results remain unchanged after removing such 265 

genes.  266 

The major association between gbM and cis-regulatory constraint that we 267 

detected is particularly interesting, because the function of gbM is currently unclear 268 

(31, 32). The conservation of gbM of orthologs in very distantly related plant species 269 

suggests that gbM has functional importance, but intriguingly, some plants lack gbM 270 

(31-33). Body-methylated genes tend to be longer than other genes, expressed at 271 

intermediate levels, evolve slowly at the sequence level (17, 34, 35), and are stably 272 

expressed under different conditions (36). A recent study found that A. thaliana from 273 

northern Sweden show elevated gene body methylation, mainly due to trans-acting 274 

loci (36), but as far as we are aware, no study has directly linked gbM to cis-275 

regulatory variation in natural plant populations. 276 

It is possible that the associations we detected between genomic features and 277 

cis-regulatory variation are caused by underlying drivers that were not directly 278 

measured. One natural candidate is gene essentiality. However, while gbM is 279 

significantly associated with predicted gene essentiality (37) (Fisher exact test 280 

P<0.001), our results do not appear to be driven by essentiality, which was not 281 

retained in our best-fit logistic regression model for cis-regulatory variation. Instead, 282 

we hypothesize that selection for increased stability of expression of dosage-sensitive 283 

genes could underlie several of the associations we observe. Dosage-sensitive genes 284 

exhibit less expression noise (12, 38), show less variation in expression among tissues, 285 

and are expected to be part of larger regulatory network modules(10, 12). In our study, 286 
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reduced tissue-specificity of expression and increased network connectivity were 287 

associated with a reduced likelihood of ASE. Furthermore, expression variation 288 

among three biological replicates of a C. rubella genotype (25) that likely represents 289 

mainly noise, is significantly lower for genes with no ASE than for those with ASE 290 

(median CV of FPKM=0.28 for genes with ASE, 0.18 for control genes, Wilcoxon 291 

rank-sum test, P-value<10-5). Finally, defense-related genes, which are thought to be 292 

dosage-insensitive in plants (39), were significantly enriched among genes with cis-293 

regulatory variation in our study, whereas protein-binding genes were nominally 294 

enriched among control genes without ASE. Both promoter polymorphism and TE 295 

insertions, which can impact expression in several ways (40), might be expected to be 296 

more likely to be tolerated near dosage-insensitive genes. Our results are therefore 297 

consistent with dosage sensitivity causing strong constraint on cis-regulatory variation 298 

and shaping the impact of positive and purifying selection on coding variation. Thus, 299 

similar functional constraints that shape duplicate gene retention after whole genome 300 

duplication (14) may also be key for the genomic distribution of cis-regulatory 301 

variation in natural plant populations. Future studies should explore the connection 302 

between dosage-sensitivity, gbM, and cis-regulatory variation in greater detail across 303 

a wider range of plant species. 304 

 305 

Materials and Methods 306 

 307 

Plant Material 308 

For analyses of ASE, we generated three intraspecific C. grandiflora F1s by crossing 309 

six individuals sampled across the range of C. grandiflora (Supplementary Table S8). 310 

For population genomic analyses of C. grandiflora, we grew a single offspring from 311 

field-collected seeds of each of 32 plants ('the population genomic sample'; 312 

Supplementary Table S9), representing 21 plants from one population from Greece 313 

(the ‘population sample’), and 11 additional plants from 11 separate Greek 314 

populations covering the species’ range. Together with an individual from the 315 

population sample, these represent a 12-plant ‘range-wide sample’. We grew plants at 316 

standard long-day conditions and collected leaf and mixed stage flower bud samples 317 

for RNA sequencing, and leaf samples for whole genome sequencing as previously 318 

described (25).  319 

 320 
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Sample preparation and sequencing 321 

We extracted total RNA from the intraspecific F1s using a Qiagen RNEasy Plant Mini 322 

Kit (Qiagen, Hilden, Germany). RNAseq libraries were constructed using the TruSeq 323 

RNA v2 kit. For genomic resequencing, we extracted genomic DNA using a modified 324 

CTAB extraction method. Whole genome sequencing libraries with an insert size of 325 

300-400 bp were prepared using the TruSeq DNA v2 protocol. Sequencing of 100bp 326 

paired-end reads was performed on an Illumina HiSeq 2000 instrument (Illumina, San 327 

Diego, CA, USA). All sequence data has been submitted to the European 328 

Bioinformatics Institute (www.ebi.ac.uk), with study accession numbers: 329 

PRJEB12070 and PRJEB12072. 330 

 331 

Sequence quality and trimming 332 

RNA and DNA reads from the F1s were trimmed as previously described (25). 333 

Adapters and low quality sequence were trimmed using CutAdapt 1.3. We analyzed 334 

genome coverage using BEDTools v.2.17.0 (41) and removed potential PCR 335 

duplicates using Picard v.1.92 (http://picard.sourceforge.net). 336 

 337 

Read mapping, variant calling and filtering 338 

We mapped RNAseq reads from the F1s to the v1.0 reference C. rubella assembly 339 

(22) using STAR v.2.3.0.1 (42) with default parameters. For genomic reads from F1s, 340 

we mapped reads with STAR as in (25). Genomic reads from the population genomic 341 

sample were mapped using BWA-MEM v.0.7.12 (43) using default parameters and 342 

the –M flag.  343 

Variant calling was done using GATK v. 2.5-2 UnifiedGenotyper (44) 344 

according to GATK best practices (45, 46). We conducted duplicate marking, local 345 

realignment around indels and recalibrated base quality scores using a set of 346 

1,538,085 SNPs identified in C. grandiflora (18) as known variants, and retained only 347 

SNPs considered high quality by GATK. 348 

We removed centromeric and pericentromeric regions where we have low 349 

confidence in our variant calls, and prior to ASE analysis, we conducted additional 350 

filtering of SNPs as in (25). Using this procedure, we identified an average of 235,719 351 

heterozygous coding SNPs in 17,973 genes in each F1. For population genomic 352 

analyses, we further filtered all genomic regions annotated as repeats using 353 

RepeatMasker 4.0.1, and removed sites with extreme coverage (DP < 15 or DP > 200) 354 
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and too many missing individuals (≥20%) using VCFtools (47). Indels and non-355 

biallelic SNP were also pruned prior to analysis.  356 

 357 

Phasing 358 

Prior to ASE analysis, we conducted read-backed phasing of genomic variants in F1s 359 

using GATK v. 2.5-2 ReadBackPhasing (-phaseQualityThresh 10). RNAseq data 360 

from all F1s were subsequently phased by reference to the phased genomic variants. 361 

Read counts for all phased fragments were obtained using Samtools mpileup. This 362 

resulted in a mean number of 31,313 contiguous phased fragments per F1 (Table 1). 363 

To validate our phasing procedure, we compared the phased fragments, based 364 

on reads, with the phased chromosomes, based on heritage, in three interspecific C. 365 

grandiflora x C. rubella F1s from (25). For most genes, over 95% of SNPs were 366 

correctly phased in the interspecific F1s, demonstrating that our phasing procedure is 367 

reliable (Supplementary Figure S13; Supplementary Figure S14).  368 

 369 

Analyses of allele-specific expression 370 

We analyzed ASE using a hierarchical Bayesian method which requires phased data, 371 

in the form of read counts at heterozygous SNPs for both genomic and transcriptomic 372 

data (24). Genomic read counts are used to obtain an empirical estimate of technical 373 

variation which is then used in analyses of the RNAseq data. We used this method to 374 

obtain estimates of the posterior probability and degree of ASE, for the longest phased 375 

fragment per gene with at least three transcribed SNPs. We analyzed ~14,000 reliably 376 

expressed genes for ASE in flower buds, and ~13,400 genes in leaves (Table 1). All 377 

analyses were run in triplicate, and we checked MCMC convergence by comparing 378 

parameter estimates from independent runs with different starting points, and by 379 

assessing mixing. Runs were completed using the pqR version of R (http://www.pqr-380 

project.org) for 200,000 generations or a maximum runtime of 10 days, with the first 381 

10% of each run discarded as burn-in. 382 

 383 

Population genomic analyses  384 

To assess whether patterns of polymorphism differ among ASE and control genes, we 385 

tested for a difference in median levels of polymorphism and Tajima’s D in the C. 386 

grandiflora population sample, using Mann-Whitney U-tests, with Benjamini-387 

Hochberg correction for multiple comparisons. Estimates of nucleotide diversity (π), 388 
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Watterson's theta (θW) and Tajima's D (DT) were obtained using custom R scripts by 389 

BL. Separate estimates were obtained for 6 classes of sites: 4-fold degenerate sites, 0-390 

fold degenerate sites, 3'- and 5'-untranslated regions (UTRs), introns, and intergenic 391 

regions 500 bp upstream of the transcription start site (TSS).   392 

 393 

Selection on genes with ASE 394 

To test whether there was evidence for a difference in the strength and direction of 395 

natural selection on ASE and control genes, we first estimated the distribution of 396 

fitness effects (DFE) as in (26), and the proportion of adaptive substitutions relative to 397 

the total number of synonymous substitutions (ωa) using the method of (28). The DFE 398 

was estimated under a constant population size model and under a model with 399 

stepwise population size change. We obtained confidence intervals for our estimates 400 

of three bins of the DFE (0<Nes<1; 1<Nes<10; 10< Nes) and for α and ωa by 401 

resampling genes in 200 bootstrap replicates and tested for a difference in the DFE, 402 

and ωa among sets of genes with ASE and control genes, as in (27). Separate 403 

estimates were obtained for 0-fold degenerate sites, 3'- and 5'-untranslated regions 404 

(UTRs), introns, and promoter regions 500 bp upstream of the TSS likely enriched for 405 

regulatory elements, using 4-fold degenerate sites as neutral standard. For estimates of 406 

α and ωa, we relied on divergence to Arabidopsis; specifically, we generated a whole 407 

genome alignment using lastz v. 1.03.54, with chaining of C. rubella, A. thaliana and 408 

A. lyrata as described in (48), and counted divergence differences and sites as in (18). 409 

DFE-alpha analyses were run using Method I (27).  410 

To assess the effect of expression level on our DFE-alpha inference, we 411 

selected genes among the control set of genes to match the distribution of expression 412 

level of ASE gene by resampling the control genes to match the distribution of 413 

expression levels in the ASE gene set. Purifying selection and positive selection were 414 

then re-evaluated in DFE-alpha, using the resampled control gene set and the ASE set. 415 

To assess whether our results were robust to the sampling strategy for ASE analyses, 416 

we based our classification of ASE and control genes based on a single F1 individual 417 

and repeated the DFE analyses. To investigate whether our results could be driven by 418 

the inclusion of defense-related genes, we removed genes annotated as defense-419 

response genes (GO:0006952), and repeated the DFE-alpha analyses. 420 

 421 

 422 
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Genomic determinants of cis-regulatory variation 423 

We assessed the relative importance of a number of genomic features for 424 

presence/absence of ASE using logistic regression, on a set of genes that was 425 

restricted to those for which we could assess ASE. We included the following 426 

genomic features that may affect linked selection: recombination rate and gene 427 

density (in 50 kb windows). Gene density were based on the annotation of C. rubella 428 

v1.0 reference genome (22). We obtained recombination rates per 50kb windows 429 

based on 878 markers from (49) by fitting a smooth spline. We further included gene 430 

length, tissue specificity (t;(16)), expression level (log FPKM values), and as a proxy 431 

for mutation rate variation, we included 4-fold synonymous divergence to 432 

Arabidopsis (dS). Because promoter polymorphism may cause cis-regulatory variation, 433 

we included nucleotide diversity (π) for the region 500bp upstream of the TSS. We 434 

included nonsynonymous/synonymous nucleotide diversity (πN/πS) to reflect the level 435 

of constraint at the coding sequence level. According to the dosage balance 436 

hypothesis, genes in smaller co-expression modules may be under reduced regulatory 437 

constraint. We therefore included information on A. thaliana co-expression module 438 

size (37) in our analyses. We further included information on the presence of retained 439 

paralogs from the Brassicaceae α whole genome duplication or the β and γ whole 440 

genome duplication (37). We identified a set of genes with gbM in both C. rubella 441 

(33) and A. thaliana (17), which are highly likely to also harbor gbM in C. 442 

grandiflora. Finally, we included information on polymorphic TEs within 1 kb of 443 

genes in the range-wide sample. We identified TE insertions in our range-wide 444 

sample as in (25), except that we required a minimum of 5 reads to call a TE insertion. 445 

All continuous variables were centered and scaled prior to logistic regression, with 446 

model selection using a stepwise AIC procedure with backward and forward selection 447 

of variables to find the best-fit model (Table 3). We repeated the analysis using an 448 

analysis strategy which is superior to partial correlation analysis and robust in the 449 

presence of noisy genomic data and multicollinearity of predictor variables (30). We 450 

used a set of orthogonal predictor variables obtained by identifying principal 451 

components for a data set including all the continuous variables using the "pls" 452 

package in R, well as gene body methylation and presence of heterozygous TEs as 453 

binary factors, and conducted model selection as described above.   454 

 455 
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Figure Legends 590 

 591 

Figure 1. The extent of ASE in leaves (A, B) and flower buds (C, D) of one 592 

representative C. grandiflora F1. Panels A and C show the deviation from equal 593 

expression for all assayed genes. Genes with strong evidence for ASE (posterior 594 

probability of ASE ≥ 0.95) show stronger deviations from equal expression (B and D). 595 

 596 

Figure 2. The impact of purifying selection differs between genes with and without 597 

ASE in C. grandiflora. The estimated proportion of mutations in each Nes bin of the 598 

distribution of negative fitness effects (DFE) is shown, with whiskers corresponding 599 

to 95% confidence intervals. The panels show the DFE for nonsynonymous sites (0-600 

fold degenerate sites) (A), for introns (B), for promoter regions 500 bp upstream of 601 

the transcription start site (C) and for 3'-UTRs (D). Significance levels for 602 

comparisons of ASE and control genes, that were also amenable to analysis of ASE, 603 

are indicated by asterisks (*: P-value ≤ 0.05, ** P-value ≤ 0.01). These results are 604 

based on the population sample and the one-epoch model. 605 

 606 

Figure 3. A lower proportion of adaptive nonsynonymous fixations at genes with ASE. 607 

(Α) Estimation of α using the asymptotic method of Messer and Petrov (2013), which 608 

fits an exponential function to estimates of α based on polymorphisms at different 609 

frequencies. Orange dots show values for control genes, and green dots show values 610 

for genes with ASE. The grey shaded area indicates 95% confidence intervals. The 611 

point estimate for genes with and without ASE is 0.06 vs 0.28, respectively. (Β) The 612 

estimated proportion of adaptive fixations relative to 4-fold synonymous substitutions 613 

(ωa) for genes with and without ASE. Whiskers correspond to 95% confidence 614 

intervals, and significance levels for comparisons of ASE and control genes are 615 

indicated by asterisks (*: P-value ≤ 0.05, ** P-value ≤ 0.01). 616 

  617 
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Tables 618 

 619 

Table 1. Genes amenable to analysis of ASE in flower buds and leaves, and ASE 620 

results.  621 

Sample type F1  Analyzed1 ASE genes2 ASE prop.3 FDR4 

Flower buds 6.3 13521 3065 0.33 0.00134 

 7.2 14390 3829 0.36 0.00240 

 8.2 14232 3601 0.35 0.00198 

Leaves 6.3 12390 3425 0.34 0.00182 

 7.2 13074 3749 0.39 0.00242 

 8.2 12796 3550 0.34 0.00195 

 622 
1Genes with expression data for at least one replicate, and with a phased fragment 623 

containing at least three transcribed SNPs after filtering. 624 
2Genes with posterior probability of ASE ≥ 0.95. 625 
3Estimated proportion of genes with ASE 626 
4False Discovery Rate  627 
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Table 2. Population genetic summary statistics and divergence estimates for the 628 

different site classes, separately for ASE and control genes.  629 

Site class1 Gene set Mean π Mean θW	
   πsiteclass/π4-fold
2 d 

4-fold ASE 0.029 0.029 NA 0.16 

 control 0.023 0.024 NA 0.15 

0-fold ASE 0.009 0.011 0.32 0.04 

 control 0.005 0.007 0.23 0.03 

3'UTR ASE 0.018 0.021 0.62 0.13 

 control 0.014 0.018 0.62 0.12 

5'UTR ASE 0.016 0.016 0.55 0.12 

 control 0.012 0.012 0.54 0.12 

500 bp upstream ASE 0.017 0.020 0.6 0.16 

 control 0.015 0.019 0.68 0.15 

intron ASE 0.020 0.022 0.69 0.15 

	
   control 0.018 0.020 0.79 0.14 
1Class of sites investigated, including 4-fold degenerate sites (4-fold), 0-fold 630 

degenerate sites (0-fold), 5'UTRs, 3'UTRs, 500 bp upstream of the TSS (500 bp 631 

upstream) and introns. 632 
2 Ratio of nucleotide diversity at focal site class to nucleotide diversity at 4-fold 633 

synonymous sites.  634 

  635 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 29, 2016. ; https://doi.org/10.1101/034025doi: bioRxiv preprint 

https://doi.org/10.1101/034025
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. The best-fit logistic regression model (AIC=3086.9) predicting ASE from 636 

genomic features. Regression coefficients and their standard error, z-statistics and 637 

associated P-values, and odds ratios (OR) are shown. Coexpression module size and 638 

gene length were included in the best-fit model, but did not have individually 639 

significant effects. 640 

Model parameter Coeff. (SE) z value P-value OR 

Gene-body methylation -0.67 (0.20) -3.41 <10-3 0.51 

πN/πS 0.08 (0.04) 2.25 0.024 1.09 

Expression level  0.20 (0.06) 3.31 <0.001 1.22 

Promoter polymorphism 0.21 (0.05) 4.45 <10-3 1.23 

Tissue specificity 0.30 (0.06) 5.03 <10-3 1.35 

TE within 1 kb 0.32 (0.13) 2.50 0.013 1.38 

Coexpression module size -0.08 (0.05) -1.59 NS 0.92 

Gene length 0.08 (0.06) 1.49 NS 1.09 

Intercept -2.60 (0.06) -42.91 <10-3 0.07 

 641 
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