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 2 

Abstract 20 

Understanding the causes of gene expression variation is of major importance for many areas of 21 

biology. While cis-regulatory changes have long been suggested to be particularly important for 22 

adaptation, our understanding of what determines cis-regulatory variation remains limited in most 23 

species. Here, we have investigated the prevalence, selective importance, and genomic correlates of 24 

cis-regulatory variation in the outcrossing crucifer species Capsella grandiflora. We identify genes 25 

with cis-regulatory variation through analyses of allele-specific expression (ASE) in deep 26 

transcriptome sequencing data from flower buds and leaves, and use population genomic analyses of 27 

high-coverage whole genome resequencing data from both a range-wide sample and a natural 28 

population to quantify the impact of positive and purifying selection on these genes. Our results show 29 

that in C. grandiflora, cis-regulatory variation is pervasive, affecting an average of 35% of genes 30 

within individual plants. Genes harboring cis-regulatory variation are (1) under weaker purifying 31 

selection, (2) significantly more likely to harbor nearby transposable element (TE) insertions, and (3) 32 

undergo lower rates of adaptive substitutions in comparison to other genes. Using a linear model, we 33 

identified ASE as the strongest factor contributing to purifying selection when considered alongside 34 

several other commonly used contributing factors. In turn, the main genomic correlates of cis-35 

regulatory variation are presence of nearby TE insertions and gene expression level; notably, the 36 

signal of relaxed positive and purifying selection on genes with ASE remains after controlling for 37 

expression level. Our results suggest that variation in the intensity of selection across the genome is a 38 

major determinant of the presence of intraspecific cis-regulatory variation in this outcrossing plant 39 

species.   40 

 41 

Keywords 42 

cis-regulatory changes; allele-specific expression; purifying selection; positive selection; transposable 43 
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.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2015. ; https://doi.org/10.1101/034025doi: bioRxiv preprint 

https://doi.org/10.1101/034025
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 45 

Understanding the causes of regulatory variation is of major importance for many areas of biology and 46 

medicine (Albert and Kruglyak 2015). Changes in cis-regulatory elements, such as promoters or 47 

enhancers, that affect the expression of a focal gene, have long been suggested to be particularly 48 

important for adaptation (King and Wilson 1975; Carroll 2000; Wray 2007; Carroll 2008; Wittkopp 49 

and Kalay 2012; but see Hoekstra and Coyne 2007). However, in most species we still have a limited 50 

understanding of the distribution and degree of cis-regulatory variation across the genome and the 51 

relative importance of genome-scale evolutionary forces in shaping these patterns. 52 

Due to the development of methods for high-throughput measurement of gene expression, we 53 

can now identify cis-regulatory variation on a transcriptome-wide scale. This can be done by mapping 54 

local expression quantitative trait loci (eQTL), which are likely to be enriched for cis-acting regulatory 55 

variants, or by directly identifying genes with cis-regulatory variation via analysis of allele-specific 56 

expression (ASE), because significant allele-specific differences in expression must be due to 57 

differences in linked cis-regulatory regions (Pastinen 2010; Fraser 2011). Using these methods, ample 58 

cis-regulatory variation has been identified in many species, including humans (Schadt et al. 2003; 59 

Cheung et al. 2005; Stranger et al. 2007; Veyrieras et al. 2008; Pickrell et al. 2010; Lappalainen et al. 60 

2011; Stranger et al. 2012), mice (Doss et al. 2005; Crowley et al. 2015), Drosophila (Wittkopp et al. 61 

2008; Massouras et al. 2012), yeast (Brem et al. 2002; Ronald et al. 2005; Skelly et al. 2011), 62 

Caenorhabditis (Rockman et al. 2010), maize (Stupar and Springer 2006), Capsella (Josephs et al 63 

2015), and Arabidopsis (Zhang et al. 2011; Lowry et al. 2013).  64 

While most studies thus far have focused on describing the location of variants associated 65 

with expression variation in relation to transcription start or end sites, a few have gone farther by 66 

identifying other features associated with the presence of ASE or local eQTL. In both yeast (Ronald et 67 

al. 2005), Arabidopsis (Zhang et al. 2011; Lowry et al. 2013) and Caenorhabditis (Rockman et al. 68 

2010), genes with local eQTL are located in primarily in regions with elevated levels of polymorphism. 69 

An elegant study in C. elegans showed that this was likely because genes with cis-regulatory variation 70 

are less affected by purifying selection in the form of background selection (Rockman et al. 2010). In 71 

line with this, genes with cis-regulatory variation were predominantly located in chromosome arms 72 

with increased rates of recombination (Rockman et al. 2010). Thus, genome-wide variation in 73 

purifying selection can sometimes be more important than gene-specific selective or mutational effects 74 

for shaping cis-regulatory variation. Similar patterns have been observed in Arabidopsis thaliana 75 

(Lowry et al. 2013) and it has been suggested that cis-regulatory SNPs exhibit a signature of relaxed 76 

purifying selection in this selfing species (Zhang et al. 2011). However, in most species, we know 77 

little about the impact of positive and purifying selection on genes with empirically-identified cis-78 

regulatory variation. Moreover, in outcrossing species, theory predicts that background selection 79 

should not have as large an impact on patterns of genomic and regulatory variation as in selfing 80 

species such as C. elegans and A. thaliana (Slotte 2014).  81 
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In this study, we have investigated the genomic distribution and selective forces acting on cis-82 

regulatory variation in the outcrossing crucifer species Capsella grandiflora. This species is an 83 

obligate outcrosser with a sporophytic self-incompatibility system similar to that of Arabidopsis lyrata 84 

(Guo et al. 2009) and is well suited as a model for studying differences in the impact of selection 85 

across the genome, as it has relatively low population structure (St Onge et al. 2011) and a large, 86 

relatively stable effective population size (Foxe et al. 2009; Slotte et al. 2013). Indeed, selection on 87 

both protein-coding (Slotte et al. 2010) and regulatory regions (Williamson et al. 2014) is highly 88 

efficient in C. grandiflora, and high levels of polymorphism further enhance the power to detect cis-89 

regulatory variation and to quantify the impact of selection. Genomic studies are facilitated by the 90 

close relationship (split time estimated to <200 kya; Slotte et al 2013) between C. grandiflora and the 91 

selfing species Capsella rubella, for which a genome sequence is available (Slotte et al. 2013). 92 

To investigate the prevalence, genomic correlates and selective importance of cis-regulatory 93 

variation in C. grandiflora, we conducted deep transcriptome sequencing of mRNA from flower buds 94 

and leaves, and identified genes with cis-regulatory variation based on analyses of ASE. We further 95 

obtained high coverage whole genome resequencing data for both population and species-wide 96 

samples, to quantify the impact of both positive and purifying selection on genes that harbor cis-97 

regulatory variation. Finally, we conduct linear modelling to identify genomic predictors of cis-98 

regulatory variation and purifying selection. Our results show that in C. grandiflora, cis-regulatory 99 

variation is pervasive, and genes that harbor standing cis-regulatory variation are under weaker 100 

purifying selection and experience less frequent positive selection. Thus, variation in the impact of 101 

positive and purifying selection across the genome appears to be a major determinant of the presence 102 

of intraspecific cis-regulatory variation in the outcrosser C. grandiflora.  103 

 104 

Results 105 

 106 

Identification and phasing of SNPs for analysis of ASE 107 

In order to identify genes with cis-regulatory variation within C. grandiflora, we generated deep 108 

whole transcriptome RNAseq data from flower buds and leaves of three C. grandiflora F1s resulting 109 

from crosses of outbred C. grandiflora individuals (total 93.5 Gbp having Q≥30, with 43.1 Gbp for 110 

flower buds and 50.4 Gbp for leaves, respectively; Supplementary Table S1). To account for read 111 

mapping biases and technical variation in analyses of ASE, we further conducted deep whole genome 112 

resequencing of all F1s (mean expected coverage per individual of 40x, total 26.6 Gbp with Q≥30; 113 

Supplementary Table S2). 114 

We used a previously established bioinformatic pipeline to identify reliable SNPs for analyses 115 

of ASE (Steige et al. 2015). Briefly, we relied on best-practice procedures for variant calling in GATK, 116 

coupled with stringent filtering of genomic regions where we had low confidence in our SNP calls 117 

(mainly pericentromeric regions; see (Steige et al. 2015) and Methods for details). Using this 118 
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procedure, we identified an average of 235,719 heterozygous coding SNPs in 17,973 genes in each F1. 119 

We then conducted read-backed phasing of genomic SNPs in GATK. This resulted in a mean number 120 

of 31,313 contiguous phased fragments per F1, with an average of 8 phased SNPs per fragment (Table 121 

1). We empirically validated this procedure by assessing the proportion of correctly read-back phased 122 

SNPs in genomic data for three interspecific C. grandiflora x C. rubella F1s with known haplotypes 123 

genome-wide (inferred through phasing by transmission using genomic data of F1s and their highly 124 

homozygous C. rubella parents in Steige et al 2015) (see Methods for details). We found that for most 125 

genes, the vast majority of SNPs (over 95%) were correctly phased in the interspecific F1s (Figure 1). 126 

We therefore proceeded to use the longest contiguous read-phased fragment per gene harboring at 127 

least 3 heterozygous SNPs for all subsequent analyses of ASE in C. grandiflora F1s. After removing 128 

genes which were not detectably expressed, we retained ~14,000 genes for analyses of ASE in flower 129 

buds, and ~13,400 genes for analyses of ASE in leaves (Table 1). 130 

 131 

ASE results show widespread cis-regulatory variation in C. grandiflora 132 

We assessed ASE with a Bayesian method that uses genomic reads to account for technical variation 133 

in allelic counts and that has a reduced false positive rate compared to the standard binomial test 134 

(Skelly et al. 2011). The method requires phased data, and yields direct estimates of the proportion of 135 

genes with ASE independent of significance cutoffs, as well as gene-level estimates of the posterior 136 

probability of ASE, the magnitude of ASE, and the degree of variability in ASE along a gene. 137 

Using the Skelly et al (2011) method, a mean of 35% (range 26%-39%) of analyzed genes 138 

showed ASE (posterior probability of ASE ≥ 0.95) in each of our C. grandiflora F1s (Table 1). 139 

Similar proportions of genes had evidence for ASE in both leaves and flower buds, and all posterior 140 

probability distributions for ASE showed a clear separation between genes with high vs. low posterior 141 

probability of ASE (Table 1; Figure 2; Figure 3). Allelic expression biases were moderate for most 142 

genes with ASE (Figure 2; Figure 3), with strong strong allelic expression biases (0.2 ≤ ASE ratio ≥ 143 

0.8) shown by an average of just 5.1% of genes. There was little evidence for strong variability in ASE 144 

along genes (Figure 2; Figure 3). 145 

While a relatively large proportion of genes showed ASE in individual F1s, most cases of 146 

ASE were unique to a particular genotype or sample. Indeed, out of a total of 11,532 genes that were 147 

amenable to analysis of ASE in all F1s, only 294 genes had ASE in both leaves and flower buds of all 148 

F1s. In total, 1,010 genes showed ASE in either leaves or flower buds, 312 genes showed ASE in 149 

flower buds but not leaves, and 404 genes showed ASE in leaf samples but not flower buds of all F1s.  150 

 151 

Elevated polymorphism at genes with standing cis-regulatory variation 152 

In order to assess the impact of selection on genes showing cis-regulatory variation in C. grandiflora, 153 

we sequenced the genomes of 21 individuals from one population in the Zagory region of Greece 154 

(hereafter called the 'population sample') as well as 12 individuals from separate populations across 155 
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the species range (hereafter called the 'range-wide sample') using paired-end 100 bp Illumina reads 156 

and a mean coverage 25x per individual (Supplementary Table S2). We called variants using GATK 157 

best practices and filtered genomic regions as previously described (Steige et al. 2015) to identify a 158 

total of 6,492,075 high-quality SNPs, most of which (5,240,485) were also segregating in the 159 

population sample. 160 

We compared levels of polymorphism at genes that show ASE in all of our F1s (1,010 genes; 161 

hereafter 'ASE genes'), using as a control set the 10,552 genes that were amenable to ASE analyses in 162 

all F1s but did not show significant ASE (hereafter termed "control"). To reduce bias resulting from 163 

the requirement of expressed polymorphisms from analyses of ASE, all population genetic analyses 164 

were conducted only on these paired gene sets, and genes that were not amenable to analysis of ASE 165 

were not included. ASE genes had elevated polymorphism levels compared to the control at all 166 

investigated site classes, as well as an elevated ratio of nonsynonymous to synonymous polymorphism 167 

(Table 2; Supplementary Table S3). Control genes without ASE had elevated levels of low frequency 168 

polymorphisms at nonsynonymous sites, 5'-UTRs, 3'-UTRs, introns and regions 500 bp upstream of 169 

the TSS than those with ASE, suggesting that the impact of purifying selection might differ between 170 

ASE and control gene sets (Table 2; Supplementary Table S3).  171 

 172 

Reduced intensity of purifying selection on genes with cis-regulatory variation  173 

To quantify the impact of purifying selection on ASE genes and control genes, we used the DFE-alpha 174 

method (Keightley and Eyre-Walker 2007). Briefly, this method allows estimation of a gamma-175 

distribution of negative fitness effects based on site frequency spectra (SFS) at two classes of sites, 176 

one that is assumed to evolve neutrally, and one that is assumed to be subject to selection. Using this 177 

method, we found that ASE genes have a significantly higher proportion of nearly neutral 178 

nonsynonymous mutations than control genes, as well as a significantly reduced proportion of 179 

nonsynonymous mutations under strong purifying selection (strength of purifying selection Nes>10) 180 

(Figure 4). This result applies broadly, both for the population and the range-wide samples, and when 181 

assuming a constant population size as well as after correcting for population size change (Figure 4). 182 

The result also holds after controlling for differences in the expression level among genes with and 183 

without ASE (Figure 4). There were no significant differences in the DFE depending on ASE status at 184 

5'-UTRs (Supplementary Figures S1-S4, Supplementary Table S4). Promoter regions 500 bp upstream 185 

of the TSS and and 3'-UTRs showed significantly relaxed purifying selection in ASE genes, but this 186 

result held only under the 1-epoch model (Supplementary Figures S1-S4, Supplementary Table S4) 187 

and could in part be due to a lack of power, as regulatory motifs are expected to make up a small 188 

fraction of the analyzed sites. Consistent with this, we infer weaker purifying selection on upstream 189 

regions and UTRs than on nonsynonymous mutations (Supplementary Figures S1-S4; Supplementary 190 

Table S4).  191 
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As many other factors than cis-regulatory variation could be associated with variation in 192 

positive and purifying selection, we sought to identify factors influencing purifying selection through 193 

a general linear model, using the ratio of nonsynonymous to synonymous nucleotide diversity (πN/πS) 194 

as a proxy for strength of purifying selection. Our model used πN/πS as the response variable and 195 

several predictors: the presence/absence of ASE as a binary variable; tissue specificity (τ); gene 196 

density; gene length; expression level; map-based recombination rate; and divergence at four-fold 197 

synonymous sites (dS) as a proxy for mutation rate (see Methods for details). Model selection by 198 

stepwise AIC indicated that the best-fitting model (AIC: 17564) was the one that included all 199 

predictors. In this model, ASE had the strongest effect on πN/πS (Table 3). The presence of ASE was 200 

positively correlated with πN/πS, suggesting weaker purifying selection on genes with cis-regulatory 201 

variation. Tissue specificity showed the same trend, whereas dS, recombination rate, expression level 202 

and gene length were negatively correlated with πN/πS (Table 3). 203 

 204 

Reduced adaptive evolution at genes with cis-regulatory variation 205 

To investigate the impact of positive selection on genes with and without ASE we obtained estimates 206 

of ωα, the rate of adaptive substitutions relative to neutral divergence (Gossmann et al. 2010) in DFE-207 

alpha (Eyre-Walker and Keightley 2009). For this purpose, we relied on genome-wide divergence 208 

between Capsella and Arabidopsis, with 4-fold synonymous sites considered to be evolving mainly 209 

neutrally (see Methods for details). Using this method, we find that ASE genes show a significantly 210 

lower proportion of adaptive nonsynonymous substitutions than control genes (Figure 5). In contrast, 211 

we found no significant differences in ωα among ASE genes or control genes for UTRs or regions 500 212 

bp upstream of the TSS (Supplementary Table S3). Second, we estimated α, the proportion of 213 

adaptive fixations in the selected site class, based on the approximate method of Messer and Petrov 214 

(2013) which was designed to yield accurate estimates in the presence of linked selection. Results 215 

generated with this method were consistent with DFA-alpha, with a significantly lower estimate of the 216 

proportion of adaptive nonsynonymous substitutions at genes with cis-regulatory variation than at 217 

control genes in C. grandiflora (Figure 5). 218 

 219 

TE polymorphism is strongly associated with ASE 220 

We have recently shown that TEs targeted by small RNAs are associated with ASE in interspecific C. 221 

grandiflora x C. rubella F1 hybrids (Steige et al. 2015). To assess whether there is also an enrichment 222 

of TEs near genes with cis-regulatory variation within C. grandiflora, we scored heterozygous TE 223 

insertions in our F1s as in (Ågren et al. 2014) and tested for an association between heterozygous TE 224 

insertions and ASE using Fisher exact tests. On average we detected 1,455 homozygous TE insertions 225 

and 1,181 heterozygous TE insertions per C. grandiflora F1; the majority of these were retroelements 226 

(Supplementary Table S5). There was a significant association between genes with ASE and the 227 
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presence of heterozygous TE insertions within 1 kb of the gene (Figure 6; Supplementary Table S6). 228 

This was true for all F1s when considering flower bud samples, and for two out of three F1s when 229 

considering leaf samples.  230 

To test whether polymorphic TEs still had an impact after correcting for other genomic factors, 231 

we conducted a logistic regression with presence/absence of ASE as the response variable and a 232 

number of predictor variables in addition to polymorphic TEs (see Methods for details). To ensure 233 

independence of the TE data from the ASE data, we used TE information gained from the range-wide 234 

population sample, which is independent from the specific samples we used to score ASE. We 235 

selected the best model using a stepwise AIC procedure. 236 

The best-fitting model (AIC: 3202) included polymorphic TE status, expression level, πN/πS, 237 

tissue specificity (τ) and promoter polymorphism as predictor variables (Table 4). The presence of 238 

polymorphic TEs was the most influential predictor based on the odds ratio; it resulted in a ~40% 239 

increase in the odds of observing ASE. The other predictors resulted in an increase of 9%-36% in the 240 

odds of observing ASE, and the second most important predictor was τ (Table 4). The presence of 241 

polymorphic TEs is thus an important feature associated with cis-regulatory variation in C. 242 

grandiflora.  243 

 244 

Discussion 245 

It has long been hypothesized that cis-regulatory variation is an important contributor to adaptive 246 

evolution, yet the selective forces and genomic correlates of standing cis-regulatory variation remain 247 

poorly understood in most species. Here, we have shown that there is pervasive cis-regulatory 248 

variation (via its proxy, ASE) in the outcrossing plant species Capsella grandiflora, and that genes 249 

with cis-regulatory variation are under weaker purifying selection and have undergone a lower 250 

proportion of adaptive substitutions than control genes. We found that presence or absence of ASE is a 251 

strong predictor of the intensity of purifying selection as measured by the ratio of nonsynonymous to 252 

synonymous polymorphism, and ASE is indeed the best predictor when considered alongside several 253 

other widely used predictors of purifying selection (Table 3). 254 

The impact of selection on standing cis-regulatory variation remains poorly characterized in 255 

most systems. Several recent studies have found evidence for a contribution of positive selection to 256 

cis-regulatory divergence between closely related species (Wittkopp et al. 2008; Fraser et al. 2010; 257 

Graze et al. 2012). Our results suggest that, at least for our outcrossing plant species, intraspecific cis-258 

regulatory variation is under relaxed positive as well as purifying selection. This finding does not 259 

necessarily contradict important contributions of cis-regulatory variation to adaptive interspecific 260 

evolution. In contrast, it is possible that recurrent sweeps have removed variation specifically at genes 261 

without ASE. Supporting this scenario, recent work with the present plant species suggests a general 262 

role for recurrent hitchhiking in shaping the distribution of genomic variation (Williamson et al. 2014). 263 

In contrast with results for the selfer C. elegans, where background selection seems to shape cis-264 
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regulatory variation (Rockman et al 2010), we find no clear evidence for clustering of genes with cis-265 

regulatory variation in certain chromosomal regions (Supplementary Figures S6-S11).   266 

If our results for C. grandiflora hold more generally, this has implications for theoretical 267 

modeling of adaptation from cis-regulatory variation. For instance, if most standing cis-regulatory 268 

variation in natural populations is weakly deleterious, models of adaptation from initially weakly 269 

deleterious standing variation (e.g. Glémin and Ronfort 2013) would be especially relevant for an 270 

improved understanding of the contribution of cis-regulatory variation to adaptation. One specific case 271 

in which this could be useful would be to aid in our understanding the contribution of cis-regulatory 272 

changes to the recent adaptive evolution of floral and reproductive traits accompanying the recent shift 273 

to selfing in the C. rubella (Steige et al. 2015).   274 

Our robust finding of relaxed purifying selection on genes with cis-regulatory variation is in 275 

good agreement with the results of a recent eQTL mapping study which analyzed 99 individuals from 276 

a natural C. grandiflora population and found that SNPs associated with expression variation were 277 

skewed towards low frequencies, as expected under weak purifying selection (Josephs et al 2015). Our 278 

results hold after correction for expression level variation, under different demographic model 279 

assumptions, and regardless of whether analyses are conducted on a population sample or a range-280 

wide sample of C. grandiflora. Furthermore, our results also hold if we classify genes as ASE or 281 

control genes based on a single F1 individual (Supplementary Figure S12). Although many factors 282 

have been shown to be correlated with patterns of selection in the genome, when we considered cis-283 

regulatory variation (via its proxy, the presence/absence of ASE) alongside several of these factors, we 284 

found ASE was the predictor with the largest effect on πN/πS. This suggests that, even after accounting 285 

for other confounding factors, cis-regulatory variation is associated with relaxed purifying selection.  286 

It has recently been suggested that in humans, deleterious nonsynonymous variants can 287 

accumulate on the same haplotypes as regulatory variants that result in lower expression, due to their 288 

lower penetrance in this regulatory context (Lappalainen et al. 2011). This model seems unlikely to 289 

explain our results, as regulatory and coding SNPs are not expected to remain in strong LD in C. 290 

grandiflora (r2 decays to less than 0.1 within approximately 500 bp; Supplementary Figure S5). 291 

Instead, we suggest that variation in the impact of selection across the genome is more important, and 292 

that genes that are generally under weaker selection in C. grandiflora are more likely to harbor both 293 

cis-regulatory and nonsynonymous variation.  294 

A number of recent studies have suggested that TEs may be important for cis-regulatory 295 

variation and divergence in plants (Hollister and Gaut 2009; Hollister et al. 2011; Wang et al. 2013; 296 

Steige et al. 2015). Our results provide tentative support for this conclusion, as we found an 297 

enrichment of polymorphic TE insertions in the vicinity of genes with cis-regulatory variation, and in 298 

our logistic model with presence/absence of ASE as the response, the presence of nearby polymorphic 299 

TEs was the strongest factor affecting ASE. These results suggest the importance of TEs in creating 300 

ASE under at least some conditions, for instance through effects of TEs silencing on the expression of 301 
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nearby genes (e.g. Lippman et al. 2004; Hollister and Gaut 2009; Ahmed et al 2011). However, with 302 

the currently available data, we cannot rule out the alternative hypothesis that TE insertions have been 303 

able to accumulate specifically near genes that are under weaker purifying selection and are also more 304 

likely to tolerate nonsynonymous or cis-regulatory variation.  305 

In sum, our results suggest that most common standing cis-regulatory variation in C. 306 

grandiflora is under weak purifying selection. Future empirical studies should investigate the impact 307 

of TE silencing on cis-regulatory variation in C. grandiflora, as well as how selection might jointly 308 

affect cis-regulatory variation and TE accumulation. 309 

 310 

Material and Methods 311 

 312 

Plant material 313 

For analyses of ASE, we generated three intraspecific C. grandiflora F1s by crossing six individuals 314 

sampled across the range of C. grandiflora (Supplementary Table S7). For validation of our 315 

bioinformatic procedures, we also used data from three interspecific F1 individuals from C. 316 

grandiflora x C. rubella F1s that have previously been described (Steige et al. 2015).  317 

For population genomic analyses of C. grandiflora, we grew a single offspring from field-318 

collected seeds of each of 32 plants, representing 21 plants from one population near the village of 319 

Koukouli in the Zagory region, Greece (the ‘population sample’), and 11 additional plants from 320 

throughout the species’ range representing each of 11 additional Greek populations.  Together with an 321 

individual from the Koukouli population, these represent a 12-plant ‘range-wide sample’.  Collectively 322 

the 32 plants are termed the ‘population genomic sample’. Geographical origins of all samples are 323 

given in Supplementary Table S8.  324 

Seeds were surface-sterilized, stratified at 4°C for a week, and germinated on 0.5 x 325 

Murashige-Skoog medium. One-week old seedlings were transplanted to pots in soil, which were 326 

placed in a growth chamber under long-day conditions (16 h light: 8 h dark; 20° C: 14° C). We 327 

collected leaf and mixed stage flower bud samples for RNA sequencing, and leaf samples for whole 328 

genome sequencing from all F1 plants, as previously described (Steige et al. 2015). For population 329 

genomic analyses, we collected leaf samples for whole genome sequencing from all 32 C. grandiflora 330 

plants. 331 

 332 

Sample preparation and sequencing 333 

We extracted total RNA from all flower bud and leaf samples of the intraspecific F1s using a Qiagen 334 

RNEasy Plant Mini Kit (Qiagen, Hilden, Germany). RNAseq libraries were constructed using the 335 

TruSeq RNA v2 kit. For genomic resequencing, we extracted predominantly nuclear DNA using a 336 

modified CTAB extraction method. Whole genome sequencing libraries with an insert size of 300-400 337 

bp were prepared using the TruSeq DNA v2 protocol. Sequencing of 100bp paired-end reads was 338 
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performed on an Illumina HiSeq 2000 instrument (Illumina, San Diego, CA, USA) at the Uppsala 339 

SNP&SEQ Technology Platform, Uppsala University. In total, we obtained 93.6 Gbp (Q≥30) of 340 

RNAseq data, with an average of 15.6 Gbp per sample from intraspecific F1s. In addition we obtained 341 

26.6 Gbp (Q≥30) of DNAseq data, corresponding to a mean expected coverage per individual of 39x 342 

for the intraspecific F1s. For population genomic analyses of C. grandiflora samples, we obtained a 343 

total of 233.2 Gbp (Q≥30) with an average of 7.3 Gbp (Q≥30) per sample. All sequence data has been 344 

submitted to the European Bioinformatics Institute (www.ebi.ac.uk), with study accession numbers: 345 

PRJEB12070 and PRJEB12072. 346 

 347 

Sequence quality and trimming 348 

RNA and DNA reads from the F1s were trimmed as previously described (Steige et al. 2015). For the 349 

32 C. grandiflora individuals sequenced for population genomic analyses, we used custom Perl scripts 350 

written by DGS to detect adapters and PCR primers present in the raw reads. Adapters and low quality 351 

sequence were trimmed using CutAdapt 1.3 (Martin 2011). We analyzed genome coverage using 352 

BEDTools v.2.17.0 (Quinlan and Hall 2010) and removed potential PCR duplicates using Picard 353 

v.1.92 (http://picard.sourceforge.net). 354 

 355 

Read mapping, variant calling and filtering 356 

We mapped RNAseq reads from the F1s to the v1.0 reference C. rubella assembly (Slotte et al. 2013) 357 

(http://www.phytozome.net/capsella) using STAR v.2.3.0.1 (Dobin et al. 2013) with default 358 

parameters. For genomic reads from F1s, we used STAR with settings modified to avoid splitting up 359 

reads (see Steige et al. 2015). Genomic reads from the population genomic sample were mapped using 360 

BWA-MEM v.0.7.12 (Li 2013) using default parameters and the –M flag.  361 

Variant calling was done using GATK v. 2.5-2 UnifiedGenotyper (McKenna et al. 2010) 362 

according to GATK best practices (DePristo et al. 2011; Van der Auwera et al. 2013). We conducted 363 

duplicate marking, local realignment around indels and recalibrated base quality scores using a set of 364 

1,538,085 SNPs identified in C. grandiflora (Williamson et al. 2014) as known variants and retained 365 

only SNPs considered high quality by GATK. 366 

Prior to further analyses, we removed previously identified regions where we have low 367 

confidence in our variant calls due to the presence of large-scale copy number variation and repeats; 368 

these mainly consist of centromeric and pericentromeric regions (Steige et al. 2015). Before analyses 369 

of ASE, we additionally removed SNPs that were in the 1% tails of a beta-binomial distribution fit to 370 

all heterozygous SNPs in each F1, as such highly biased SNPs may result in false inference of variable 371 

ASE if retained (Skelly et al. 2011). We also removed overlapping parts of genes. For population 372 

genomic analyses, we further filtered all genomic regions annotated as repeats using RepeatMasker 373 

4.0.1 (http://www.repeatmasker.org), and removed sites with extreme coverage (DP < 15 or DP > 200) 374 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2015. ; https://doi.org/10.1101/034025doi: bioRxiv preprint 

https://doi.org/10.1101/034025
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

and too many missing individuals (≥20%) using VCFtools (Danecek et al. 2011). Indels and non-375 

biallelic SNP were also pruned prior to any analysis. 376 

 377 

Phasing 378 

To allow for ASE analysis based on multiple phased SNPs per gene (see section 'Analyses of allele-379 

specific expression' below), we conducted read-backed phasing of previously annotated genomic 380 

variants in both the intraspecific and interspecific F1s using GATK v. 2.5-2 ReadBackPhasing (-381 

phaseQualityThresh 10). RNAseq data from all F1s were subsequently phased by reference to the 382 

phased genomic variants. Read counts for all phased fragments were obtained using Samtools mpileup 383 

and a custom software written in javascript by JR. 384 

To assess the quality of the read phasing we compared the phased fragments, based on reads, 385 

with the phased chromosomes, based on heritage, in three interspecific C. grandiflora x C. rubella F1s 386 

included in a previous study (Steige et al. 2015). For these interspecific F1s chromosome phasing has 387 

previously been inferred by reference to whole genome sequences of their highly inbred C. rubella 388 

parents (Steige et al. 2015). As intra- and interspecific F1s harbored similar numbers of phased SNPs 389 

per gene (median of 5 SNPs per gene in both types of F1s; Supplementary Figure S13), the success of 390 

the phasing procedure in the interspecific F1s is likely to reflect the phasing success in intraspecific C. 391 

grandiflora F1s. 392 

 393 

Analyses of allele-specific expression 394 

Analyses of allele-specific expression were conducted using a hierarchical Bayesian method 395 

developed by Skelly et al (2011). The method requires phased data, in the form of read counts at 396 

heterozygous SNPs for both genomic and transcriptomic data. Genomic read counts are used to obtain 397 

an empirical estimate of the distribution of technical variation in read counts, which is assumed to 398 

follow a beta-binomial distribution. This distribution is subsequently used in analyses of RNAseq data 399 

where genes are assigned posterior probabilities of having ASE. The method also results in estimates 400 

of the ASE proportion and variation in ASE along the gene.  401 

We analyzed the longest phased fragment per gene with at least three transcribed SNPs. All 402 

analyses were run in triplicate, and we checked MCMC convergence by comparing parameter 403 

estimates from independent runs with different starting points, and by assessing the mixing of chains. 404 

Runs were completed on a high-performance computing cluster at Uppsala University (UPPMAX) 405 

using the pqR version of R (http://www.pqr-project.org) for 200,000 generations or a maximum 406 

runtime of 10 days. The first 10% of each run was discarded as burn-in and parameter estimates were 407 

then obtained as described in Skelly et al (2011). 408 

 409 

Identification of TE insertions and association with ASE 410 
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To test whether heterozygous TE insertions are associated with ASE in C. grandiflora, we used 411 

PoPoolationTE (Kofler et al. 2012) and a custom library of TE sequences based on multiple 412 

Brassicaceae species (Maumus and Quesneville 2014) to identify TEs in the genomes of our range-413 

wide sample and the intraspecific F1s. We required a minimum of 5 reads to call a TE insertion, and 414 

followed the procedure of Ågren et al. (2014) to determine homozygosity or heterozygosity of TE 415 

insertions. 416 

 417 

Population genomic analyses  418 

In order to assess whether patterns of polymorphism differ among genes with vs. without ASE, we 419 

tested for a difference in median levels of polymorphism and Tajima’s D at all site classes specified 420 

above using Mann-Whitney U-tests, with Benjamini-Hochberg correction for multiple comparisons. 421 

Estimates of nucleotide diversity (π), Watterson's theta (θW) and Tajima's D (DT) were 422 

obtained using custom R scripts by BL. Separate estimates were obtained for 6 classes of sites: 4-fold 423 

degenerate sites, 0-fold degenerate sites, 3'- and 5'-untranslated regions (UTRs), introns, and 424 

intergenic regions 500 bp upstream of the transcription start site (TSS). In order to assess whether 425 

species-wide patterns of polymorphism differed from those observed at the population level, we 426 

conducted separate analyses on the 12 individuals from the range-wide sample, and the 21 individuals 427 

from the population sample.   428 

 429 

Selection on genes with ASE 430 

To test whether there was evidence for a difference in the strength and direction of natural selection on 431 

sets of genes with and without ASE, we first estimated the distribution of fitness effects (DFE) using 432 

the method of Keightley and Eyre-Walker (2007), and the proportion of adaptive selected substitutions 433 

relative to the total number of synonymous substitutions (ωα) using the methods of Eyre-Walker and 434 

Keightley (2009) and Gossmann et al (2010). This method allows us to assess the distribution of 435 

negative fitness effects (DFE) using the site frequency spectrum (SFS) and corrects for weak purifying 436 

selection when estimating ωα. The DFE was estimated under a constant population size demographic 437 

model and under a model with stepwise change in population size between two epochs. We obtained 438 

confidence intervals for our estimates of three bins of the DFE (0<Nes<1; 1<Nes<10; 10< Nes) and for 439 

α and ωα by resampling genes in 200 bootstrap replicates. We tested for a difference in the DFE, and 440 

ωα among sets of genes with ASE (as outlined above) and control genes as in Eyre-Walker and 441 

Keightley (2009). Separate estimates were obtained for 0-fold degenerate sites, 3'- and 5'-untranslated 442 

regions (UTRs), and regions 500 bp upstream of the TSS likely enriched for regulatory elements. We 443 

used both 4-fold degenerate sites as well as introns as the class of sites likely to harbor mainly 444 

neutrally evolving variants. For estimates of α and ωα, we relied on divergence to Arabidopsis; 445 

specifically, we generated a whole genome alignment using lastz v. 1.03.54 (Harris 2007) with 446 
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chaining of C. rubella, Arabidopsis thaliana and Arabidopsis lyrata as described in (Haudry et al. 447 

2013), and counted divergence differences and sites as in Williamson et al (2014) for the site 448 

categories outlined above. DFE-alpha analyses were run using the method developed by Peter 449 

Keightley (Method I in Eyre-Walker and Keightley 2009).  450 

 Expression level is one of the most prominent genomic features correlated with purifying 451 

selection within plant species (Paape et al. 2013; Williamson et al. 2014) and rates of protein evolution 452 

across a broad range of species (e.g. Drummond and Wilke 2008; Larracuente et al. 2008; Slotte et al. 453 

2011). In order to assess the effect of expression level on our DFE-alpha inference, we selected genes 454 

among the control set of genes to match the distribution of expression level of ASE genes as follows. 455 

For each gene, we obtained the maximum FPKM value among tissues in each F1 individual and then 456 

took the average over the three F1s. We divided the distribution in ten bins, excluded the first and last 457 

bin to avoid including outliers with very high or low expression level, and then resampled the control 458 

genes to match the distribution of expression levels in the ASE gene set. Purifying selection and 459 

positive selection were then re-evaluated in DFE-alpha, using the resampled control gene set and the 460 

ASE set without the first and last bin, as described above. 461 

In order to test the impact of genomic features on purifying selection we conducted general 462 

linear modeling. We used πN/πS estimated for the population sample as a proxy for intensity of 463 

purifying selection as the response variable and included a suite of genomic predictors including 464 

recombination rates, tissue specificity in A. thaliana (τ; from Slotte et al. 2011), gene length, 465 

expression level (log FPKM value), gene density in 50kb windows, synonymous divergence (dS) and 466 

presence/absence of ASE. Only genes that were amenable to ASE analysis were included in this 467 

analysis. Gene length and density were based on the annotation of C. rubella v1.0 reference genome 468 

(Slotte et al. 2013). We obtained recombination rates per 50kb windows based on 878 markers from 469 

(Slotte et al. 2012) by fitting a smooth spline. All the continuous predictors were centered and scaled 470 

prior to the regression. We first fit a full model in R and then used a stepwise AIC procedure with 471 

backward and forward selection of variables to find the best-fitting model (Table 3). 472 

 473 

Linkage disequilibrium decay 474 

To assess the expected LD between regulatory and coding SNPs, we assessed the decay of linkage 475 

disequilibrium for the population sample based on r2 in 2kb windows along each scaffold. The mean r2 476 

was plotted against physical distance to assess the relative decay of linkage disequilibrium 477 

(Supplementary Figure S5). All the calculations were done in plink v. 1.90 478 

(http://pngu.mgh.harvard.edu/purcell/plink/, Purcell et al. 2007).  479 

 480 

Relative importance of genomic correlates for cis-regulatory variation 481 

We assessed the relative importance of a number of genomic correlates for presence/absence of ASE 482 

using logistic regression. The set of analyzed genes was restricted to those for which we could assess 483 
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ASE, and we included the following genomic features in our analyses: recombination rate, gene 484 

density, tissue specificity (τ), gene length, expression level (log FPKM values), proportion of 485 

divergence at synonymous sites (dS), π for the region 500bp upstream of the TSS and πN/πS. All of 486 

these variables were obtained as described in "Selection on genes associated with ASE" above. We 487 

conducted logistic regression using ‘glm’ in R with model selection using a stepwise AIC procedure 488 

with backward and forward selection of variables to find the best-fitting model (Table 4).  489 

 490 

Availability of supporting data 491 

All sequence data has been submitted to the European Bioinformatics Institute (www.ebi.ac.uk), with 492 

study accession numbers: PRJEB12070 and PRJEB12072. 493 

 494 

Description of additional data files 495 

Supplementary Information contains all supplementary Tables and Figures referred to in the text.  496 
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Tables 682 

Table 1. Genes amenable to analysis of ASE in flower buds and leaves and ASE results.  683 

Sample 

type 

F1 

designation 

Analyzed 

genes1 

Genes with 

ASE2 

ASE 

proportion3 

FDR4 

Flower 

buds 

Intra6.3 13521 3065 0.33 0.00134 

 Intra7.2 14390 3829 0.36 0.00240 

 Intra8.2 14232 3601 0.35 0.00198 

Leaves Intra6.3 12390 3425 0.34 0.00182 

 Intra7.2 13074 3749 0.39 0.00242 

 Intra8.2 12796 3550 0.34 0.00195 

 684 
1Genes with expression data for at least one replicate, and with a phased fragment containing at least 685 

three transcribed SNPs after filtering. 686 
2Genes with posterior probability of ASE ≥ 0.95. 687 
3Estimated proportion of genes with ASE 688 
4False Discovery Rate 689 
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Table 2. Population genetic summary statistics for the different site classes, separately for ASE and control genes. Estimates are based on the C. grandiflora 690 

population sample.  691 

Site class1 Gene 

set 

Mean π Mean θW! Mean 

DTajima 

πsiteclass/

π4-fold
2 

NDivSites
3 nDivDiff

4 d NPolSites
5 S6 

4-fold ASE 0.029 0.029 -0.024 NA 107230 16797 0.16 146996 16244 

 control 0.023 0.024 -0.170 NA 1492746 224365 0.15 1717139 157030 

0-fold ASE 0.009 0.011 -0.345 0.32 514975 21169 0.04 660669 24901 

 control 0.005 0.007 -0.501 0.23 7137303 245981 0.03 7649524 183401 

3'UTR ASE 0.018 0.021 -0.344 0.62 80721 10296 0.13 133690 10282 

 control 0.014 0.018 -0.501 0.62 1004228 119779 0.12 1378898 89674 

5'UTR ASE 0.016 0.016 -0.344 0.55 60109 7261 0.12 87810 5688 

 control 0.012 0.012 -0.501 0.54 681489 80787 0.12 851102 48383 

500 bp 

upstream 

ASE 0.017 0.020 -0.395 0.6 162790 25389 0.16 314722 25374 

 control 0.015 0.019 -0.543 0.68 2113681 314431 0.15 3457930 254809 

intron ASE 0.020 0.022 -0.345 0.69 294445 43827 0.15 456600 39330 

! control 0.018 0.020 -0.502 0.79 4520964 632022 0.14 6170854 484589 
1Class of sites, including 4-fold degenerate sites (4-fold), 0-fold degenerate sites (0-fold), 5'UTRs, 3'UTRs, 500 bp upstream of the TSS (500 bp upstream) and 692 
introns. 693 
2Ratio of nucleotide diversity at focal site class to nucleotide diversity at 4-fold synonymous sites.  694 
3Number of sites assayed for divergence differences. 695 
4Number of divergence differences 696 
5Number of sites assayed for polymorphisms. 697 
6Segregating sites 698 
 699 
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Table 3. Results of the best-fitting general linear model predicting πN/πS from genomic features. 700 

Coefficient of the regression and their standard error (SE), z statistics and associated P-value are 701 

shown.  702 

!!
Estimate 

(SE) 
z P-value 

(Intercept) -0.01 (0.01) -0.671 0.5023 

ASE 0.12 (0.05) 2.491 0.0127* 

tissue specificity (τ) 0.07 (0.02) 4.200 0.0000271*** 

gene density 0.03 (0.01) 2.296 0.0217000* 

gene length -0.03 (0.01) -2.434 0.0150000* 

expression level -0.11 (0.02) -7.143 <0.000001*** 

recombination rate -0.06 (0.01) -5.053 0.0000004*** 

synonymous divergence (dS) -0.07 (0.01) -5.402 0.0000002*** 

  703 
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Table 4. Results of the best fit logistic regression model predicting ASE from genomic features. 704 

Coefficient of the regression and their standard error (SE), z statistics and associated p-values, and 705 

odds ratios (OR) are shown. 706 

 Coeff. (SE) z P-value OR 

(Intercept) -2.66 (0.06) -47.4 <0.00001*** 0.07 

TE 0.34 (0.13) 2.68 0.00729** 1.40 

tissue specificity (τ) 0.31 (0.06) 5.33 <0.00001*** 1.36 

expression level 0.21 (0.06) 3.50 0.000472*** 1.23 

π500bp upstream 0.21 (0.05) 4.54 <0.00001*** 1.23 

πN/πS 0.08 (0.04) 2.28 0.022642* 1.09 
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Figure legends 707 

 708 

Figure 1. Success of read-back phasing. The distribution of the proportion of correctly read-back 709 

phased SNPs for three interspecific F1s (inter3.1, inter4.1 and inter5.1) with known haplotypes. 710 

 711 

Figure 2. ASE in flower buds of three intraspecific C. grandiflora F1s. Distributions of the deviation 712 

from equal expression for all assayed genes (A-C) and for genes with at least 0.95 posterior 713 

probability of ASE (D-F), estimates of the dispersion parameter (G-I), and the posterior probability of 714 

ASE (J-L). All distributions are shown for each of the three intraspecific F1s intra6.3 (left), intra7.2 715 

(middle) and intra8.2 (right). 716 

 717 

Figure 3. ASE in leaves of three intraspecific C. grandiflora F1s. Distributions of the deviation from 718 

equal expression for all assayed genes (A-C) and for genes with at least 0.95 posterior probability of 719 

ASE (D-F), estimates of the dispersion parameter (G-I), and the posterior probability of ASE (J-L). 720 

All distributions are shown for each of the three intraspecific F1s intra6.3 (left), intra7.2 (middle) and 721 

intra8.2 (right). 722 

 723 

Figure 4. Relaxed purifying selection on genes with ASE in C. grandiflora. The estimated proportion 724 

of new nonsynonymous mutations in each bin of the distribution of negative fitness effects is shown, 725 

with whiskers corresponding to 95% confidence intervals based on 200 bootstrap replicates, separately 726 

for genes with ASE and control genes. Panels A, C, and D show estimates for the population sample, 727 

under the (A) two-epoch model, (C) one-epoch model, and (D) two-epoch model, after controlling for 728 

expression level differences among ASE and control genes, whereas (B) shows that estimates for the 729 

species-wide sample are similar to those for the population sample. Significance levels of the p-value: 730 

* ≤ 0.05; ** ≤ 0.01. 731 

 732 

Figure 5. A lower proportion of adaptive nonsynonymous fixations at genes with ASE. (A) The 733 

estimated proportion of adaptive fixations relative to 4-fold synonymous substitutions (wa) for genes 734 

with and without ASE. Whiskers correspond to 95% confidence intervals based on 200 bootstrap 735 

replicates. (B) Estimation of a using the asymptotic method of Messer and Petrov (2013), which fits an 736 

exponential function to estimates of a based on polymorphisms at different frequencies. Orange dots 737 

show values for control genes, and green dots show values for genes with ASE. The grey shaded area 738 

indicates 95% confidence intervals based on 200 bootstrap replicates. The point estimate (aasym) for 739 

genes with and without ASE is 0.06 vs 0.28, respectively.  Significance levels of the p-value: * ≤ 0.05; 740 

** ≤ 0.01. 741 

 742 
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Figure 6. Enrichment of TEs near genes with ASE in C. grandiflora F1s. Odds ratios of the 743 

association between genes with ASE and TEs, with TE insertions scored in four different window 744 

sizes (within a distance of 0 bp, 1 kb, 2 kb, 5 kb and 10 kb of each gene). 745 
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