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Abstract: 13 
X-ray diffraction has the potential to provide rich information about the structural dynamics of 14 
macromolecules. To realize this potential fully, it will be necessary to measure and model both 15 
Bragg scattering, which is currently used to derive macromolecular structures, and diffuse 16 
scattering, which reports on correlations in charge density variations. However, due to the extra 17 
effort of collecting diffuse data, experimental measurement of diffuse scattering from protein 18 
crystals has been limited to a small number of systems. Here, we present three-dimensional 19 
measurements of diffuse intensity collected from crystals of the model enzymes cyclophilin A 20 
and trypsin. The measurements were obtained from the same X-ray diffraction images as the 21 
Bragg data, using best practices for data collection in protein crystallography. To model the 22 
underlying dynamics in a practical way that can be used during structure refinement, we tested 23 
both Translation-Libration-Screw (TLS) and Liquid-Like Motions (LLM) models of protein 24 
motions. Whereas different TLS groupings yielded similar Bragg intensities, the diffuse 25 
intensities were clearly different. The agreement of the LLM models with the diffuse data was 26 
much stronger than for TLS. These results demonstrate a path to substantially increase the 27 
number of diffuse datasets available to the wider biosciences community. These and future 28 
datasets will be useful to benchmark computational tools for modeling correlated motions in 29 
macromolecules and to improve refinement of dynamics-inspired structural models emerging in 30 
X-ray crystallography. 31 
Significance: 32 
The structural details of protein motions are critical to many biological processes, but they are 33 
hidden to conventional biophysical techniques. Diffuse X-ray scattering can reveal these details 34 
by measuring the correlated movements between atoms. However, diffuse scattering data 35 
collection historically has required extra effort and dedicated experimental protocols. We have 36 
measured three-dimensional diffuse intensities in X-ray diffraction from CypA and trypsin 37 
crystals using standard crystallographic data collection techniques. Analysis of the resulting 38 
data is consistent with the presence of liquid-like motions (LLM) in both crystals.  Our results 39 
show that using diffuse scattering to model protein motions can become a component of routine 40 
crystallographic analysis through the extension of commonplace methods.   41 
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Introduction: 42 
X-ray crystallography can be a key tool for elucidating the structural basis of protein motions 43 
that play critical roles in enzymatic reactions, protein-protein interactions and signaling 44 
cascades (van den Bedem and Fraser, 2015). X-ray diffraction yields an ensemble-averaged 45 
picture of the protein structure: each photon simultaneously probes multiple unit cells that can 46 
vary due to internal rearrangements or changes to the crystal lattice. Bragg analysis of X-ray 47 
diffraction only yields the mean charge density of the unit cell, however, which fundamentally 48 
limits the information that can be obtained about protein dynamics (Clarage and Phillips, 1997; 49 
Keen and Goodwin, 2015).  50 
 51 
A key limitation inherent in Bragg analysis is that alternative models with different correlations 52 
between atomic motions can yield the same mean charge density (Kuzmanic et al., 2011). The 53 
traditional approach to modeling atom movement is to assume a single structural model with 54 
individual atomic displacement parameters (B factors). Given sufficient data, anisotropic 55 
displacement factors can be modeled, yielding directional insights into motions that might cause 56 
variations in the crystal. When the data are more limited, Translation-Libration-Screw (TLS) 57 
structural refinement, in which motions are described using rigid body segments of the molecule 58 
(Schomaker and Trueblood, 1968), has emerged as a tool to model protein domain movements 59 
in crystallography (Painter and Merritt, 2005, 2006). However, TLS refinements that vary in the 60 
rigid body definitions can predict very different motions while maintaining equivalent agreement 61 
to Bragg X-ray diffraction data (Urzhumtsev et al., 2015; Van Benschoten et al., 2015). 62 
 63 
Additional sources of information have been used to overcome the inherent limitations of Bragg 64 
analysis in identifying collective protein motion. Patterns of steric clashes between alternative 65 
local conformations (van den Bedem et al., 2013) or time-averaged ensemble refinement 66 
(Burnley et al., 2012) can be used to suggest certain modes of concerted motion. However, the 67 
atomistic details of these correlated motions may only be reliably (yet indirectly) identified at 68 
high resolution, and time-averaged ensemble refinement is additionally complicated by the use 69 
of an underlying TLS model to account for crystal packing variations (Burnley et al., 2012). 70 
Alternative methods such as solid-state NMR experiments (Ma et al., 2015) or long time scale 71 
molecular dynamics simulations (Janowski et al., 2013; Janowski et al., 2015; Wall et al., 72 
2014b) can be used to probe the structural basis of crystal packing variations and internal 73 
protein motions.  74 
  75 
Complementary information about internal protein motions also can be obtained in the X-ray 76 
crystallography experiment itself by analysis of diffuse scattering. Diffuse scattering arises when 77 
deviations away from a perfect crystal cause X-rays to be diffracted away from Bragg 78 
reflections. When the deviations are due to crystal vibrations, they can be described using 79 
textbook temperature diffuse scattering theory (see, e.g. (James, 1948)). When each unit cell 80 
varies independently, the diffuse intensity is proportional to the variance in the unit cell structure 81 
factor (Guinier, 1963) which is equivalent to the Fourier transform of the Patterson function of 82 
the charge density variations. The approximation of independent unit cells can break down 83 
when correlations extend across unit cell boundaries; however, motions with long correlation 84 
lengths result in diffuse intensity concentrated in the immediate neighborhood of Bragg peaks. 85 
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When analyzing the more broadly distributed diffuse intensity that corresponds to small 86 
correlation lengths (Caspar et al., 1988; Clarage et al., 1992; Wall et al., 1997a; Wall et al., 87 
1997b) the contribution of inter-unit cell atom pairs is a small fraction of the total signal, which is 88 
therefore dominated by internal protein motions.  89 
 90 
Several approaches have been used to connect macromolecular diffuse scattering data to 91 
models of protein motion and lattice disorder. Notably, Peter Moore has emphasized the need to 92 
validate TLS models using diffuse scattering (Moore, 2009), as has been performed in a limited 93 
number of cases (Doucet and Benoit, 1987; Perez et al., 1996; Van Benschoten et al., 2015). 94 
Good agreement with the data has previously been observed for liquid-like motions (LLM) 95 
models (Caspar et al., 1988; Clarage et al., 1992; Wall et al., 1997a; Wall et al., 1997b). In the 96 
LLM model, the atoms in the protein are assumed to move randomly, like in a homogeneous 97 
medium; the motions were termed “liquid-like” by Caspar et al (Caspar et al., 1988) because the 98 
correlations in the displacements were assumed to fall off exponentially with the distance 99 
between atoms. There is also a longstanding interest both in using diffuse scattering to validate 100 
improvements in MD simulations and in using MD to derive a structural basis for the protein 101 
motions that give rise to diffuse scattering (Clarage et al., 1995; Faure et al., 1994; Héry et al., 102 
1998; Meinhold et al., 2007; Meinhold and Smith, 2005a, b, 2007; Wall et al., 2014b). Recent 103 
advances in computing now enable microsecond duration simulations (Wall et al., 2014b) that 104 
can overcome past barriers to accurate calculations seen using 10 ns or shorter MD trajectories 105 
(Clarage et al., 1995; Meinhold and Smith, 2005a). 106 
 107 
Despite the fact that diffuse scattering analysis is relatively well developed in small-molecule 108 
crystallography (Welberry, 2004) and materials science (Keen and Goodwin, 2015), it has been 109 
underutilized in protein crystallography. There are relatively few examples of diffuse data 110 
analyzed using individual diffraction images from protein crystallography experiments, including 111 
studies of tropomyosin (Chacko and Phillips, 1992; Phillips et al., 1980), 6-phosphogluconate 112 
dehydrogenase (Helliwell et al., 1986), yeast initiator tRNA (Kolatkar et al., 1994), insulin 113 
(Caspar et al., 1988), lysozyme (Clarage et al., 1992; Doucet and Benoit, 1987; Faure et al., 114 
1994; Mizuguchi et al., 1994; Perez et al., 1996), myoglobin (Clarage et al., 1995), Gag protein 115 
(Welberry et al., 2011), and the 70s ribosome subunit (Polikanov and Moore, 2015). Moreover, 116 
there are an even smaller number of examples involving complete three-dimensional diffuse 117 
data sets; these include studies of staphylococcal nuclease (Wall et al., 1997b), and calmodulin 118 
(Wall et al., 1997a).  119 
 120 
To exploit the increased information that is potentially available from diffuse scattering, there is 121 
a pressing need to increase the number of proteins for which complete three-dimensional 122 
diffuse datasets have been experimentally measured. Conventional data collection procedures 123 
use oscillation exposures to estimate the full Bragg intensities. In contrast, the complete three-124 
dimensional datasets measured by Wall et al. (Wall et al., 1997a; Wall et al., 1997b) used 125 
specialized methods for integrating three-dimensional diffuse data from still diffraction images. 126 
Similar methods now can be generalized and applied to other systems using modern beamlines 127 
and X-ray detectors. In particular, the recent commercial development of pixel-array detectors 128 
(PADs), which possess tight point-spread functions and single-photon sensitivity (Gruner, 2012), 129 
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have created new opportunities for measuring diffuse scattering as a routine tool in protein 130 
crystallography experiments using more conventional data collection protocols. 131 
  132 
Here, we present diffuse scattering datasets for the human proline isomerase cyclophilin A 133 
(CypA) and the bovine serine protease trypsin. These datasets substantially increase the 134 
amount of experimental three-dimensional diffuse scattering data available to the 135 
macromolecular crystallography community, providing a necessary foundation for further 136 
advancement of the field (Wall et al., 2014a).  To assess the potential for routine collection of 137 
diffuse datasets in crystallography, rather than expending a great deal of effort in optimizing the 138 
diffuse data and collecting still images (Wall et al., 1997a; Wall et al., 1997b), we used 139 
oscillation images obtained using best practices for high-quality Bragg data collection. The 140 
resulting datasets are of sufficient quality that the diffuse scattering can discriminate among 141 
alternative TLS refinements (Van Benschoten et al., 2015) and Liquid-Like Motion (LLM) models 142 
(Caspar et al., 1988; Clarage et al., 1992).  Our results demonstrate that diffuse intensity can, 143 
and should, be measured in a typical X-ray crystallography experiment and indicate that diffuse 144 
X-ray scattering can be applied broadly as a tool to understand the conformational dynamics of 145 
macromolecules.  146 
 147 
Results: 148 
 149 
Experimental diffuse data show crystallographic symmetry 150 
 151 

 152 
Figure 1. Steps in diffuse data integration. (A) Raw CypA diffraction images are processed (B) to remove 153 
Bragg peaks and enable direct comparisons of pixel values to models. (C) Pixels in diffraction images are 154 
mapped to reciprocal space and values of diffuse intensity are accumulated on a three-dimensional 155 
lattice; each diffraction image produces measurements of diffuse intensity on the surface of an Ewald 156 
sphere. (D) The data from individual images is combined and symmetrized to yield a complete dataset 157 
(isosurface at a value of 65 photon counts in the total intensity, before subtracting the isotropic 158 
component). 159 
 160 
 161 
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 162 
   The symmetrized anisotropic diffuse datasets processed by LUNUS (Figure 1) are shown in 163 
Figure 2A (CypA) and Figure 2D (trypsin) and are available as supplementary material. The 164 
CypA dataset is 98% complete to a resolution of 1.4 Å, while the trypsin map is 95% complete 165 
to 1.25 Å resolution. We used the Friedel symmetry and Laue group symmetry to quantify the 166 
level of crystallographic symmetry in each anisotropic map. To evaluate the degree Friedel 167 
symmetry, we averaged intensities between Friedel pairs to create a symmetrized map IFriedel 168 
and calculated the Pearson Correlation Coefficient (PCC) between the symmetrized and 169 
unsymmetrized data to obtain the statistic CCFriedel. For CypA and trypsin, CCFriedel = 0.90 and 170 
0.95 respectively, demonstrating that diffuse intensities obey Friedel symmetry. To assess the 171 
degree of Laue group symmetry, we averaged P222-related reflections (the Laue symmetry 172 
corresponding to the P 21 21 21 space group of both CypA and trypsin crystals) to produce the 173 
symmetrized intensities, IP222. The linear correlation CCSym was then computed between the 174 
symmetrized and unsymmetrized intensities. The correlations were substantial for both CypA 175 
(CCSym = 0.70) and trypsin (CCSym = 0.69). Thus, our data are consistent with the diffuse 176 
intensity following the Bragg peak symmetry. The trypsin data were integrated using one degree 177 
oscillation frames, while the CypA data were integrated using 0.5 degree oscillation frames. The 178 
comparable degree of symmetry in the CypA and trypsin data suggests that the measurement 179 
of diffuse intensity is robust with respect to this difference in data collection. 180 
 181 

 182 
Figure 2. Visualization of anisotropic diffuse intensities. (A) CypA experimental data with isosurfaces 183 
shown using wireframes at a level of 2 photon counts in the resolution range 4.16 Å – 2.97 Å. Positive 184 
intensity is rendered in green, negative in red.  (B) Isosurfaces for diffuse scattering predicted by the 185 
CypA LLM model. (C) Residual diffuse scattering (experimental data (A) minus LLM (B). (D) Trypsin 186 
experimental data with isosurfaces shown using wireframes at a level of 3 photon counts in the resolution 187 
range 4.53 Å – 3.26. (E) Isosurfaces for diffuse scattering predicted by the Trypsin LLM model. (F) 188 
Residual diffuse scattering (experimental data (D) minus LLM (E).  189 
 190 
TLS models yield low correlation with diffuse scattering data 191 
 192 
   To investigate how well TLS models agree with the molecular motions in the CypA crystal, we 193 
compared the experimental diffuse data to intensities calculated from three alternative TLS 194 
models: phenix, tlsmd and whole molecule (Figure 3A-D). Although all three models predict 195 
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different motions, the R-factors are very similar:  R,R-free = 16.4%,18.1% for the whole 196 
molecule and Phenix models; and 16.2%,18.1% for the TLSMD model. The correlations 197 
between the calculated diffuse intensity for these models and the anisotropic experimental data 198 
are low: 0.03 for the phenix model; 0.04 for the TLSMD model; and 0.14 for the whole molecule 199 
model. In addition, the pairwise correlations of the calculated diffuse intensities are low:  0.066 200 
for whole molecule/TLSMD; 0.116 for whole molecule/Phenix; and 0.220 for Phenix/TLSMD.  201 
 202 

 203 
Figure 3. Rigid body domain definitions used for TLS models. CypA and Trypsin TLS groups shown on 204 
the tertiary structure for whole molecule (A, E), Phenix (B, F), and TLSMD (C, G) and shown on the 205 
primary sequence (D, H).   206 
 207 
   Like CypA, the three trypsin TLS models (Figure 3E-H) yielded very similar R,R-free values: 208 
15.1%,16.7% for the whole molecule model; 15.3%,16.6% for the Phenix model; and 209 
15.2%,16.6% for the TLSMD model.  Correlations between the calculated and experimental 210 
diffuse intensities are again low: 0.02 for the Phenix and TLSMD models, and 0.08 for the 211 
Whole molecule model. Comparisons of the calculated anisotropic diffuse intensity show that 212 
the Whole molecule motion is dissimilar to both the Phenix and TLSMD predictions (PCC = 0.03 213 
and 0.05, respectively). In contrast, the Phenix and TLSMD models yield much more similar 214 
diffuse intensities (PCC = 0.515). The relatively high correlation between these models is 215 
consistent with the similarity in the TLS groups (Figure 3F-H).  216 
 217 
   There are several possible explanations for the low correlation between the TLS model and 218 
diffuse data for CypA and trypsin. First, TLS domain groupings other than those identified here 219 
might yield higher agreement with the data. Second, the method used for generating ensembles 220 
(Van Benschoten, 2015) assumes that TLS domains vary independently; it is possible that 221 
accounting for correlations among the domains would more accurately describe the variations. 222 
Lastly, similar to the rigid body motions model of Doucet & Benoit (Doucet and Benoit, 1987), 223 
the correlations among TLS domains might lead to substantial correlations across unit cell 224 
boundaries, which would produce small scale diffuse features in the immediate neighborhood of 225 
Bragg peaks. The data integration methods used here cannot resolve these features, as the 226 
measurements are mapped to a Bragg lattice. Methods to integrate the small-scale features in 227 
protein crystallography onto a finer three-dimensional reciprocal space grid do exist (Wall et al., 228 
1997a) and might be used to address this last possibility in the future. In any case, the low 229 
correlation of TLS models with the diffuse intensity for CypA and trypsin suggests that the 230 
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variations in the protein crystal might not be best explained by motions of relatively large, rigid 231 
domains, and instead might involve motions that are correlated on a shorter length scale than 232 
accounted for by these models.  233 
 234 
 235 
Liquid-like motions models yield substantial correlation with diffuse scattering 236 
data 237 
 238 
One model that accounts for short-range correlations is Liquid-Like Motions (LLM) (Caspar et 239 
al., 1988; Clarage et al., 1992). The LLM model assumes that atomic displacements are 240 
uncorrelated between different unit cells, but are correlated within the unit cells. The correlation 241 
in the displacements is assumed to decay exponentially as 𝑓(𝑥)  =  𝑒!!/!, where x is the 242 
separation of the atoms, and γ is the length scale of the correlation.  The displacements of all 243 
atoms are assigned a standard deviation of σ. The LLM model previously has been refined 244 
against three-dimensional diffuse intensities obtained from crystalline staphylococcal nuclease 245 
(Wall et al., 1997b) and calmodulin (Wall et al., 1997a), yielding insights into correlated motions.  246 
 247 
We refined isotropic LLM models of motions in CypA and trypsin against the experimental 248 
diffuse intensities (Figure 2B, E and Methods). The CypA model was refined using data in the 249 
resolution range 31.2 Å – 1.45 Å, and the trypsin model using 68 Å – 1.46 Å data. For CypA, the 250 
refinement yielded γ = 7.1 Å and σ = 0.38 Å with a correlation of 0.518 between the calculated 251 
and experimental anisotropic intensities. The highest correlation between data and experiment 252 
occurs in the range 3.67 Å – 3.28 Å, where the value is 0.74 (Figure 4A).   For the trypsin 253 
dataset, the refinement yielded γ = 8.35 Å and σ = 0.32Å with a correlation of 0.44, which is 254 
lower than for CypA. The peak value is 0.72 in the resolution range 4.53 Å -4.00 Å (Figure 4B). 255 
 256 

 257 
 258 
Figure 4. Correlations between LLM models and diffuse data computed by resolution shell for (A) CypA 259 
and (B) Trypsin. 260 
 261 
The substantial correlation of the LLM model with the diffuse data for CypA and trypsin indicates 262 
that the variations in the protein crystal can be approximately described using a model of the 263 
protein as a soft, homogeneous medium. The model implies that the motions of atoms 264 
separated by more than 7-8 Å are relatively independent, and that atoms that are closer to each 265 
other move in a more concerted way.  266 
 267 
  268 
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Discussion: 269 
 270 
Diffuse X-ray scattering is a potentially valuable yet little exploited source of information about 271 
macromolecular dynamics. Diffuse intensities can double the total number of measured data 272 
points in the crystallographic experiment while providing a parallel dataset against which 273 
structural dynamical models can be refined or validated. Until now measurement of three-274 
dimensional diffuse scattering data only has been pursued in dedicated efforts requiring extra 275 
still diffraction images and substantial optimization of experimental design. The present 276 
collection of two new datasets obtained using oscillation images using best current practices in 277 
room-temperature protein crystallography (Fraser et al., 2011), and the use of the data in 278 
evaluating TLS and LLM models, illustrates the potential for using diffuse scattering to increase 279 
understanding of protein structure variations in any X-ray crystallography experiment, and 280 
represents a significant step towards moving diffuse scattering analysis into the mainstream of 281 
structural biology.  282 
 283 
Diffuse data obtained for CypA and trypsin can distinguish between the TLS and LLM models of 284 
motions. However, the agreement with the data is somewhat lower than in previous LLM models 285 
of three-dimensional diffuse scattering (Wall et al., 1997a; Wall et al., 1997b). In this study, the 286 
correlation of the LLM model with the data was 0.518 in the range 31.2 Å – 1.45 Å for CypA, 287 
and 0.44 in the range 68 Å – 1.46 Å for trypsin; in comparison, the correlation  was 0.595 in the 288 
range 10 Å – 2.5 Å for staphylococcal nuclease (Wall et al., 1997b) and 0.55 in the range 7.5 Å 289 
– 2.1 Å for calmodulin (Wall et al., 1997a). Some possible explanations for the lower agreement 290 
for CypA and trypsin include: the use of higher resolution data in the present studies; that LLM 291 
might be a better description of motions in staphylococcal nuclease and calmodulin than in 292 
CypA and trypsin; and that the measurements might have been more accurate in the past 293 
experiments, as the data collection was tailored for diffuse scattering. The apparent alignment of 294 
the residual intensity distribution with the unit cell axes (Figures 2C, 2F) also suggests that an 295 
anisotropic LLM model might be more appropriate than an isotropic LLM model for CypA and 296 
trypsin.  297 
 298 
The agreement of the LLM models with three-dimensional experimental diffuse data across 299 
multiple systems warrants further consideration for using diffuse scattering in model refinement 300 
and validation. A key finding is that the agreement of the LLM models with the diffuse data is 301 
higher than the TLS models, which currently are used widely in protein crystallography. 302 
Interestingly, the 7-8 Å length scale of the correlations is comparable to the size of the TLS 303 
domains; however, compared to the sharp domains of the TLS model, the exponential form of 304 
the correlations indicates that there is a smooth spatial transition between the correlated and 305 
uncorrelated atoms in the LLM. The smooth transition might be key to the increased agreement 306 
of the LLM with the diffuse data compared to the rigidly defined regions of the TLS model.   307 
 308 
Overall, the three-dimensional diffuse scattering data obtained here for CypA and trypsin, and 309 
previously for staphylococcal nuclease (Wall et al., 1997b) and calmodulin (Wall et al., 1997a) 310 
suggest that the protein structure varies more like a soft material than like a collection of 311 
independent rigid domains. A normal modes model would be similarly soft, suggesting that 312 
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normal modes should be further investigated for analysis of protein motions using three-313 
dimensional diffuse datasets. Indeed, reasonable qualitative agreement already has been seen 314 
using normal modes to model diffuse intensity in individual diffraction images (Faure et al., 315 
1994; Mizuguchi et al., 1994), and, like TLS refinement, normal modes refinement methods 316 
have been developed for Bragg analysis (Gniewek et al., 2012; Kidera et al., 1994; Lu and Ma, 317 
2008). An important consideration in developing these new refinement methods is to maintain a 318 
key advantage of TLS refinement at lower resolutions: the introduction of relatively few new 319 
parameters for refinement. This requirement also would be satisfied by the LLM, which has a 320 
low computational cost and general applicability, making it a promising model for integrating 321 
diffuse scattering into crystallographic model building and refinement (Wall et al., 2014a).  322 
 323 
Diffuse scattering also can be used to validate more detailed models of molecular motions than 324 
were considered here, including models produced by normal mode refinement (Ni et al., 2009), 325 
as mentioned above; ensemble refinement (Burnley et al., 2012); multiconformer modeling 326 
performed by discrete (Keedy et al., 2015a; van den Bedem et al., 2009) or continuous (Burling 327 
and Brünger, 1994; Kuriyan et al., 1991; Wall et al., 1997a) conformational sampling; and 328 
molecular dynamics simulations  (Clarage and Phillips, 1994; Clarage et al., 1995; Faure et al., 329 
1994; Héry et al., 1998; Janowski et al., 2013; Janowski et al., 2015; Meinhold et al., 2007; 330 
Meinhold and Smith, 2005a, b; Wall et al., 2014b). In particular, molecular dynamics simulations 331 
now provide sufficient sampling to yield robust calculations of diffuse intensity (Wall et al., 332 
2014b), and these can be used to consider a myriad of intramolecular motions (e.g., loop 333 
openings and side chain flips) (Wilson, 2013) and lattice dynamics. Polikanov and Moore 334 
(Polikanov and Moore, 2015) recently have demonstrated the importance of lattice vibrations in 335 
explaining experimental diffuse scattering measurements of ribosome crystals, which indicates 336 
that models should simultaneously account for correlations that are coupled both within and 337 
across unit cell boundaries (Clarage et al., 1992; Wall et al., 1997a); accounting for lattice 338 
vibrations more accurately also might yield improved Bragg integration (Wall et al., 2014a). 339 
Although the initial successes of dynamics-based models of diffuse scattering indicates that 340 
crystal defects can play a secondary role in contributing to the diffuse signal, at least in some 341 
cases, consideration of crystal defects might become important to achieve the highest model 342 
accuracy and most general applicability of diffuse scattering in crystallography. Additionally, as 343 
more X-ray data from both brighter conventional and XFEL light sources, accounting for all 344 
sources of Bragg and diffuse scattering will be necessary to model the total scattering needed 345 
for innovative phasing applications (Gaffney and Chapman, 2007). In summary, the new 346 
datasets presented here demonstrate that diffuse scattering can now be routinely collected and 347 
that using these data will help us obtain an increasingly realistic picture of motion in protein 348 
crystals, including integrated descriptions of intramolecular motions, lattice vibrations, and 349 
crystal defects.  350 
 351 
  352 
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Methods: 353 
 354 
Protein purification and crystallization 355 
 356 
Trypsin crystals were obtained according to the method of Liebschner et.al (Liebschner et al., 357 
2013). Lyophilized bovine pancreas trypsin was purchased from Sigma-Aldrich (T1005) and 358 
dissolved at a concentration of 30 mg/mL into 30mM HEPES pH 7.0, 5 mg/mL benzamidine and 359 
3mM CaCl2. Crystals were obtained from a solution of 200mM Ammonium sulfate, 100mM Na 360 
cacodylate pH 6.5, 20% PEG 8000 and 15% glycerol. CypA was purified and crystallized as 361 
previously described (Fraser et al., 2009). Briefly, the protein was concentrated to 60 mg/mL in 362 
20mM HEPES pH 7.5, 100mM NaCl and 500mM TCEP. Trays were set with a precipitant 363 
solution of 100mM HEPES pH 7.5, 22% PEG 3350 and 5mM TCEP. Both crystal forms were 364 
obtained using the hanging-drop method. 365 
 366 
Crystallographic data collection 367 
 368 
Diffraction data were collected on beamline 11-1 at the Stanford Synchrotron Radiation 369 
Lightsource (Menlo Park, CA). X-ray diffraction images were obtained using a Dectris PILATUS 370 
6M Pixel Array Detector (PAD). Each dataset was collected from a single crystal at an ambient 371 
temperature of 273K. To prevent dehydration, crystals were coated in a thin film of paratone 372 
with minimal surrounding mother liquor. For CypA, a single set of 0.5 degree oscillation images 373 
were collected and used for both Bragg (Keedy et al., 2015b) and diffuse data processing. A 374 
total of 360 images were collected across a 180 degree phi rotation. The Trypsin diffraction data 375 
consisted of one degree oscillations across a 135 degree phi rotation; this dataset was similarly 376 
used for both Bragg and diffuse data analysis. Both datasets were collected to optimize the 377 
Bragg signal, not the diffuse signal. Although not used here, we note that data collection using a 378 
PAD with fine phi slicing should be especially well suited for simultaneous collection of Bragg 379 
and diffuse data, as it would enable integration of diffuse intensity at a tunable level of detail in 380 
reciprocal space. 381 
 382 
Bragg data processing 383 
 Bragg diffraction data were processed using XDS and XSCALE (Kabsch, 2010) within the xia2 384 
software package (Winter et al., 2013). Molecular replacement solutions were found using 385 
Phaser (McCoy et al., 2007) within the Phenix software suite (Adams et al., 2010). The PDB 386 
search models were 4I8G for trypsin, and 2CPL for CypA. Initial structural refinement was 387 
performed using phenix.refine (Afonine et al., 2012). The strategy included refinement of 388 
individual atomic coordinates and water picking. Both the X-ray/atomic displacement 389 
parameters and X-ray/stereochemistry weights were optimized. Isotropic B-factors were chosen 390 
for the initial structures to allow for non-negligible R-factor optimization by subsequent TLS 391 
refinement strategies. All structures were refined for a total of 5 macrocycles. Statistics for these 392 
initial crystal structure models are shown in Table 1. 393 
 394 
  395 
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Table 1. Refinement statistics for CypA and trypsin models, before TLS modeling is applied. 396 
 397 

 
CypA Trypsin 

Resolution range 38.66-1.4 23.29-1.25 

Space group P 21 21 21 P 21 21 21 

Unit cell 42.91, 52.44, 89.12 54.81, 58.51, 67.42 

Completeness (%) 98 95 

Rwork (%) 17.88 15.9 

Rfree (%) 19.5 17.41 

RMS (bonds, Å) 0.007 0.013 

RMS (angles, degrees) 1.16 1.61 

Ramachandran favored % 97 98 

Ramachandran allowed % 3 2 

Ramachandran outliers % 0 0 

Clashscore 0.79 2.59 

Average B-factor, Å2 21.42 14.57 

PDB ID 5F66 
 5F6M 

SBGrid Data Grid ID 68 201 

 398 
Diffuse data integration 399 
 400 
An overview of the diffuse data integration process is presented in Figure 1. Image processing 401 
was performed using the LUNUS collection of diffuse scattering tools (Wall, 2009). Pixels 402 
corresponding to the beam stop and image edges were masked using the punchim and windim 403 
methods. To focus on the diffuse intensity, which compared to Bragg peaks has low individual 404 
pixel values (while, being more broadly distributed in reciprocal space, having comparable total 405 
integrated intensity), pixel values outside of the range 1-10,000 photon counts were masked 406 
using threshim. The beam polarization was determined by analyzing the first frame to determine 407 
the azimuthal intensity profile within a 100 pixel wide annulus about the origin, and by fitting the 408 
resulting profile to the theoretical profile (Wall, 1996). Pixel values then were corrected for beam 409 
polarization using polarim. A solid-angle normalization (normim) correction was also applied. 410 
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Mode filtering was used to remove Bragg peaks from diffraction images. This was accomplished 411 
using modeim, with a mask width of 20 pixels and a single bin for each photon count increment. 412 
These steps produced diffraction images in which pixel values could be directly compared to 413 
model diffuse intensities. This procedure is similar to the steps used by Polikanov and Moore 414 
(Polikanov and Moore, 2015) to process individual ribosome diffraction images for analysis of 415 
diffuse scattering data.  416 
 417 
The Lunus processed frames were used to integrate the diffuse data onto a 3D lattice. The 418 
integration was performed using a python script that calls DIALS methods within the 419 
Computational Crystallography Toolbox (Parkhurst et al., 2014). The script obtains an indexing 420 
solution using the real_space_grid_search method and uses the results to map each pixel in 421 
each diffraction image to fractional Miller indices h’k’l’ in reciprocal space. It sums the intensities 422 
from pixels in the neighborhood of each integer Miller index hkl and tracks the corresponding 423 
pixel counts, while ignoring pixels that fall within a ½ x ½ x ½ region about hkl. It writes the 424 
intensity sums and pixel counts for each frame on a grid, populated on an Ewald sphere that 425 
varies according to the crystal orientation for each image (Figure 1C). A radial scattering vector 426 
intensity profile was calculated for each frame using the Lunus avgrim method and was used to 427 
scale diffuse frames across the entire dataset. The Lunus sumlt and divlt methods were used to 428 
compute the mean diffuse intensity at each grid point using the scaled sums and pixel counts 429 
from all of the frames.  430 
 431 
Because the model diffuse intensities were computed without considering solvent, experimental 432 
and model diffuse intensities were compared using just the anisotropic component of the signal, 433 
which is primarily due to the protein (Wall et al., 2014b). The Lunus avgrlt and subrflt routines 434 
were applied to subtract the radial average and obtain the anisotropic signal. Signal intensities 435 
were then symmetrized using phenix.reflection_file_converter to obtain a dataset for comparison 436 
to models. Datasets were compared to each other and to models using linear correlations 437 
computed using the phenix.reflection_statistics tool.  438 
 439 
All images are available on SBGrid Data Grid (https://data.sbgrid.org/dataset/68/ for CypA; 440 
https://data.sbgrid.org/dataset/201/ for Trypsin) and the integrated diffuse scattering maps are 441 
available as Supplementary Material. 442 
 443 
TLS structure refinement and diffuse scattering model 444 
 445 
Three independent TLS refinements were performed for CypA (Figure 3A-D). The Whole 446 
molecule selection consists of the entire molecule as a single TLS group. The Phenix selection 447 
consists of the 8 groups (residues 2-14, 15-41, 42-64, 65-84, 85-122, 123-135, 136-145 and 448 
146-165) identified by phenix.find_tls_groups. The TLSMD selection consists of 8 groups 449 
(residues 2-15, 16-55, 56-80, 81-85, 86-91, 92-124, 125-143 and 144-165) identified by the TLS 450 
Motion Determination web server (Painter and Merritt, 2005, 2006). All TLS refinement was 451 
performed within phenix.refine through 5 macrocycles. Aside from the inclusion of TLS 452 
refinement, these macrocycles were identical to the initial structure refinement described above.  453 
 454 
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Similarly, for trypsin, we selected Whole Molecule, Phenix, and TLSMD TLS refinement 455 
strategies as described above (Figure 3E-H). The Phenix selection consists of 7 TLS groups: 456 
residues 16-54, 55-103, 104-123, 124-140, 141-155, 156-225 and 226-245. The TLSMD 457 
selection consists of 9 groups: residues 16-52, 53-98, 99-115, 116-144, 145-171, 172-220, 221-458 
224, 225-237 and 238-245. 459 
 460 
Structural ensembles of the CypA and trypsin TLS motions were generated through 461 
the Phenix.tls_as_xyz method (Urzhumtsev et al., 2015). Each ensemble consisted of 1,000 462 
random samples of the underlying TLS atomic displacement distributions, assuming 463 
independent distributions for each domain.  Diffuse scattering models were calculated from the 464 
TLS ensembles using Phenix.diffuse (Van Benschoten et al., 2015).  CypA and trypsin models 465 
were generated to a final resolution of 1.2 Å and 1.4 Å respectively, to match the resolution of 466 
the experimental data.  467 
 468 
Liquid-like motions model  469 
 470 
We computed Liquid-like motions (LLM) models of diffuse scattering using the structures refined 471 
prior to the TLS refinements (CypA: PDB 5F66; Trypsin: PDB 5F6M). For both CypA and 472 
trypsin, the temperature factors for all atoms were set to zero and squared calculated structure 473 
factors I0(hkl) were computed using the structure_factors, as_intensity_array, and expand_to_p1 474 
methods in CCTBX. The Lunus symlt method was used to fill in missing values in reciprocal 475 
space using the appropriate P222 Laue symmetry.  476 
 477 
Given a correlation length γ and amplitude of motion σ, the diffuse intensity predicted by the 478 
LLM model was calculated as 479 
 480 

𝐷 𝐬 = 4𝜋!𝑠!𝜎!𝑒!!!!!!!!𝐼! 𝐬 ∗ Γ! 𝐬  

Γ! 𝐬 =
8𝜋𝛾!

1 + 4𝜋!𝑠!𝛾!
 

(1) 

 481 
Fourier methods in Lunus (fftlt) were used to compute the convolution. The agreement with the 482 
data was quantified by computing a linear correlation as a target function, using the anisotropic 483 
intensities (Diffuse data integration). Optimization of the target with respect to γ and σ was 484 
performed in a python script using scipy.optimize (www.scipy.org) with the Powell minimization 485 
method.  486 
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