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Abstract 

 

A recent study conducted the first genome-wide scan for selection in Inuit from Greenland using SNP chip data. 

Here, we report that selection in the region with the second most extreme signal of positive selection in 

Greenlandic Inuit favored a deeply divergent haplotype that is closely related to the sequence in the Denisovan 

genome, and was likely introgressed from an archaic population. The region contains two genes, WARS2 and 

TBX15, and has previously been associated with adipose tissue differentiation and body-fat distribution in humans. 

We show that the adaptively introgressed allele has been under selection in a much larger geographic region than 

just Greenland. Furthermore, it is associated with changes in expression of WARS2 and TBX15 in multiple tissues 

including the adrenal gland and subcutaneous adipose tissue, and with regional DNA methylation changes in 

TBX15. 

 

Introduction 

 

To identify genes responsible for biological adaptations to life in the Arctic, Fumagalli et al. (Fumagalli, et al. 

2015) scanned the genomes of Greenlandic Inuit (GI) using the population branch statistic (PBS)(Yi, et al. 2010), 
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which detects loci that are highly differentiated from other populations. Using this method, they found two regions 

with a strong signal of selection. One region contains the cluster of FADS genes, involved in the metabolism of 

unsaturated fatty acids. Several of the SNPs with the highest PBS values in this region were shown to be 

significantly associated with different phenotypes including fatty acid profiles, weight and height. 

 

The other region contains WARS2 and TBX15, located on chromosome 1. WARS2 encodes the mitochondrial 

tryptophanyl-tRNA synthetase. TBX15 is a transcription factor from the T-box family and is a highly pleotropic 

gene expressed in multiple tissues at different stages of development. It is required for skeletal development 

(Singh, et al. 2005) and deletions in this gene cause Cousin syndrome, whose symptoms include craniofacial 

dysmorphism and short stature (Lausch, et al. 2008). TBX15 also plays a role in the differentiation of brown and 

brite adipocytes (Gburcik, et al. 2012). Brown and brite adipocytes produce heat via lipid oxidation when 

stimulated by cold temperatures, making TBX15 a strong candidate gene for adaptation to life in the Arctic. SNPs 

in or near both of these genes have also been associated with numerous phenotypes in GWAS studies – in 

particular waist-hip ratio and fat distribution in Europeans (Heid, et al. 2010) and ear morphology in Latin 

Americans (Adhikari, et al. 2015). 

 

Multiple studies have shown extensive introgression of DNA from Neanderthals and Denisovans into modern 

humans (Green, et al. 2010; Meyer, et al. 2012; Prüfer, et al. 2014; Sankararaman, et al. 2014; Vernot and Akey 

2014; Racimo, et al. 2015). Many of the introgressed tracts have been shown to be of functional importance and 

may possibly be examples of adaptive introgression into humans, including genes involved in immunity (Abi-

Rached, et al. 2011; Dannemann, et al. 2015), genes associated with skin pigmentation (Sankararaman, et al. 2014; 

Vernot and Akey 2014), and EPAS1, associated with high-latitude adaptation in Tibetans (Huerta-Sánchez, et al. 

2014). It has been hypothesized that Archaic humans were adapted to cold temperatures (Steegmann, et al. 2002). 

Therefore, in this paper we examine if any of the selected genes in Inuit (Fumagalli, et al. 2015) may have been 

introduced into the modern human gene pool via admixture from archaic humans, i.e. Neanderthals or Denisovans 

(Meyer, et al. 2012; Prüfer, et al. 2014). We will show that the WARS2/TBX15 haplotype that is at high frequency 

in GI was likely introgressed from an archaic human population. We will also show that the selection affecting this 

haplotype is relatively old, resulting in a high allele frequency in other New World populations and intermediate 

allele frequencies in East Asia. Finally, functional genomic analyses suggest that the selected archaic haplotype 

may affect the regulation of expression of TBX15 and WARS2, and is associated with phenotypes related to body 

fat distribution. 

	

Results	
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Suggestive archaic ancestry in Greenlandic Inuit SNP chip data 

We first computed fD (Martin, et al. 2014) to assess putative local archaic human ancestry in candidate genes in the 

highest 99.5% quantile of the PBS genome-wide distribution in GI (Fumagalli, et al. 2015). This statistic is 

intended to detect imbalances in the sharing of alleles from an outgroup panel between two sister population panels 

or genomes. It is robust to differences in local diversity along the genome, which tends to confound other related 

statistics, such as Patterson’s D14,15, which also use patterns of allelic imbalances (i.e. “ABBA” and “BABA” sites, 

see Methods). Patterson’s D is also meant to identify excess archaic ancestry but is better suited for genome-wide 

analyses (Green, et al. 2010; Durand, et al. 2011). 

 

For the test population we used the SNP chip data from the selection scan in GI (Fumagalli, et al. 2015), obtained 

from 191 Greenlandic Inuits with low European admixture (<5%). When computing fD, we used a Yoruba genome 

sequenced to high-coverage (HGDP00927) (Prüfer, et al. 2014) as the non-introgressed genome. For the archaic 

genome, we used either a high-coverage Denisovan genome (Meyer, et al. 2012) or a high-coverage Neanderthal 

genome (Prüfer, et al. 2014). All sites were polarized with respect to the inferred human-chimpanzee ancestral 

state (Paten, et al. 2008). 

 

The only top PBS locus showing some evidence of archaic ancestry is the WARS2/TBX15 region, which has a high 

degree of allele sharing with the Denisovan genome (Figures S1, S2, Table S1). For example, in WARS2, we find 

18.46 sites supporting a local tree in which Denisova is a sister group to GI, to the exclusion of Yoruba (ABBA), 

while we only find 2.5 sites supporting a Yoruba-Denisova clade, to the exclusion of GI (BABA) (the numbers are 

not integers because we are using the panel version of ABBA and BABA, not the single-genome version (Durand, et 

al. 2011)). However, because we used SNP chip data, we found that most genes had few informative (ABBA or 

BABA) sites. For genes for which there are 2 or more informative sites (i.e. ABBA+BABA >= 2), TBX15 is in the 

88% quantile of the genome-wide distribution of fD, and WARS2 is in the 87% quantile. For genes for which there 

are more than 10 informative sites (i.e. ABBA+BABA >= 10), the quantile rankings for these genes are almost the 

same: TBX15 is in the 88% quantile, and WARS2 is in the 86% quantile. However, due to the small number of 

SNPs available for testing in GI, we could not assess with confidence whether this region was truly introgressed 

from archaic humans. We therefore sought to identify the selected haplotype in other samples for which full 

sequencing data are available. 

 

The alleles with high PBS values and high frequency in GI are almost absent in Africa, while present across 

Eurasia. In Figure 1.A, we show the geographic distribution of allele frequencies for one of these SNPs 

(rs2298080) as an example, using data from phase 3 of the 1000 Genomes Project (Auton, et al. 2015) and the 

Geography of Genetic Variants Browser (Marcus and Novembre 2016). The high-frequency alleles in GI tend to 
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match the Denisovan and Altai Neanderthal alleles in this region. For example, rs2298080 has an A allele at a 

frequency of 45.45% in Han Chinese from Beijing (CHB) and at 99.74% frequency in GI. This allele is absent or 

almost absent (<1% frequency) in all African populations, and the Denisovan and Altai Neanderthal genomes are 

both homozygous for the A allele. We observe a similar pattern when looking at the Simons Genome Diversity 

Project (SGDP) (Figure 1.B), which contains high-coverage genomes from a wide variety of populations across the 

world, including San, native Papuans and Australians, and various Native American populations. Here, we also 

observe that the archaic allele of rs2298080 is almost absent (1.11% frequency) in Africans, but has a much higher 

frequency outside the African continent, especially in East Asia (46.36%), Central Asia and Siberia (64.81% 

frequency), and the Americas (89.13% frequency), though it is not at very high frequencies in Oceania (20.37% 

frequency). We therefore analyze sequencing data from Eurasians to determine if the selected alleles were truly 

introgressed from an archaic human population.	
 

Excess archaic ancestry in Eurasians 

A particularly useful way to detect adaptive introgression is to identify regions with a high proportion of uniquely 

shared sites between the archaic source population and the population subject to introgression (Racimo, et al. 

2016). This was one of the lines of evidence in favor of Denisovan adaptive introgression in Tibetans at the EPAS1 

locus (Huerta-Sánchez, et al. 2014). We therefore partitioned the genome into non-overlapping 40 kb windows and 

computed, in each window, the number of SNPs where the Denisovan allele is at a frequency higher than 20% in 

Eurasians but less than 1% in Africans, using the populations panels from phase 3 of the 1000 Genomes Project 

(Auton, et al. 2015). The windows containing TBX15 and WARS2 have four and three such sites, respectively, 

which is higher than 99.99% of all windows in the genome (Figure 2.A). We used a length of 40 kb because the 

mean length of introgressed haplotypes found in an earlier study (Prüfer, et al. 2014) was 44,078 bp 

(Supplementary Information 13 in that study). 

 

In each of the same 40 kb windows, we also computed the 95% quantile of Eurasian derived allele frequencies of 

all SNPs that are homozygous derived in Denisova and less than 1% derived in Africans (using EPO alignments 

(Paten, et al. 2008) to define the ancestral and derived alleles with respect to the human-chimpanzee ancestor). 

This quantile is assigned as the score for each window. This second statistic is designed to detect archaic alleles 

that are uniquely shared with Eurasians and have risen to extremely high frequencies. Here, WARS2 and TBX15 are 

also strong outliers, with a quantile frequency score above 99.95% of all windows (Figure 2.B). The chance that 

the region would randomly show such an extreme pattern of both excess number, and high allele frequency, of 

derived alleles shared with Denisovans and rare or absent in Africa, is exceedingly small under models of 

neutrality, positive selection alone or introgression alone (Racimo, et al. 2016) and strongly suggests that selection 

has been acting on alleles introgressed from archaic humans.	
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Identifying the introgression tract 

We used a Hidden Markov Model (HMM) method (Seguin-Orlando, et al. 2014) for identifying introgression 

tracts (“HMM-tracts”), using Yoruba as the population without any introgression (Supplementary Information 1). 

Using either Neanderthal or Denisova as the source population, we inferred a clear introgression tract in the middle 

of the PBS peak, which is especially frequent among East Asians and Americans (Figure S3). The inferred tract is 

more than twice as wide when using Denisova (chr1:119,549,418-119,577,410) as the source population (27,992 

bp) than when using Neanderthal (13,729 bp) (Figure S4), which suggests the source population may have been 

more closely related to the Denisovan genome in this particular region. The frequency of the Denisovan tract is 

48.41% in East Asians, 19.78% in Europeans and 12.37% in South Asians. We find 5 individuals that contain 

particularly long (129,374 bp to 216,155 bp) versions of the tract in East Asians: one Southern Han Chinese 

(HG00406), two Kinh (HG01841, HG02076) and three Japanese (NA18962,	NA19005, NA19054).	
 

We also queried the region using the output from the conditional random field framework for detecting archaic 

tracts developed by Sankararaman et al. (2016), applied to the Simons Genome Diversity Panel. Using this method 

(“CRF-tracts”), we find that the tract is generally longer (~85,000 bp, though varying in length depending on the 

population) than the one inferred by the HMM, for example extending in several East Asians from position 

119,541,452 to 119,627,434 (Figure 3). We also find that there are individuals from three populations in East and 

Central Asia (the Naxi, the Yakut and the Even) in which the tract is surprisingly much larger than in any other 

population (ranging from 181,288 bp to 628,816 bp). Although the Yakut are Siberian populations that are closely 

related to the Inuit, the version of the introgressed haplotype that is at high frequency in the Yakut does not appear 

to match better with the Inuit haplotype than other versions of the introgressed haplotype present in other 

populations (Supplementary Information 2). 

 

We further examined the SNPs that are selected in GI and that contain archaic alleles that are uniquely present in 

the introgressed haplotype background, as inferred by the HMM. We queried their allelic state in different human 

population panels (Figure 4). We find a sharp distinction between the two most prevalent haplotypes across 

Eurasia, with one of them being almost identical to the Denisovan genome and the other being highly differentiated 

from it. As expected, the frequencies of these two haplotypes agree with the frequencies of the inferred 

introgressed tracts and with the allelic frequencies of the top PBS SNPs. This pattern echoes the pattern observed 

for another well-known case of adaptive introgression in Tibetans (Huerta-Sánchez, et al. 2014), although in the 

present case the archaic haplotype is more widely distributed across Eurasia.  
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The average recombination rate per bp in the region is low (0.15 * 10^-8, Figure S5), so we were interested in 

testing if the inferred tract could possibly be an ancestral polymorphism that survived in particular populations but 

not others, rather than an introgressed haplotype. Using the observed recombination rate and the conservative, 

shorter tract length inferred by the HMM (27,992 bp), we find via simulations that this probability is very small (P 

= 0.01, Supplementary Information 3). Additionally, we note that this probability would be even lower using the 

tract length inferred by the CRF method, or the much longer tracts found in the Yakut, Even and Naxi. 

 

The selected alleles are the putative introgressed alleles 

The archaic haplotype frequencies agree well with the frequencies of the selected alleles in different human 

populations. We therefore aimed to verify that the selected alleles were the same alleles that were uniquely shared 

with archaic humans. We focused on the SNPs in the TBX15/WARS2 region that are located in the 99.95% quantile 

of genome-wide PBS scores in the GI SNP chip data (Fumagalli, et al. 2015). Noticeably, 28 out of the 33 top 

SNPs in the TBX15/WARS2 region lie in the region where the introgressed haplotype is located, as inferred by both 

the HMM and the CRF frameworks. Out of the remaining 5 SNPs, two of them (rs10923738, rs12567111) lie 

within the inferred CRF-tract, but not in the HMM-tract. For each of SNPs that overlap the track as inferred by 

both methods, we checked whether the selected allele in GI was the same as: a) the alleles present in the high-

coverage Altai Neanderthal genome(Prüfer, et al. 2014), b) the alleles present in the recently-sequenced high-

coverage Vindija Neanderthal genome (https://bioinf.eva.mpg.de/jbrowse), c) the alleles in the high-coverage 

Denisova genome (Meyer, et al. 2012), d) the alleles present in a present-day human genome from the 1000 

Genomes Project(Auton, et al. 2015) (HG00436) that is homozygous for the introgressed tract, e) the alleles in a 

present-day human genome (HG00407) that does not contain the introgressed tract, and f) the alleles in 3 modern 

human genomes obtained from ancient DNA: Ust-Ishim (Fu, et al. 2014) (dated at ~45,000 kya), Stuttgart (dated at 

~7,000 kya) and Loschbour (Lazaridis, et al. 2014) (dated at ~8,000 kya).	
 

In all of the SNPs showing the highest evidence of selection, the present-day human genomes that are homozygous 

for the introgression tract are also homozygous for the favored alleles. Additionally, in all of these SNPs, the 

present-day human genomes lacking the introgression tract are homozygous for the allele that was not favored by 

selection. Furthermore, in 79% of the SNPs, the selected allele is present in homozygous form in Denisova, while 

this is only true for 64% of the SNPs in Neanderthals (Table 1), regardless of whether we look at the high-coverage 

Altai Neanderthal or at the recently sequenced high-coverage Vindija Neanderthal. This indicates that the selected 

alleles are also the introgressed alleles, and that a population closer to the sequenced Denisovan at this locus is the 

most likely source of archaic introgression. In the 6 SNPs where the introgressed tract carries a different allele than 

Denisova, the allele in the introgressed tract is derived, suggesting these differences are due to mutations that 

occurred more recently than the time the introgressing lineage coalesced with the sequenced Denisovan’s lineages, 
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and possibly more recently than the introgression event. Finally, we find that in 100% of the SNPs the Ust’-Ishim, 

Stuttgart and Loschbour genomes are homozygous for the non-introgressed alleles, so they did not carry the 

introgressed haplotype. 

 

Additionally, by analyzing low-coverage ancient DNA data from various Eurasian populations (Gamba, et al. 

2014; Raghavan, et al. 2014; Allentoft, et al. 2015), we find that the selected alleles are prevalent in Eurasian 

steppe populations but almost absent in western Neolithic and Mesolithic European populations (Supplementary 

Information 4), suggesting the introgressed haplotype may have been introduced into Europe from eastern Eurasia, 

via the Late Neolithic steppe migrations (Allentoft, et al. 2015; Haak, et al. 2015).	
 

The region also shows selection signatures in Native Americans 

 

To examine whether selection in GI on the introgressed haplotype was shared with Native Americans, we 

performed a scan for positive selection in the latter population by measuring the genetic differentiation against a 

population of African descent. To correct for recent admixture in Latin America, we selected the Latin American 

individuals from the 1000 Genomes project (Auton, et al. 2015) showing the highest proportion of Native 

American ancestry in a 100 Mbp region around the introgressed haplotype, using ngsAdmix (Skotte, et al. 2013). 

These came only from individuals from Peru (PEL) and from individuals from Los Angeles with Mexican ancestry 

(MXL), as these have higher proportions of Native American ancestry than other Latin American panels (Figure 

S6).	
 

We observed a local increase of FST in the proximity of the introgressed haplotype when comparing individuals 

from the PEL and MXL panels against populations of African (YRI) descent (Figure 5). We did not observe high 

FST values when testing panels of East Asian, South Asian or European descent as the target population for 

selection (Figure S7). 

 

To assess whether the observed values of FST around the introgressed haplotype may be explained by pure genetic 

drift, we calculated FST for all biallelic SNPs at the whole-genome level and compared the empirical distribution 

with a marker SNP (rs2298080) for the selected haplotype. We found that FST values between PEL/MXL against 

YRI or CEU for the introgressed haplotype are strong outliers in the genome-wide distribution (Table S2). FST 

between PEL and CHB is also an outlier (p=0.021) while FST between CHB and CEU is marginally significant 

(p=0.043). 

 

We aimed to elucidate whether the high FST values observed between East Asians and Native Americans could be 
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due solely to selection in the ancestral population of Native Americans and GI, or if they could be better explained 

by continuing selection in Native Americans after their split from GI. We simulated several demographic scenarios 

of the history of CHB, PEL and GI, under various PEL-GI split times and PEL population sizes (see Methods). We 

then tested whether the top FST for our 20kbp sliding window scan was an outlier under scenarios with positive 

selection starting in the ancestral population of PEL and GI, and either continuing in both PEL and GI, or only 

persisting in GI. We found that demographic scenarios involving low effective population sizes in PEL and/or very 

strong selection in the ancestral population could result in the observed FST value being in the 95% percentile of the 

distribution, without invoking continuing selection in Native Americans after their split from GI (Figure S8). The 

population sizes required for this to occur (1,000-3,000) overlap with previously estimated population size 

estimates for Native Americans (1,650-2,600)(Raghavan, et al. 2015), so it is possible that selection need not have 

continued to operate in Native Americans after their split from GI.	
 

Using rs2298080 as a proxy for the selected haplotype, we infer that the haplotype has a frequency of 98%, and 

86% in the PEL and MXL population panels, after filtering for the individuals with the most Native American 

ancestry, respectively. The apparent lack of fixation of the introgressed haplotype in these populations might be 

explained by the residual non-Native American ancestry (ranging from 11% to 29%) for the analyzed American 

individuals. Clearly, selection on this allele is not unique to GI but has affected a large proportion of New World 

groups, likely in pre-Columbian times. This also explains the higher frequency of the introgressed tract in the 

SGDP Native American panel than in the 1000 Genomes Project panel (Figures 1.B, 3), as the individuals from the 

former project were specifically sampled from peoples with well-documented Native American ancestry. 

 

The introgression tract is more closely related to the Denisovan genome than the Neanderthal genome 

The divergence between the introgressed haplotype (as defined by the HMM) and the Denisova genome (0.0008) 

is lower than the divergence between the haplotype and the Altai Neanderthal genome (0.0016). To further 

examine if the haplotype could be of Neanderthal origin, we computed the divergence between the Altai 

Neanderthal genome and a randomly chosen individual that was homozygous for the introgressed tract (HG00436). 

We compared this divergence to the distribution of divergences between the Altai Neanderthal and the 

Mezmaiskaya Neanderthal (Prüfer, et al. 2014), computed across windows of the genome of equal size (Figure S9). 

We scaled all divergences by the divergence between the human reference and the inferred human-chimpanzee 

ancestor, to account for local variation in mutation rates. If the introgressed haplotype came from Neanderthals, 

then we would expect the scaled divergence between it and the Altai Neanderthal to be within the distribution of 

Neanderthal-Neanderthal divergence. To avoid errors due to the lower coverage of the Mezmaiskaya Neanderthal, 

we only computed divergence on the Altai side of the tree. The observed Altai-haplotype scaled divergence falls in 

the 96.9% quantile of the distribution, suggesting it is likely not a typical Neanderthal haplotype. The divergence 
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between the introgressed haplotype and the Denisovan genome falls in the 43.12% quantile of the Neanderthal-

Denisovan divergence distribution, indicating that even though the haplotype is more closely related to the 

sequenced Densovan than to the Altai Neanderthals, it is just as diverged to the Denisovan as a typical Neanderthal 

region is to a typical Denisovan region.	
 

We also obtained the distribution of scaled divergences between the Denisovan genome and a high-coverage 

Yoruba genome (HGDP00936)(Prüfer, et al. 2014). We compared this distribution to the divergence between the 

introgressed haplotype (using an individual homozygous for the haplotype), and the Denisovan, and observe that 

this divergence falls towards the left end of the distribution, in the 16.44% quantile (Figure S9). Furthermore, the 

introgressed haplotype is highly diverged from Yoruban haplotypes, with the divergence falling in the 98.5% 

quantile of the Denisova-Yoruba divergence distribution, and in the 98.67% quantile of the Neanderthal-Yoruba 

divergence distribution (Figure S9). All in all, this suggests that both the introgressed haplotypes and the archaic 

haplotypes – though closely related to each other – are both highly diverged from the non-introgressed present-day 

human haplotypes.	
 

Additionally, we simulated two archaic populations that split at different times (100,000, 300,000 or 450,000 

years), under a range of effective population sizes (1,000, 2,500, 5,000), based on estimates from an earlier study 

(Prüfer, et al. 2014). We compared these simulations to the divergence between the Neanderthal genome and the 

introgressed haplotype, as well as to the divergence between the Denisovan genome and the introgressed haplotype 

and the divergence between the introgressed haplotype and the Yoruba genome (Figure S10). In all cases, the 

divergence that falls closest to the distribution is the divergence to the Denisovan genome, suggesting this is the 

closest source population for which we have sequence data.	
 

To understand the relationship between the introgressed haplotype and the archaic and present-day human 

genomes, we plotted a network of the haplotypes in the region as defined by the HMM method (Figure 6). This 

network shows the most parsimonious distances among the 20 most common present-day human haplotypes and 

the 4 archaic haplotypes from Altai Neanderthal and Denisova in the region. We observe two distinct clusters of 

present-day human haplotypes: one cluster that is distantly related to both archaic genomes, and another cluster 

that is closely related to Denisova and contains mostly East Asian and Native American individuals, some 

European and South Asian individuals and almost no Africans. The Altai Neanderthal haplotypes fall at an 

intermediate position between the Denisovan haplotypes and the first cluster, but share more similarities with the 

Denisovan haplotypes. The present-day human cluster that is closest to Denisova has a smaller Hamming distance 

to Denisova than does the Neanderthal haplotype (Figure S11), again suggesting the haplotype was introgressed 
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from individuals more closely related to the Denisovan genome in this region than to any of the sequenced 

Neanderthal genomes. 

 

We compared the distances between the haplotypes in TBX15/WARS2 to those observed in EPAS1 (Figure S12), a 

previously reported case of adaptive introgression in Tibetans from an archaic population closely related to the 

Denisovan genome(Huerta-Sánchez, et al. 2014; Huerta-Sanchez and Casey 2015).	We focused on the distances 

among Neanderthal, Denisova and the haplotype that is most closely related to the archaic genomes, for each of the 

distinct present-day clusters. We observe that, although the distances among Denisova, Neanderthal and the 

putatively introgressed haplotypes are similar, the distance between any of these and the non-introgressed 

haplotype are approximately double of what is observed in the case of EPAS1 (Figure S12). The mutation rate in 

the region does not seem particularly high, based on the patterns of divergence between the human reference and 

the human-chimpanzee ancestor (Figure S13), so a locally elevated mutation rate is unlikely to explain this signal. 

This also suggests that the archaic and introgressed haplotypes in this region belong to a deeply divergent archaic 

lineage.	
 

Regulatory differences in archaic and modern humans 

We previously identified four regions in TBX15 in which the Denisovan DNA methylation patterns significantly 

differ from those of present-day humans (Gokhman, et al. 2014). This high concentration of differentially 

methylated regions (DMRs) makes TBX15 one of the most DMR-rich genes in the Denisovan genome. These 

DMRs are found around the transcription start site (TSS) of TBX15, bear many active chromatin marks in present-

day humans (DNase I hyper-sensitivity, binding by p300 and H2A.Z, and the histone modifications H3K27ac and 

H3K4me1), and were shown to be associated with the activity levels of TBX15 (Kron, et al. 2012; Chandra, et al. 

2014). This suggests that the activity level of TBX15 in the Denisovan genome was different than in present-day 

human genomes.	
 

The extensive differences in DNA methylation between the Denisovan and present-day human genomes, and the 

fact that the introgressed tract overlaps regulatory regions of TBX15 (Chandra, et al. 2014) suggest that present-day 

individuals who carry the introgressed haplotype might display differential methylation as well. Despite the fact 

that the four Denisovan DMRs do not overlap the introgressed region (Figure 7A), they might reflect TBX15 

activity levels determined by sequence changes at the introgressed region, as it is not uncommon that sequence 

changes far from a gene alter its activity (Mansour, et al. 2014; Diederichs, et al. 2016). Thus, we turned to 

investigate the link between the introgressed allele and DNA methylation around TBX15 and WARS2.	
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To this end, we studied a data set of skin fibroblasts, where both genes are active, and in which each individual is 

characterized for sequence, methylation and expression. This data set included 62 individuals, of which two are 

homozygous for the introgressed tract, 21 are heterozygous, and 39 do not carry the tract (Wagner, et al. 2014). 

Due to the low number of individuals who are homozygous for the introgressed tract, we divided the individuals 

into two groups: individuals who do not carry the tract, and those who carry at least one copy of it. Then, we 

searched for CpG positions whose methylation level differs between the groups. Searching the entire region 

between the promoter of WARS2 (5kb upstream to the TSS) to the transcription termination site of TBX15, we 

identified two such regions (FDR < 0.05, t-test, Table S3). The first region includes 16 CpGs around the TSS of the 

long transcript of TBX15 (hereinafter “TSS CpGs”), all of which are significantly hypomethylated in introgressed 

individuals compared to individuals who do not carry the introgressed tract (Figure 7B). Interestingly, these CpGs 

almost completely overlap one of the previously reported DMRs (Figure 7A). The second region is a single CpG 

position that is found within the introgressed region, 11 kb upstream of the TSS of TBX15 (hereinafter “upstream 

CpG”). Here too, introgressed individuals are hypomethylated compared to individuals who do not carry the tract 

(Figure 7B, Supplementary Table X). 	
 

In order to further test the effect of introgression on the activity of TBX15 and WARS2, we investigated whether the 

methylation levels of the 16 TSS CpGs and the upstream CpG are associated with the levels of expression of 

TBX15 and WARS2. We found that none of these CpGs are associated with the expression of WARS2, while all of 

them are significantly associated with the expression of TBX15 (FDR < 0.05, Pearson correlation). In fact, both the 

TSS CpGs and the upstream CpG are found within two previously reported regulatory regions of TBX15, and it 

was shown that their methylation levels are linked to the activity levels of this gene (Chandra, et al. 2014). We also 

detect a more general association between the introgressed haplotype and expression levels: individuals carrying 

the haplotype exhibit a 22% increase in the expression level of TBX15 in skin fibroblasts (Bonferroni-corrected P = 

0.014, t-test, Figure 7C).	
 

TBX15 exhibits a unique link between expression and methylation, where, in contrast to most genes, global 

hypermethylation of its promoter is associated with elevated activity (Chandra, et al. 2014). However, the local 

relationship between the methylation at specific sites within its promoter and its activity level is substantially more 

complex, highly tissue-specific, and little understood to date. For example, unlike the rest of the promoter region, 

hypomethylation of the TSS region was shown to be associated with elevated expression levels of TBX15 

(Chandra, et al. 2014). This trend matches the one we see in the fibroblast data set, where introgressed individuals 

exhibit reduced methylation in the TSS CpGs and elevated expression levels of TBX15 (Figure 7C).	
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A sensible assumption is that the methylation patterns in the introgressed individuals would resemble those in the 

Denisovan. However, the trend we observe is opposite; the Denisovan is hypermethylated compared to present-day 

humans, whereas introgressed individuals are hypomethylated compared to other present-day human individuals. 

While counterintuitive at first glance, it is important to take into account the complex and tissue-specific regulation 

of TBX15, and the fact that our analysis was conducted in fibroblasts, while the Denisovan methylation levels are 

from bone. Both the TSS CpGs and the upstream CpG reside in regions where methylation is variable across 

tissues (Chandra, et al. 2014). Moreover, the method of measurement of DNA methylation is different between 

these samples (high-resolution single site measurements in fibroblasts vs. regional reconstruction in the Denisovan 

bone). Therefore, further analyses are needed in order to determine how methylation patterns are affected by 

introgression in additional tissues, and specifically in bone.	
 

The complex relationship between the introgressed tract and the activity levels of TBX15 and WARS2 can also be 

observed in the wider context of expression across tissues. To this end, we queried the GTEx database (GTEx-

Consortium 2015) to examine if the introgressed SNPs are associated with an effect on human gene expression in 

various tissues. The sample sizes in the GTEx project do not provide enough power to detect trans-eQTLs, so we 

could only search for a cis-eQTL relationship with genes within a +/- 1 Mb window of each SNP. We therefore 

only checked whether the 28 introgressed SNPs that had signatures of positive selection in GI were also eQTLs for 

TBX15 or WARS2. We found that all of these SNPs are tightly linked and therefore have almost exactly the same 

P-values in each of the tissues, so we only focus on one of these (rs2298080) below. Tables S4 and S5 show the 

effect sizes and P-values obtained from GTEx for 41 different tissues for TBX15 and WARS2, respectively. In the 

case of TBX15, we find only one tissue with P < (0.05 / number of tissues tested), in the testis, where the 

Denisovan variant increases expression of the gene (P = 0.00018). When querying the SNP for expression effects 

on WARS2, we find 6 tissues with P < (0.05 / number of tissues tested): subcutaneous adipose, adrenal gland, aorta, 

tibial artery, esophagus muscularis, skeletal muscle. This suggests that expression differences, in the tissues and 

developmental stages represented in the GTEx database, are more ubiquitous in WARS2 than TBX15. For all 

significant tissues, we find that the Denisovan variant decreases expression of WARS2. For TBX15, on the other 

hand, the trend varies between tissues. 	
 

Association studies 

Because the haplotype is at intermediate frequencies in Europeans, we queried the GIANT consortium GWAS data 

(Wood, et al. 2014; Locke, et al. 2015; Shungin, et al. 2015), which contains a number of anthropometric traits 

tested on a European panel. When looking at all P-values in the region, we find that there is a peak of significantly 

associated SNPs for three phenotypes right where the haplotype is inferred to be located (Figure S14). These 

phenotypes are BMI-adjusted waist circumference, waist-hip ratio and BMI-adjusted waist-hip ratio. We then 
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queried the most extreme SNPs that serve to differentiate the archaic from the non-archaic haplotypes (see 

Methods) and the SNPs that were among the top PBS hits in GI (Table 1). The introgressed alleles in the queried 

SNPs are associated with a positive effect size for all three phenotypes. However, even though some of these SNPs 

are significantly associated with BMI-adjusted waist-circumference (P < 10-5), they are not among the top most 

significant SNPs in the region for any of the three phenotypes (Figure S14). Furthermore, when we conditioned on 

the SNP with the lowest P-value in the region (rs984222) we found no genome-wide significant association with 

the queried SNPs (lowest conditional P-value for introgressed SNPs = 0.047) (Figure S14).  

Interestingly, we also observed that the region overlaps a 100 kb region designated as a mouse QTL for the 

induction of brown adipocytes (MGI:2149993)(Xue, et al. 2005).	
 

Discussion 

 

We have identified a highly divergent haplotype in the TBX15/WARS2 region, which was likely introduced into the 

modern human gene pool via introgression with archaic humans. A priori, one would expect the source of 

introgression to be Neanderthals, due to their geographic distribution and the known admixture event(s) from 

Neanderthals into Eurasians (Green, et al. 2010; Prüfer, et al. 2014). However, the introgressed sequence is more 

closely related to the sequenced Denisovan genome than the sequenced Neanderthal genomes. This suggests that 

either the introgressing Neanderthal sequence is missing in the Neanderthals sequenced to date (and perhaps 

present in the sequenced Denisovan genome due to incomplete lineage sorting), or that the introgression event 

occurred from an unidentified population present in Eurasians that was more closely related to the Denisovan 

individuals found in the Altai Mountains than to any Neanderthal population.	
 

The archaic haplotype is almost absent in Africans, present at higher frequencies in East Asians than in Europeans 

and South Asians, and at even higher frequencies in Native Americans and GI, where it is almost fixed (after 

correcting for post-Columbian admixture). This suggests there may have been a temporally and geographically 

extended period of selection for the archaic haplotype throughout eastern Eurasia. Population genetic 

differentiation values between Native Americans and Yoruba are significantly high (YRI vs. PEL: P < 10-4), but 

only marginally significant when comparing East Asians and Yoruba (YRI vs. CHB: P = 0.01), but only 

marginally significant when comparing East Asians and Native Americans (P = 0.02 for CHB vs. PEL and P = 

0.06 for CHB vs. MXL). These findings suggest that selection on this locus may have acted during the early phases 

of the peopling of the Americas, perhaps in the Siberian or the Beringian ancestors of both modern Native 

Americans and Greenlandic Inuit. Selection may have continued to operate in Native Americans after their split 

from the Greenlandic Inuit, but we found that one need not invoke a model of continuing selection, if selection in 

Beringia was strong (2Ns > ~500) and/or the effective population size in Native Americans after their split was 
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very small. While very strong selection is unlikely, effective population sizes for Native Americans have been 

estimated to be very low (Raghavan, et al. 2015).	
 

It is intriguing that the introgressed tract is extremely long in 3 specific populations of central Asian and Siberia: 

the Yakut, the Even and the Naxi. The Yakut and Even are northeastern Siberian groups that migrated from the 

Lake Baikal and Transbaikal regions north of Mongolia. The Naxi are a population living in the Himalayan 

foothills that migrated from northwestern China. It is possible that these longer versions of the tract are perhaps 

remnants of the originally introgressed haplotype, which may have been shortened by recombination before 

sweeping to high frequencies in other populations. Though the haplotype is present in Europeans, there is some 

evidence to suggest it may have been introduced via the eastern steppe migrations of the Late Neolithic 

(Supplementary Information 4), again indicating that the original introgression event may have occurred 

somewhere in Asia. 

 

The TBX15/WARS2 region is highly pleiotropic: it has been found to be associated with a variety of traits. These 

include the differentiation of adipose tissue (Gburcik, et al. 2012), body fat distribution (Heid, et al. 2010; Liu, et 

al. 2013; Liu, et al. 2014; Shungin, et al. 2015), facial morphology (Lausch, et al. 2008; Pallares, et al. 2015), 

stature (Lausch, et al. 2008), ear morphology (Curry 1959; Adhikari, et al. 2015), hair pigmentation (Candille, et 

al. 2004) and skeletal development (Singh, et al. 2005; Lausch, et al. 2008). Interestingly, for several of the body 

fat distribution studies, the introgressed SNPs lie in the middle of a region with significant genome-wide 

associations, although the introgressed SNPs themselves do not have genome-wide significant P-values, after 

conditioning for the SNP with the strongest association in the region (which is not linked to the introgressed tract).	
 

The haplotype is located immediately upstream of TBX15, overlapping some of its regulatory regions. Using 

fibroblast data where individuals were characterized for sequence, methylation and expression, we have shown a 

three-way association between the haplotype, the levels of DNA methylation, and the levels of expression of 

TBX15. However, the GTEx analysis found an association between the haplotype and the expression of TBX15 

only in the testis. Similarly, whereas we could not detect a regulatory link to the haplotype when analyzing WARS2 

in the fibroblast data, the GTEx analysis revealed that the Denisovan SNPs are cis-eQTLs for WARS2 across 

various tissues. This included skeletal muscle and subcutaneous adipose. These contrasting results, together with 

the different methods used to perform measurements in these data sets, make it difficult to assess whether the 

downstream phenotypic changes are due to changes in the regulation of TBX15, WARS2 or both. 
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Altogether, our study suggests a complex multi-factorial regulation of TBX15 and WARS2. We show that the 

introgressed region is associated with regional changes in methylation and expression levels, but our findings also 

hint to other factors that affect the regulation of these genes that are yet to be elucidated. 

 

Methods 

 

fD statistics in Greenlandic Inuit SNP data 

Following refs. (Green, et al. 2010; Durand, et al. 2011), at site i, let Ci(ABBA) = ( (1 - fYoruba) x fGreenlandic Inuit x 

fArchaic human ), where f is the derived allele frequency (with respect to the human-chimpanzee ancestor ) in either a 

population panel (for the Greenlandic Inuit) or a diploid genome (for Yoruba and the archaic humans). 

Furthermore, let Ci(BABA) = ( fYoruba x (1 - fGreenlandic Inuit) x fArchaic human). Then, for a set of N sites within a particular 

region of the genome, we computed D as follows:	
 

𝐷 =
𝐶! 𝐴𝐵𝐵𝐴 − 𝐶! 𝐵𝐴𝐵𝐴!

!!!

𝐶! 𝐴𝐵𝐵𝐴 + 𝐶! 𝐵𝐴𝐵𝐴!
!!!

 

 

Let S(Yoruba,Greenlandic Inuit,Archaic,Chimpanzee) be the numerator in the D statistic defined above. We 

computed fD as follows: 

 

𝑓! =
𝑆 𝑌𝑜𝑟𝑢𝑏𝑎,𝐺𝑟𝑒𝑒𝑛𝑙𝑎𝑛𝑑𝑖𝑐𝐼𝑛𝑢𝑖𝑡,𝐴𝑟𝑐ℎ𝑎𝑖𝑐,𝐶ℎ𝑖𝑚𝑝𝑎𝑛𝑧𝑒𝑒

𝑆 𝑌𝑜𝑟𝑢𝑏𝑎,𝑋,𝑋,𝐶ℎ𝑖𝑚𝑝𝑎𝑛𝑧𝑒𝑒  

 

Here, X is defined – dynamically for each site i – as the population (either Archaic or Greenlandic Inuit) that has 

the highest derived allele frequency. 

 

Introgressed tracts in Eurasian whole-genome data 

First, we used a HMM to find the archaic introgressed tracts in the region (Seguin-Orlando, et al. 

2014)(Supplementary Information 1). We set an admixture proportion of 2%, an admixture time of 1900 

generations ago and a constant recombination rate of 0.155 ×  10-8 per bp per generation, which is the average 

recombination rate in the TBX15/WARS2 region. We used YRI as the population with no introgression. The HMM 

was run individually on each phased genome from the 1000 Genomes data, using all SNPs that were variable in the 

continental panel to which the individual belonged. The model has two hidden states – introgressed and non-

introgressed – and the rate of transition between the two assumes an exponential distribution of admixture tracts. 

We called tracts if the posterior probability for introgression estimated using the HMM was higher than 90%. We 
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also tried increasing the admixture proportion to 10% and 50%, but did not observe any major differences in the 

length of the tracts or the proportion of individuals carrying them, except that some of the tracts in the same 

chromosome tended to be broken into smaller tracks more often than when using a 2% rate. Under these 

parameters, the HMM has a specificity of 99.56%, a sensitivity of 36.07% and a false discovery rate of 1.15%.  We 

also obtained introgression tracks in the same region from Sriram Sankararaman (pers. comm.). These tracks were 

estimated using a CRF framework applied to the SGDP data(Sankararaman, et al. 2014; Sankararaman, et al. 

2016). This method searches the genome for runs of archaic alleles that are of a length consistent with 

introgression.	
 

Uniquely shared sites 

We defined “Eurasian uniquely shared sites” (Racimo, et al. 2016) as sites where the Denisovan genome is 

homozygous and where the Denisovan allele is at low frequency (< 1%) in Africans (AFR, excluding admixed 

African-Americans), but at high frequency (> 20%) in non-American Eurasians (EUR+EAS+SAS) from phase 3 of 

the 1000 Genomes Project (Auton, et al. 2015). Similarly, we defined the “derived shared quantile” statistic 

(Racimo, et al. 2016) as the 95% quantile of all derived allele frequencies in Eurasians, for SNPs where the 

Denisovan allele is homozygous for the derived allele and where the derived allele is at low frequency (< 1%) in 

Africans. In both cases, we only used sites that were not in repeat-masked regions (Smit, et al. 1996-2010.) and 

that lied in regions with 20-bp Duke mappability equal to 1 (Derrien, et al. 2012). The mapability track ensures that 

the sites are located in uniquely mappable 20-bp windows of the genome, to avoid issues that may spring from 

mismapped reads. 	
 

Haplotype clustering 

To examine the haplotypes in this region, we computed the number of pairwise differences between every pair of 

haplotypes in a particular continental panel. Then we ordered the haplotypes based on their number of pairwise 

distances to the	archaic sequence in each continent. Figure 4 is generated using the heatmap.2 function from the 

gplots package of the statistical computing platform R (R-Core-Team 2012).	
 

Haplotype network 

We built a haplotype network based on pair-wise differences using R (R-Core-Team 2012) and the software 

package pegas (Paradis 2010). To plot the network, we used the 20 most abundant present-day human haplotypes. 

To make a fair comparison with published distances for EPAS1 (Huerta-Sanchez and Casey 2015), we looked at 

the 40 most abundant present-day haplotypes instead, and only counted differences at SNPs that were segregating 

in present-day humans. The network is produced using statistical parsimony, such that the most closely related 

haplotypes are connected first via the least number of mutations (“steps”)(Templeton, et al. 1992).	
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FST scan in Native Americans 

We extracted sequencing data in form of BAM for a 100 Mbp region surrounding the putative introgressed 

haplotype from the 1000 Genomes Project data set (Auton, et al. 2015). First, we selected all unrelated individuals 

belonging to 4 population panels: African Yoruba (YRI), Central Europeans from Utah (CEU), Han Chinese 

(CHB) and Peruvians from Lima (PEL). To select PEL individuals that would serve as optimal representatives of 

Native American genetic variation, we calculated admixture proportion among all YRI, CEU, CHB and PEL 

individuals assuming 4 ancestral populations using NGSadmix (Skotte, et al. 2013). We then extracted the first 30 

PEL individuals showing the highest proportion of inferred Native American ancestry (> 89%). Similarly, we 

selected the first 30 individuals ranked by African, European and East Asian ancestry, respectively, and used each 

of these four 30-individual cohorts in the principal component analyses described below. For this analysis, we 

processed a total of 120 individuals. We then repeated the same procedure using Colombian (CLM), Mexican 

(MXL) or Puerto Rican (PUR) panels. After calculating the ancestry proportion as described above, and given the 

higher European admixture proportions for these populations, only 20 individuals for MXL, CLM or PUR were 

chosen as representatives of Native American variation (Native American ancestry component > 64%). To visually 

verify whether we correctly selected unadmixed individuals in the Latin American cohorts, we performed a 

principal component analysis using ngsTools (Fumagalli, et al. 2014). As only PEL and MXL selected individuals 

explained more than 70% of Native ancestry (Figure S6), we did not consider other Latin American populations for 

further analyses. 

 

We computed FST, a measure of population genetic differentiation, between the Latin Americans with the highest 

proportion of Native American ancestry and other populations against YRI, using a method-of-moments estimator 

implemented in VCFtools (Danecek, et al. 2011) from VCF files from the 1000 Genomes Project (Figure 5). To 

identify signatures of positive selection in Native Americans, we scanned the region around the putatively 

introgressed haplotype using a sliding-windows approach, with window size of 20kbp and step size of 2kbp, and 

computing FST against YRI in each window. We also performed this same analysis but using all non-American, 

non-African populations present in the 1000 Genomes Project, by randomly sampling 30 individuals at each 

population for ease of comparison (Figure S7). To further investigate the deviation of the observed FST from 

neutral expectations, we calculated FST values for a marker for the introgressed haplotype (rs2298080) between all 

pairs of populations investigated for all reported biallelic SNPs across the whole genome (Table S4).	
 

We were also interested in determining which demographic scenarios could generate levels of FST between PEL 

and CHB as extreme as those observed, without invoking selection after the split between PEL and GI. We 

explored several combinations of effective population size for Native Americans (from 1,000 to 10,000 with a step 
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size of 1,000) and split time between Native Americans and Greenlandic Inuit (from 8,000 to 18,000 years ago 

with a step size of 1,000 years). All other parameters were fixed to those inferred using dadi (Gutenkunst, et al. 

2009). Additionally, we assumed that selection started in the ancestral population of Native Americans and 

Greenlandic Inuit 19,000 years ago. After the split, selection stopped in Native Americans, and lasted in the 

Greenlandic Inuit for 500 more years after the split. We tried a range of selection coefficients: 0, 20, 50, 200, 500, 

or 1,000 (in units of 2Ns). For each scenario, we simulated 10,000 replicates of a 20kbp region, using the software 

msms (Ewing and Hermisson 2010), and recorded the 95th percentile of the FST distribution between Native 

Americans and East Asians.	
 

TBX15 and WARS2 regulation 

Data from SNP arrays, methylation arrays and expression arrays for the 62 fibroblast samples were downloaded 

from Gene Expression Omnibus (GEO accession number GSE53261). Expression values were normalized using 

Median Absolute Deviation (MAD) scale normalization (Fundel, et al. 2008). Chromatin peaks (H3K27ac, 

H3K4me1 and DNase-I) were downloaded from the Roadmap integrative analysis of 111 epigenomes (Kundaje, et 

al. 2015). For the analysis of the link between introgression and the expression level of TBX15, we corrected the t-

test P-value using Bonferroni correction, taking into account the eight GTEx mesenchymal tissues in which 

TBX15 is expressed. Osteoblast and fibroblast RRBS maps were downloaded from the ENCODE project (GEO 

accession number: GSE27584). 	
 

Conditional association study 

We used the method of conditional association testing based on summary statistics (Yang, et al. 2012) that is 

implemented in the GCTA software package (Yang, et al. 2011). To obtain information about patterns of linkage 

disequilibrium for the European population analyzed by GIANT– which is required by the method – we used the 

called genotypes for the CEU panel from phase 3 of the 1000 Genomes Project. 	
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Figures 

	
	 	

Figure 1. A. Geographic distribution of rs2298080 in different 1000 Genomes populations. The color blue 

corresponds to the archaic allele in this SNP. For comparison, the allele frequency in Greenlandic Inuit is also 

shown. This figure was made using the Geography of Genetic Variants browser v.0.1, by J. Novembre and J.H. 

Marcus: http://popgen.uchicago.edu/ggv/. B. Archaic allele frequencies of rs2298080 in the continental panels of 

the Simons Genome Diversity Project.  
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Figure 2. A) Genome-wide histogram of the number of uniquely shared sites where the Denisovan allele is at less than 1% 

frequency in Africans (AFR, excluding admixed African-Americans) and at more than 20% frequency in Eurasians (EUR + 

SAS + EAS). The counts were computed in non-overlapping 40 kb regions of the genome. The y-axis is truncated, as the vast 

majority of regions have 0 uniquely shared sites. TBX15 and WARS2 are among the few regions that have 3 and 4 uniquely 

shared sites, respectively. B) In each of the same 40 kb windows, we also computed the 95% quantile of Eurasian derived 

allele frequencies of all SNPs that are homozygous derived in Denisova and less than 1% derived in Africans. The figure 

shows a histogram of this score for all windows. The 95% quantile scores for TBX15 and WARS2 are 0.27 and 0.26, 

respectively. 
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Figure 3. Introgression tracts inferred from the CRF method (Sankararaman et al. 2016) in the different 

continental panels of the SGDP data, using Denisova as the source population. The tract (denoted by the purple 

dashed line) coincides with the peak of PBS scores obtained in the GI scan for positive selection (red dots). For 

comparison, we also show the boundaries of the tract as inferred by the HMM method (green dashed line). The 

Even, Yakut and Naxi contain considerably longer versions of the tract. The frequency of the introgressed 

haplotype is highest among Native Americans, but is also at intermediate frequencies in Central and East Asians, 

and Siberians. 
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Figure 4. We counted the differences between the Denisovan genome and all haplotypes in each 1000G 

continental panel (AFR, EUR, SAS, EAS and AMR). For each panel, we plot the cumulative number of 

haplotypes that have as many or less differences to the Denisovan genome than specified in the x-axis. 

Below each of these plots, we also plot the haplotype structure for each 1000G panel in the introgressed 

tract, ordering haplotypes by decreasing similarity to the Denisovan genome (red arrow, at the top of 

each panel). The color codes at the bottom refer to 1000G sub-populations to which the different 

haplotypes belong, as indicated by the right color column in each panel.	
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Figure 5. We computed FST in different non-African populations (CEU, CHB, PEL, MXL) against African 

Yoruba (YRI) in the TBX15/WARS2 region. We find a significant (P < 0.01) local increase in FST in 

American populations (PEL, MXL) exactly where the introgressed haplotype is inferred to be (CRF-tract: 

vertical dashed lines, HMM-tract: vertical dotted lines). In contrast, we found no significant increase in FST 

when comparing Europeans (CEU) and East Asians (CHB) against YRI (although there is an observable but 

non-significant peak in CHB). 99th percentile values of the FST empirical distribution for all comparisons are 

represented as horizontal dotted lines and color-coded according to the corresponding population.	
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Figure 6. Network of archaic haplotypes and 20 most common present-day human haplotypes from the 

1000 Genomes Project in the TBX15/WARS2 introgressed region as inferred by the HMM. Each pie chart 

is a haplotype, and the dots along each line represent the number of differences between each haplotype. 

The size of each pie chart is proportional to the log base 2 of the number of individuals in which that 

haplotype appears, and the colors refer to the proportion of those individuals that come from different 

continental populations. AFR: Africans. AMR: Americans. EAS: East Asians. EUR: Europeans. SAS: 

South Asians. 
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Figure 7. The regulatory effects of the introgressed haplotype on TBX15 and WARS2. A. Methylation maps of the 

introgressed tract and its downstream region. The bottom panels show the reconstructed methylation maps of the 

Denisovan and the Neanderthal genomes, as well as two modern methylation maps from osteoblasts and fibroblasts. The 

maps are color coded from green (unmethylated) to red (methylated). The modern maps include fewer positions as they 

were produced using a reduced representation bisulfite sequencing (RRBS) protocol. Above the methylation maps are the 

CpG positions whose methylation levels are significantly associated with the introgressed haplotype. The top panels show 

TBX15 and WARS2, the introgressed tract (as defined by the CRF), and the previously identified DMRs, where the 

Denisovan genome defers from present-day humans. B. Individuals carrying the introgressed haplotype (marked by black 

boxes) show lower levels of DNA methylation in both regions, compared to individuals who do not carry the introgressed 

haplotype (marked by orange boxes), in both the 16-CpG region around the TSS of TBX15 (left), and a CpG position 

within the introgressed region (right). C. Expression of TBX15 in individuals carrying the introgressed haplotype vs. 

individuals who do not carry it. TBX15 is expressed on average at 22% higher levels in individuals carrying the haplotype. 
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Tables	
	

CHR	 POS	 SNP	ID	 REF	 ANC	 NONSEL	 SEL	 GR	FREQ	 CHB	
FREQ	

CEU	
FREQ	

ALTAI	 VIN	 DEN	 HG00436	 HG00407	 UST’-ISHIM	 STUTTGART	 LOSCHBOUR	

1	 119570095	 rs2298080	 G	 A	 G	 A	 0.997382	 0.4545	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119571463	 rs10923735	 C	 T	 C	 T	 0.997382	 0.4545	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119574289	 rs12030972	 G	 G	 G	 A	 0.997382	 0.4545	 0.1833	 0	 0	 0	 2	 0	 0	 0	 0	

1	 119574537	 rs12026409	 G	 G	 G	 A	 0.997382	 0.4545	 0.1833	 0	 0	 0	 2	 0	 0	 0	 0	

1	 119557151	 rs10923726	 A	 A	 A	 G	 0.997382	 0.4659	 0.1833	 0	 0	 2	 2	 0	 0	 0	 0	

1	 119557772	 rs4659140	 T	 T	 T	 C	 0.997382	 0.4659	 0.1833	 0	 0	 0	 2	 0	 0	 0	 0	

1	 119558112	 rs12027501	 C	 C	 C	 G	 0.997382	 0.4659	 0.1833	 0	 0	 0	 2	 0	 0	 0	 0	

1	 119558126	 rs12027524	 C	 T	 C	 T	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119559155	 rs12410034	 A	 T	 A	 T	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119559260	 rs4659141	 T	 T	 T	 G	 0.997382	 0.4659	 0.1833	 0	 0	 0	 2	 0	 0	 0	 0	

1	 119559297	 rs4658995	 C	 C	 C	 T	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119559607	 rs1325932	 C	 T	 C	 T	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119559793	 rs1325931	 A	 C	 A	 C	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119559796	 rs1325930	 A	 A	 A	 C	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119560089	 rs10923730	 C	 C	 C	 G	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119560512	 rs963171	 A	 T	 A	 T	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119561611	 rs3951792	 G	 G	 G	 A	 0.997382	 0.4659	 0.1833	 0	 0	 2	 2	 0	 0	 0	 0	

1	 119562014	 rs12024063	 G	 G	 G	 A	 0.997382	 0.4659	 0.1833	 0	 0	 0	 2	 0	 0	 0	 0	

1	 119562180	 rs12031562	 C	 C	 C	 G	 0.997382	 0.4659	 0.1833	 0	 0	 2	 2	 0	 0	 0	 0	

1	 119562274	 rs12031597	 C	 C	 C	 T	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119562382	 rs12021830	 T	 C	 T	 C	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119562460	 rs10923733	 A	 A	 A	 G	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119562557	 rs10494218	 A	 T	 A	 T	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119562716	 rs10494219	 T	 C	 T	 C	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119562920	 rs12402563	 G	 G	 G	 C	 0.997382	 0.4659	 0.1833	 0	 0	 2	 2	 0	 0	 0	 0	

1	 119562932	 rs12405154	 C	 C	 C	 T	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119563172	 rs12025128	 G	 A	 G	 C	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

1	 119563638	 rs113389819	 G	 C	 G	 C	 0.997382	 0.4659	 0.1833	 2	 2	 2	 2	 0	 0	 0	 0	

	

 

Table 1. The 28 SNPs in the 99.95% highest PBS quantile in Greenlandic Inut that lie in the introgressed tract as 

determined by the HMM. CHR = chromosome. POS = position (hg19). SNP ID = dbSNP rs ID number. REF = reference 

allele. ANC = human-chimpanzee ancestor allele (based on EPO alignments). NONSEL = non-selected allele. SEL = 

selected allele. GR FREQ = frequency of the selected allele in Greenlandic Inuit. CHB FREQ = frequency of the selected 

allele in CHB (Chinese individuals from Beijing). CEU FREQ = frequency of the selected allele in CEU (Individuals of 

Central European descent living in Utah). ALTAI = selected allele counts in the high-coverage Altai Neanderthal genome. 

VIN = selected allele counts in the high-coverage Vindija Neanderthal genome (https://bioinf.eva.mpg.de/jbrowse/). DEN 

= selected allele counts in the Denisova genome. HG00436 = selected allele counts in a present-day human genome that is 

homozygous for the introgressed tract. HG00407 = selected allele counts in a present-day human genome that is 

homozygous for the absence of the tract. UST’-ISHIM = selected allele counts in the Ust’-Ishim genome. STUTTGART = 

selected allele counts in the Stuttgart genome. LOSCHBOUR = selected allele counts in the Loschbour genome.	
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