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Abstract   

Measures of population differentiation, such as FST, are traditionally derived from a partition of heterozygosities within 

and between populations. However, the emergence of population clusters from multilocus analysis is a function of 

genetic structure (departures from panmixia) rather than of diversity. If the populations are close to panmixia, slight 

differences between the mean pairwise distance within and between populations (low FST) can manifest as strong 

separation between the populations, thus population clusters are often evident even when the vast majority of diversity 

is partitioned within populations rather than between them. Moreover, because FST is also a function of internal 

diversity, it does not directly reflect the strength of separation between population clusters. For any given FST value, 

clusters can be tighter (more panmictic) or looser (more stratified), and in this respect higher FST does not always 

imply stronger differentiation. Finally, FST as a measure of structure or population distance is a ‘supervised’ measure, 

in the sense that target populations have to be predefined (samples labeled). In this study we propose a measure for 

the partition of structure, denoted EST, which is more consistent with results from clustering schemes. Crucially, our 

measure is based on a statistic of the data that is a good measure of internal structure, mimicking the information 

extracted by unsupervised clustering or dimensionality reduction schemes. To assess the utility of our metric, we 

ranked various human (HGDP) population pairs based on FST and EST and found substantial differences in ranking 

order. In some cases examined, most notably among isolated Amazonian tribes, EST ranking seems more consistent 

with demographic, phylogeographic and linguistic measures of classification compared to FST. Thus, EST may at times 

outperform FST in identifying evolutionarily significant differentiation. 
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Introduction 

Genetic differentiation among populations is typically derived from the ratio of within- to between-population diversity. The most commonly 

used metric, FST, was originally introduced as a fixation index at a single biallelic locus (Wright 1978), and subsequently adapted as a 

measure of population subdivision by averaging the values over many loci (Nei 1973; Weir and Cockerham 1984). FST can be expressed 

mathematically as FST=1-S/T, where S and T represent heterozygosity or some other measure of diversity in subpopulations and in the 

total population (Hudson et al. 1992). The validity of FST as a measure of differentiation has been brought into question, especially when 

gene diversity is high (e.g., in microsatellites), and various metrics, including G’ST (Hedrick 2005) and Jost’s D (Jost 2008), have been 

proposed to address this inadequacy (though see Whitlock 2011 for a counter-perspective).  

Although these metrics vary considerably in their formulation, they all follow the same basic framework of partitioning genetic diversity 

into within- vs. between-group components. It has long been noted, however, that the apportionment of diversity (Lewontin 1972) does not 

directly reflect the strength of separation between populations, and the emergence of population clusters has been shown both empirically 

(Mitton 1977) and mathematically (Edwards 2003; Tal 2013) even when the vast majority of diversity is within rather than between 

populations. For example, humans sampled from across Europe (Nelis et al. 2009) and East Asia (Tian et al. 2008) form identifiable 

clusters with pairwise FST as low as 0.002, even though 99.8% of the variation is contained within populations and only 0.2% is between 

them. Clearly, these clusters reflect an aspect of population differentiation that is not directly captured by FST, yet there is currently no 

commonly used metric for partitioning structure into within- and between-population components in the same way that FST partitions 

diversity. Dimensionality reduction schemes such as principal component analysis (PCA) (Patterson et al. 2006) and clustering algorithms 

such as the widely used STRUCTURE (Rosenberg et al. 2002) are highly popular, however such programs are primarily used for 

visualization, and there is still value in summary statistics for quantifying complex datasets on a simple 0-1 scale.  

Here we propose a novel statistic, denoted EST, based on a modified FST estimator in which the mean pairwise distance between 

individuals (a measure of diversity) is replaced by the standard deviation of pairwise distances (a measure of structure), thus extracting 

the excess structure in the total population compared to subpopulations. Conceptually, EST is formulated in three steps: 1. Population 

structure is defined in terms of departures from panmixia. 2 Panmixia is defined in terms of pairwise equidistance between individuals (a 

population is considered panmictic if all individuals are equally distant from each other). 3. Departures from equidistance are defined in 

terms of the standard deviation of pairwise distances. EST reflects the decrease in panmixia when subpopulations are pooled. The general 

formula is: EST=1-SDS/SDT, where SDS and SDT represent the standard deviations of pairwise distances in subpopulations and in the total 

population. While FST is weighed down by high diversity within populations, EST is weighed down by high structure within populations. 

Since diversity is usually greater than structure, EST is usually greater than FST.  

The core insight here is that the asymptotic (in terms of number of SNP loci considered) standard deviation of pairwise genetic 

distances is a good “unsupervised” measure of internal structure, a statistic that mimics the information extracted by dimensionality 

reduction and clustering schemes, thus justifiable as a basis for the definition of EST. In particular, in Appendix A we prove that this 

asymptotic standard deviation is zero if and only if there is no internal structure (i.e., the population is panmictic). 
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Results and Discussion 

Partitioning Diversity vs. Partitioning Structure 

The difference between the partitions of diversity and structure within and between two populations from the human genome diversity 

project (HGDP) (Cann et al. 2002) is illustrated in Figure 1. The mean distance among mixed Russian-Chinese pairs is only marginally 

(~10%) higher than among Russian-Russian pairs (Figure 1A), reflecting the relatively low FST. However this translates to a far greater 

increase in total structure compared to the low structure within each population (Figure 1B), reflecting the much higher EST. 

 

 

 

Figure 1. The mean 

and standard 

deviation of pairwise 

distances. Each column 

represents the genetic 

distance between 

a pair of individuals.  

(A) Partitioning diversity 

(FST): pairwise distances 

within Russians (n=25) and 

between Russians and 

Chinese (n=34). The 

Russians are only 

marginally closer to each 

other than to the Chinese. 

(B) Partitioning structure 

(EST): by starting the plot 

at the mean within-Russian 

distance (0.246) and 

defining structure in terms 

of SD from the Russian 

mean, the magnitude 

of population separation 

becomes more evident. 

 

 

We compared FST, EST, and clustering among Russian and Chinese samples, with an increasing amount of single nucleotide 

polymorphisms (SNPs) ranging from 10 to 660,755 (Figure 2). Using multidimensional scaling (MDS), the two population clusters 

gradually diverge as SNP count increases, with no corresponding increase in FST. At the same time we observe a steady increase in EST 

directly corresponding to the emerging clusters, indicating that the Russian and Chinese HGDP samples are close to panmixia. With few 

SNPs this is obfuscated by the variance of the genetic distance measure, hence EST is relatively small. The actual levels of panmixia 

become increasingly evident as more SNPs are added, thus revealing the population clusters (Edwards 2003). However this process 
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does not proceed indefinitely; the finite number of pairwise differences among humans (~3 million SNPs) sets an upper limit to the 

number of available markers, and the amount of extractable information is further reduced by linkage disequilibrium. In our data the 

increase in EST as a function of marker count reaches a plateau above 100,000 SNPs (Figure S1). Although this upper bound can vary 

across different datasets and types of markers, it suggests that resolution may not improve substantially with further increases in marker 

count. Thus, these clusters can be considered close approximations of the “true” strength of separation among these populations. For this 

reason, EST estimates should include as many markers as possible, although fewer markers can be used and the terminal EST can be 

extrapolated. 

 

Figure 2. FST and 

EST vs. Clustering with 

increasing SNP count. 

Multidimensional scaling 

(MDS) plots with Russian 

(n=25) and Chinese (n=34) 

samples with increasing 

SNP count from top to 

bottom (10, 100, 1000, 

10,000, and 660,755 SNPs). 

Two clusters gradually 

emerge as SNP count 

increases, along with an 

increase in EST, while FST 

remains relatively constant. 

 

 

 

In order to determine whether or not EST adds insight to the analysis of population structure, we sought to compare the rank order of 

population differentiation using FST and EST. Pairwise FST and EST values from various HGDP populations are given in Table 1 (see Table 

S1 and Figure S2 for additional comparisons). As expected, EST > FST in most population pairs. Only the Colombian-Maya pair has a 

slightly lower EST than FST, due to a combination of relatively low differentiation and high levels of intra-population structure. According to 

the HGDP browser (http://spsmart.cesga.es/search.php?dataSet=ceph_stanford, the Colombians (n=7) are the only HGDP population 

sample where two different tribes (Piapoco and Curripaco) were combined, which can help explain the high level of structure observed in 

this particular population (see Table S1, Figure S10, and Materials and Methods for further analysis of EST range). 
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Table 1 Pairwise FST (above diagonal) and EST (below diagonal) in 5 New World and 5 Old World HGDP populations 

 

Surui Karitiana Colombian Maya Pima Yakut Mongola Russian Bantu San 

Surui 
 

0.13 0.1 0.09 0.12 0.15 0.15 0.17 0.23 0.3 

Karitiana 0.58 
 

0.08 0.07 0.11 0.13 0.13 0.16 0.22 0.29 

Colombian 0.51 0.57 
 

0.03 0.06 0.09 0.09 0.12 0.18 0.25 

Maya 0.52 0.63 0.02 
 

0.04 0.07 0.06 0.08 0.15 0.21 

Pima 0.57 0.63 0.37 0.43 
 

0.1 0.09 0.12 0.19 0.25 

Yakut 0.74 0.8 0.6 0.69 0.74 
 

0.01 0.06 0.13 0.19 

Mongola 0.81 0.87 0.69 0.8 0.83 0.46 
 

0.06 0.12 0.19 

Russian 0.82 0.87 0.74 0.83 0.84 0.86 0.9 
 

0.11 0.17 

Bantu 0.88 0.92 0.85 0.91 0.91 0.93 0.94 0.95 
 

0.07 

San 0.92 0.95 0.89 0.95 0.94 0.96 0.97 0.98 0.89 
 

 

Amazonians vs. Global Populations 

The Surui and Karitiana have an unusually high pairwise FST. In fact, the Karitiana are as diverged from the neighboring Surui in terms of 

FST as they are from the Mongola on the other side of the world (Table 1, Figure 3, and Figure S6). Moreover, FST actually decreases 

initially with distance from the Amazon, from 0.13 between the two Amazonian tribes, to 0.08-0.1 between Amazonians and Colombians, 

further decreasing to 0.07-0.09 between Amazonians and the more distant Maya. Remarkably, the highest FST among all HGDP Native 

American populations is between the two geographically closest populations, the Surui and Karitiana. These apparent anomalies can be 

explained by the inflation of FST in genetic isolates. FST between pairs of isolates can be nearly twice as high as between either one of the 

isolates and a more cosmopolitan population, as pairwise FST reflects the combined isolation of both populations. Since the Surui and 

Karitiana are both isolated, their pairwise FST is nearly double that between any one of them and a larger, less isolated population such as 

the Maya. In other words, the Maya’s contribution to the pairwise FST is dwarfed by that of the Amazonians. 

 

Figure 3. Geographic 

distance vs. FST and EST 

in various populations. In 

terms of FST, the Karitiana are 

roughly as diverged from the 

nearby Surui (FST=0.13) as they 

are from the Mongola on the 

other side of the world 

(FST=0.13)or as the Bantu are 

from the Mongola (FST=0.12). 

In terms of EST, differentiation 

is far greater among these 

global populations (EST≈0.9) 

than between the neighboring 

Amazonian tribes (EST≈0.6). 
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Differentiation based on EST (Surui-Karitiana=0.58, Karitiana-Mongola=0.87, and Mongola-Bantu=0.94) seems more consistent with 

the geographic distances among these populations (Figure 3). It should be noted that the Surui-Karitiana EST might be somewhat 

underestimated due to cryptic sampling of close relatives (Rosenberg 2006), however the wide range of heterozygosity values (which are 

less sensitive to the sampling of close relatives) and the elevated structure across all Native American HGDP populations (Figures S3-S5) 

suggest that this is not merely a sampling artifact. In some cases EST also decreases with distance from the Amazon (Table 1), however 

this decrease is more moderate than the decrease in FST (Figure S6). 

Neighbor-joining trees of individual similarities (Jorde and Wooding 2004) are a convenient tool for representing multidimensional 

genetic data on a two-dimensional plane, while simultaneously displaying distances within and between populations. Two pairs of such 

trees, for Surui-Karitiana and Yoruba-Russians, are given in Figure 4, and we can see that in both cases distances are greater between 

individuals (black branches) than between populations (red branches) (Figure 4A). 

 

 

Figure 4. Surui-

Karitiana vs. Yoruba-

Russian NJ trees of 

individual similarities. 

(A) Diversity is apportioned 

into individual (black) 

and population (red) 

components. (B) A third 

component, structure within 

populations (blue), is added. 

(C) The individual 

component is removed. (D) 

The Yoruba-Russian tree is 

stretched to roughly match 

the level of structure within 

the Surui-Karitiana tree. 

 

 

 

The ratio of within- to between-population distance is roughly equivalent in the two population pairs, however the Yoruba-Russian tree 

is significantly flatter, indicating greater panmixia within these two populations (Figures S7-S8). Adding a third dimension of intra-

population structure (blue branches) highlights this discrepancy (Figure 4B), which is further accentuated by removing the inter-individual 

component (Figure 4C) and stretching the Yoruba-Russian tree to match the level of structure observed in the Surui-Karitiana tree (Figure 

4D). At first glance the Amazonian tribes, with their long population branches, appear to be as differentiated as the Yoruba are from the 

Russians. Upon closer inspection, however, the Yoruba and Russians appear more strongly diverged. The Amazonian tribes are highly 

structured not only between them, but also within them, resulting in distant, but loosely separated clusters. This aspect of population 

structure is not captured by FST, which is actually slightly higher between the Surui and Karitiana (0.13) than between Yoruba and 

Russians (0.12), but is revealed by the higher EST between Yoruba and Russians (0.97) compared to the Surui and Karitiana (0.58). 
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EST and the Dissimilarity Fraction 

The dissimilarity fraction, ω, is defined (Witherspoon et al. 2007) as the probability that individuals are genetically more similar to 

members of a different population than to members of their own population. For pairs of populations, this probability should have a 0-0.5 

range, with ω=0 indicating that individuals are always closer to members of their own population and ω=0.5 indicating that individuals are 

just as likely to be closer to members of the other population as to members of their own population. Witherspoon et al. reported that that 

when many thousands of loci are analyzed, individuals from “geographically separated populations” are never closer to each other than to 

members of their own populations. The definition of “geographically separated” is, of course, open to interpretation. We found no overlap 

(ω=0) between the Adygei and Uygur HGDP samples, but some overlap (ω > 0) between Mayans and Surui, despite a 4x higher FST 

(Figure 5). Thus, FST and the dissimilarity fraction (ω) are not necessarily congruent. The EST values for these two population pairs are 

more consistent with ω, showing strong separation between the Adygei and Uygur (0.79) and more moderate separation between 

Colombians and Maya (0.52) (see Figure S9 for a more detailed plot). 

 

Figure 5. FST vs. genetic similarity 

in various population pairs. 

Pairwise distances are colored red or 

blue within populations and black 

between populations. (A) Even at a 

relatively low FST of 0.02 all within-

population pairs among the Uygur and 

Adygei samples are genetically more 

similar than all the between-population 

pairs. (B) Separation is more ambiguous 

among Native Americans. Despite a 

relatively high FST of 0.09, there is 

substantial overlap between Maya-Maya 

(red) and Maya-Surui (black) samples. 

EST values are more consistent with the 

within- vs.-between population overlap 

and the dissimilarity fraction (ω). 

 

 

Summary and Conclusions 

The main distinction between FST and EST is that FST partitions diversity, whereas EST partitions structure within and between populations. 

FST is more sensitive to effective population size, while EST is more sensitive to outliers, though this is largely mitigated by using 

ESTmedian rather than ESTmean (see Materials and Methods). FST is often weighed down by high levels of intrapopulation diversity and 

can be close to zero even when population clusters are completely separated. This is not a flaw in FST, but it does demonstrate a 

conceptual disconnect between FST and clustering. Sewall Wright proposed a series of arbitrary FST thresholds ranging from 0.05 to 0.25, 

denoting little to very great differentiation (Wright 1978), however these are only broad guidelines, and the highest ranking of “very great 

differentiation” leaves most of the range (0.25-1) undefined. 
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Given its wider empirical range and more direct correlation with clustering and classification (Figure 2), phylogeography (Figure 3), 

and the dissimilarity fraction (Figure 5), such arbitrary thresholds may not be necessary for EST. EST>0.5 simply indicates that most of the 

structure is between populations rather than within them, corresponding to moderately separated populations such as Russians and 

Adygei (EST=0.5), Bantu from South Africa and Kenya (EST=0.48), or French and Sardinians (EST=0.48) (Table S1). EST<<0.5 indicates 

weak differentiation and EST>>0.5 indicates strong differentiation. EBT is similar in many ways to EST, though its HGDP ranking order is 

often intermediate between FST and EST (Table S1). Interestingly, some East Asians populations have relatively low EBT, such as 

Cambodians vs. Mongola (EBT=0.13) and Japanese vs. Chinese (EBT=0.16). 

Differentiation metrics are judged by their ability to quantify meaningful evolutionary divergence, and can be indispensable in 

identifying Evolutionarily Significant Units (ESU) and Distinct Population Segments (DPS) for conservation (Waples 1991). For example 

given several subpopulations within a species, it is reasonable to prioritize the most highly differentiated subpopulation for conservation in 

order to maximize biodiversity. However, higher FST does not necessarily reflect stronger separation and lower misclassification, as with 

the Uygur and Adygei, whose clusters are better defined than those of the Surui and Maya despite a fourfold lower FST (Figure 5). In this 

context humans can be a useful model species simply because we know so much about human populations due to our “long habit of 

observing ourselves” (Darwin 1871). This allows us to make educated inferences about human populations that might otherwise be 

overlooked, e.g., we can be skeptical of the high Surui-Karitiana FST, and realize that this is most likely due to the relatively recent 

isolation of two small tribes. This is a luxury that we do not usually have with other species, in which case high FST can be misinterpreted 

as a deep phylogenetic divide, potentially leading to misguided conservation strategies. Our hope is that by combining information from 

both fixation (FST) and equidistance (EST) indices, researchers could make more informed decisions. 

Unlike FST, which can be estimated from a handful of markers, EST requires large datasets with thousands of markers, which were 

unavailable to previous generations of population geneticists. With the latest SNP chips containing well over 100,000 markers, accurate 

estimates of departures from panmixia are finally within reach, and there is no longer a need for the simplifying assumption that 

subpopulations are effectively panmictic. By deriving an FST–type statistic for apportioning structure within and between populations, 

namely EST, we hope to add a new useful metric to the 21st century population genetics toolkit. 

 

Materials and Methods 

The HGDP data used in our analysis are available at: http://www.hagsc.org/hgdp/files.html. After removing the 163 mitochondrial SNPs 

and 105 samples previously inferred to be close relatives (Rosenberg 2006), the final file included 660,755 SNPs from 938 samples in 53 

populations. Strings of SNPs were treated as sequences, with mismatches summed and divided by the sequence length. Pairwise 

distances, based on Allele Sharing Distance (ASD) (Gao and Martin 2009), were calculated as one minus half the average number of 

shared alleles per locus. 

 

We used Hudson’s FST estimator (Hudson et al. 1992): 
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FST=1-S/T     (1)                                                                                       

Where S and T are the mean pairwise distances within subpopulations and in the total pooled population.  

 

The general equation for EST is: 

EST=1-SDS/SDT     (2)                                                                                       

Where SDS and SDT are the standard deviations (SD) of pairwise distances within subpopulations and in the total population. This EST 

estimator is referred to as ESTmean. We used three additional EST estimators: ESTmin, ESTmedian, and ESTmax (Figure S10). All four 

estimators use the same basic formula, with only the type of SDS differing among estimators. In ESTmin, ESTmedian, and ESTmax, SDS is 

respectively replaced with the smallest, median, and largest individual SD, where the individual SD is the standard deviation of pairwise 

distances between a single sample and all other samples in the population. ESTmin uses the smallest individual SDS from each 

population, i.e., the SD of the most panmictic sample, ESTmedian uses the median individual SDS, and ESTmax uses the highest individual 

SDS. Each of these metrics has different sensitivities to various sampling biases. Due to ESTmean’s sensitivity to the sampling of close 

relatives, we used ESTmedian (which is unaffected by the inclusion of relatives as long as at least 50% of the samples are unrelated) as 

the primary measure of EST in this study. In the rare event that >50% of the samples are closely related, ESTmax may be preferable, as 

long as at last one individual has no close relatives among the samples. EST values, especially ESTmin and ESTmean, can be negative if 

structure is high and differentiation is low (Figure S10). Small sample sizes were often sufficient for estimating heterozygosity (Figure 

S11) and FST and EST (Figure S12) using all the SNPs in the HGDP dataset. 

We derived an additional equidistance index, denoted EBT, which is less sensitive to intra-population structure and the inclusion of 

relatives. Recall that EST reflects equidistance (E) within subpopulations (S) compared to the total (T) population. Similarly, EBT reflects 

equidistance (E) between subpopulations (B) compared to the total (T) population: 

EBT=1-SDB/SDT     (3)                                                                                       

Where SDB and SDT are the standard deviations of pairwise distances between individuals from different subpopulations, and in the total 

pooled population. In most cases SDT ≥ SDB, because SDT includes pairs of individuals from the same population as well as pairs from 

different populations, whereas SDB only includes pairs of individuals from different populations. Pairs of individuals from the same 

population are likely to have a higher SD due to relatives in the samples, which disrupt the panmixia (see Naxi population in Figures S3-

S5). Panmictic populations are not just equidistant among themselves, they are also equidistant towards each other. Such populat ions 

should have similar SDS and SDB, and thus similar EST and EBT. All FST, EST and EBT estimates in this study are based on pairwise 

comparisons between two populations or population groups. Each of the two paired populations was given equal weight, as were the 

within- and between-population pairs. Thus, 25% of the total weight was given to each population, and 50% to between-population pairs. 

We developed a custom MATLAB code for extracting genetic distances from SNP data and estimating heterozygosity, pairwise 

distances, FST, EST, and EBT. The code corrects for missing data and small sample sizes, and identifies outliers, but includes no further 
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assumptions or corrections. Phylogenetic trees and MDS plots were also generated with MATLAB. Equal angle and square neighbor-

joining trees of individual similarities were generated from matrices of pairwise distances with the seqneighjoin command. An alternative 

script, based on the internal MATLAB seqpdist command for sequence distance, yielded similar results. 
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Appendix A – The standard deviation of pairwise distances as a measure of population structure 

Our goal in this appendix is to substantiate the asymptotic (in terms of number of SNP loci) standard deviation of 

pairwise genetic distances as a good “unsupervised” measure of internal structure, thus justifiable as a basis for 

the definition of EST. In particular, we prove that this asymptotic standard deviation is zero if and only if there is 

no internal structure (i.e., the population is panmictic). 

A model of pairwise genetic distances for genotypes from two diploid populations 

Let pi denote the frequency at locus i of allele ‘A’ in population 1, and let and qi denote the frequency of the 

same allele in population 2 and assume that both populations are effectively very large and have the same 

contribution to the total population. The commonly-used allele sharing distance (ASD) measures the 

dissimilarity of two individual genotypes. For diploid genotypes, it is commonly defined as 2 minus the number 

of shared alleles at each locus, averaged across loci (Nakamura et al., 2005; Gao and Martin, 2009). For multiple 

loci genotypes we use a normalized (by the number of considered loci) version of ASD to simplify the analysis of 

means and variances of the ASD distribution, as in Tal (2013). Under the assumption of Hardy-Weinberg 

Equilibrium, allele frequencies fully determine per-locus genotype frequencies. 

Let a categorical random variable Xi represent the ASD at diploid locus i, and let Dn represent the normalized ASD 

across n loci for pairs of genotypes sampled from the total population, 


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
n

i

in X
n

D
1

1
          

We are interested in arriving at an expression for the variance (and ultimately the asymptotic standard 

variation) of Dn. Under the standard assumption of linkage equilibrium (LE) within each of our two populations, 

the Xi for the total-population pairs are not statistically independent, and therefore the formulation for the 

variance of Dn requires a partition into conditional expectations. From basic principles,  
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Now to evaluate E[Dn
2] we need to condition it upon classification of pairs of genotypes as within- or between-

population, 
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where ][][][ jiji XEXEXXE   since there is independence across any two loci for the within pairs and 

between pairs, and where the probabilities (assuming equal population sizes) for within-population 1 pairs, 

within-population 2 pairs, and between-population pairs are at infinite population size ¼, ¼, ½ respectively 

(otherwise, for finite population sizes m we have probabilities 
12

,
24

1
,

24
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
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m

m

m
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m

m
 respectively).   

Now, from per-locus probabilities in Tal (2013, eq. 3 and Table 1) we derive the expected values, 
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So that,  
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From Tal (2013, section 3.2) we have the expression for Xi and thus for E[Xi ] such that, 
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So that finally, 
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Thus we have an explicit formulation for the variance of the pairwise distance distribution of genotypes from 

two panmictic populations in terms of the allele frequencies across a given number of loci, n.  
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Crucially, we would like to prove that at the limit, the pairwise distance variance is asymptotically above zero if 

and only if the population has internal structure; i.e., if under our model with any FST>0, 

0][   nn DVarmliS  

We will proceed by deriving an explicit expression for S. Consider an equivalent setting comprised of three 

random variables W,Y and Z, which represent the pairwise distances of genotypes within population 1, within 

population 2 and between populations 1 and 2, respectively. We sample n values Xi from just one of these 

distributions, by first flipping a 3-sided coin to decide from which: with a probability α for W, a probability β for Y 

and a probability γ for Z. Once the distribution was selected, the sampling of Xi is done i.i.d. Note that due to the 

randomized choice of the distribution from which to sample all the Xi, they are identically distributed but not 

independent. Now we set, 

 i

n

i

n X
n

D 
1=

1
 

We would like to get an expression for S in terms of the expectations of W, Y, Z and α, β, γ, where,    

)(= nn DVarmliS   

From the law of total variance, 

 )(
1

)()]|([])|[()( nXYZnnn SVarC
n

UVarBSVarEBSEVarDVar   

where B here is a categorical random variable that describes from which of distributions W, Y, Z we are sampling 

from, with probabilities α, β, γ respectively, and where UXYZ is a discrete random variable taking the values of 

μW=E[W], μY=E[Y], μZ=E[Z] with corresponding probabilities α, β, γ respectively. Hence at the limit n→∞ we have, 

 222 )()()()(   ZYWXYZUVarS      (5) 

 ZYW  =  

and S=0 if and only if the three means are equal, i.e., μW=μY=μZ. 

 Now consider three sequences of random variables Wi, Yi, Zi, i:1...n, instead of the three single random variables, 

and sample n values from one of these sequences (again according to the prior probabilities α, β, γ). Once the 

sequence is selected, these samples are independent but now not identically distributed. We would again like to 
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find S, and more importantly, the condition for which it is zero, this time in terms of E[Wi], E[Yi], E[Zi] (and the 

prior probabilities). Sampling from a sequence with fixed probabilities just defines a new mixture distribution -- 

so the problem gets reduced to the one already solved. Therefore UXYZ is now defined by the three limits (since 

we have derived S in Eq. (5) at the limit n→∞), 
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with probabilities α, β, γ. 

Crucially, this sampling scenario corresponds to our original setting of formulating the variance of the genetic 

distance of genotypes sampled from the total population, given the sequencing of an infinite number of loci, 

where μW and μY in Eq. (6) represent the two within-population pairwise distance means and μZ the total-

population mean (derived below), and where the respective probabilities are as in Eq. (1), α=¼, β=¼, γ= ½, 

assuming infinite population size. Again, S=0 if and only if these means are equal, i.e., μW=μY=μZ. Let us analyze 

the conditions for these equalities, given the corresponding formulations of the pairwise distance means. First, 

using the additivity of expectations, 
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we get from Eq. (2) the expressions for any finite n, 
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bearing in mind the analysis pertains to E[Dn] as n→∞. We proceed to examine what can be concluded 

from the equalities μW=μY=μZ (the only case where S=0) given the means in Eq. (7), about the allele frequencies 

pi and qi for any finite n (and this also holds at n→∞). Thus we start by explicitely writing the eqaulities (where 

the 1/n canceles out), 
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To proceed we substitute new variables,  

             )(1= iii ppx   

)(1= iii qqy   

Then, the 1st equation in (8) becomes, 

           )(1=)(1 iiii yyxx    

such that,  

           )(12=)](1)(1[ iiiiii xxyyxx    

and using the 2nd equation in (8),  
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again in terms of the new variables 

])(2[= 2

iiiiii qpyxyx   

This implies that,  

            0.=])()[( 22

iiii qpyx   

which occurs only if ii qp =  for all ni ,1,=  . 

Therefore the asymptotic variance of the pairwise genetic distances (normalized by number of loci) of genotypes 

sampled from the combined population, comprising of two subpopulations, is zero iff this combined population 

is essentially a single panmictic population (i.e., pi=qi for all i, or FST=0). Since we have defined EST in terms of 

standard deviations rather than variances, we will subsequently consider the asymptotic standard deviation SDT, 
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which is simply defined as the square root of the asymptotic variance, S for the ‘total’ population. Fig. 1 depicts a 

numerical simulation of both SDT and the average within-population SD (SDW) for our two population model, as a 

function of the number of SNPs considered. While SDW converges to zero, SDT asymptotes to a value greater 

than zero, revealing the underlying structure.  

 

Fig 1. A simulation of SDT and SDW under a two-population model demonstrating their divergent behavior with 

an increasing number of SNP loci. Here SNP frequencies are modeled on Beta distributions (as in Tal 2013) with 

FST=0.10. 

 

To further substantiate SDT as a measure of structure, we would like to characterize the relation of SDT to FST, 

both formulated as expressions of allele frequencies from two populations. We will proceed numerically, as our 

goal here is merely to get a qualitative intuition into the association of the two statistics.  

We have from Eqs. (5), (6), (7), that asymptotically as n→∞, or practically under a high number of SNP loci, 
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And from Tal (2013, Eq. 10) we use the most common expression for FST across any number of n SNPs, 
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Under the standard assumption that SNP frequencies are modeled on a Beta distribution with parameters 

deriving from some historical process (see Tal 2013; Gao and Martin, 2009) we sample a large number of sets of 

SNP frequencies for two populations, each set generated from two Beta distributions with some randomized 

parameters. For each set we compute the pair SDT (Eq. 9) and FST (Eq. 10) to generate a scatter plot of their 

association. Fig. 2 is a typical instance of such simulation, and demonstrates that the correlation of the two 

statistics is quite substantial,  

 1],[0  STT FSD  

 

Fig 2. A scatter plot indicating a high positive correlation the two statistics SDT and FST. Each dot represents the 

two statistics computed for data sampled from a two-population model with 1000 SNPs, and allele frequencies 

from Beta distributions. The Pearson product-moment correlation coefficient is here roughly 0.97. Note also the 

regression is approximately 1, implying that SDT and FST take on very similar values.  

 

A further perspective into SDT as an unsupervised measure of internal structure is afforded by a qualitative 

comparison with principal component analysis (PCA) plots on data generated by the model. PCA is an 
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unsupervised technique used to emphasize variation and bring out strong patterns in a dataset, essentially a 

dimensionality reduction procedure. It can be used as a ‘preprocessing’ stage for clustering high-dimensionality 

data, such as characteristic of population genetic samples. In such setting, the first principal components tend to 

also extract the substructure of the data – revealing the existence of clusters in the data (Patterson et al. 2006). 

But more crucially to our goals, the dispersion of clusters revealed by PCA is highly associated with internal 

structure, i.e., departures from panmixia, with increasing number of loci (and asymptotically, panmictic clusters 

would diminish to a single dot). This property is congruent with the convergence of SDT to some value strictly 

greater than zero for non-panmictic populations. This is depicted in the four PCA plots of the same populations 

under increasing SNP count in Fig 3A-D.     

A              B 

   

C             D 

 

Fig 3. PCA plots demonstrating the much pronounced decrease in SDT for the panmictic population (blue) 

relative to the structured one with an internal FST=0.005 (green), as the number of SNP loci processed by the PCA 

scheme is increased. A: 1K SNPs | B: 5K SNPs | C: 20K SNPs | D: 60K SNPs. 
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