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Abstract

Developing neuronal networks display spontaneous rhythmic bursts of action potentials that are
necessary for circuit organization and tuning. While spontaneous activity has been shown to in-
struct map formation in sensory circuits, it is unknown whether it plays a role in the organization of
motor networks that produce rhythmic output. Using computational modeling we investigate how
recurrent networks of excitatory and inhibitory neuronal populations assemble to produce robust
patterns of unidirectional and precisely-timed propagating activity during organism locomotion.
One example is provided by the motor network in Drosophila larvae, which generates propagat-
ing peristaltic waves of muscle contractions during crawling. We examine two activity-dependent
models which tune weak network connectivity based on spontaneous activity patterns: a Hebbian
model, where coincident activity in neighboring populations strengthens connections between them;
and a homeostatic model, where connections are homeostatically regulated to maintain a constant
level of excitatory activity based on spontaneous input. The homeostatic model tunes network
connectivity to generate robust activity patterns with the appropriate timing relationships between
neighboring populations. These timing relationships can be modulated by the properties of sponta-
neous activity suggesting its instructive role for generating functional variability in network output.
In contrast, the Hebbian model fails to produce the tight timing relationships between neighboring
populations required for unidirectional activity propagation, even when additional assumptions are
imposed to constrain synaptic growth. These results argue that homeostatic mechanisms are more
likely than Hebbian mechanisms to tune weak connectivity based on local activity patterns in a
recurrent network for rhythm generation and propagation.

Introduction

Activity-dependent adjustment of nascent synaptic connectivity is a widespread mechanism for
tuning network properties in various parts of the developing brain (Kirkby et al., 2013). This
activity is relayed by ordered topographical maps to higher processing centers, where it triggers
correlated synaptic release from neighboring axonal terminals (Feller, 2009; Huberman et al., 2008;
Katz and Shatz, 1996; Tritsch et al., 2007). This timing information is evaluated by postsynaptic
neurons to sharpen their connectivity profile through Hebbian plasticity and thus improves network
function during this early phase of circuit development.
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Locomotor circuits also generate spontaneous activity during embryogenesis in many organisms,
including chick, mouse, fish and fly (Crisp et al., 2008; Hanson and Landmesser, 2004; Kirkby et al.,
2013; O’Donovan, 1999). These circuits are not topographically organized, yet endogenous activity
patterns and synaptic release are required for coordinated motor behavior to develop (Crisp et al.,
2011; Giachello and Baines, 2015; Warp et al., 2012). In Drosophila, motor neurons receive vari-
able amounts of presynaptic input, suggesting that connectivity is plastic and acquires functional
patterns in a homeostatically-regulated manner (Couton et al., 2015; Tripodi et al., 2008). The
underlying mechanisms that might evaluate this early spontaneous activity and establish neuronal
connectivity appropriately are unclear.

Computational modeling offers an efficient approach to explore the nature of the mechanisms
that could underlie activity-dependent tuning of connectivity in a generic motor network that
achieves a particular function. Here we study the organization of one such motor network that
generates rhythmic behavior, the Drosophila larvae. Larvae crawl by peristaltic waves of muscle
contractions which propagate along their body axis (Berni et al., 2012; Heckscher et al., 2012).
These coordinated waves travel from posterior to anterior during forward locomotion, and from
anterior to posterior during backward locomotion. The locomotor behavior is produced by central
pattern generators (CPGs), which are segmentally repeated and modulated by sensory feedback,
but can produce coordinated output even when sensory neurons are removed (Crisp et al., 2008; Fox
et al., 2006; Suster and Bate, 2002). Mature crawling behavior of Drosophila larvae is preceded by
uncoordinated yet neurally-controlled muscle contractions and incomplete peristaltic waves during
late embryogenesis, which gradually improve before hatching (Crisp et al., 2008; Suster and Bate,
2002). Manipulating endogenous activity during this period can significantly affect the output of
the circuit, suggesting that this activity helps to refine connectivity (Crisp et al., 2011; Giachello
and Baines, 2015).

We previously established a model for wave propagation which produces propagating activity
patterns with appropriate timing as during crawling in Drosophila larvae (Gjorgjieva et al., 2013).
Although distinct connectivity parameters were shown to produce propagating waves of activity, the
solution regions are complex (Figure 5 in Gjorgjieva et al. (2013)), and it is unclear how they arise
during development. Here, we examine two different activity-dependent mechanisms which can
tune network connectivity during development: (1) a Hebbian plasticity model, where coincident
activity between neighboring neuronal populations strengthens connections between them, and (2)
a homeostatic model, where synaptic connections are modified to maintain a constant level of exci-
tatory postsynaptic activity based on spontaneous input. We show that homeostatic mechanisms
are more appropriate than Hebbian mechanisms to organize connectivity in these motor networks.
We demonstrate the case by comparing peristaltic wave properties for the two models based on
the final configuration of network connectivity produced by the models. We also demonstrate the
robustness of activity-dependent tuning of connectivity by varying the properties of spontaneous
activity to predict how manipulations of this activity during embryogenesis might impact output
of the mature network. Thus, our work highlights the relative importance of homeostatic mecha-
nisms for establishing functional connectivity in developing motor networks, in contrast to sensory
networks where connectivity is more tightly constrained enabling the formation of accurate sensory
maps.
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Materials and Methods

Network model

The network model was based on the interaction of recurrently coupled excitatory and inhibitory
populations to produce robust propagation of activity with appropriate timing relationships as
observed experimentally during crawling in Drosophila larvae (Gjorgjieva et al., 2013). Such uni-
directional propagation of activity is also observed in other experimental systems (see Discussion).
Our model is an abstraction of neural circuits that might generate larval crawling and captures the
observed coordination at the segmental level. The model contains eight coupled units of excitatory
(E) and inhibitory (I) subpopulations to represent the activity in the eight abdominal segments of
the larva (Figure 1A).

The activity in each segment was modeled with a Wilson-Cowan unit (Wilson and Cowan, 1972)
consisting of two neuronal populations, excitatory (E) and inhibitory (I). These two populations
represent the joint activity of all central neurons in the CPG circuit for crawling, but are sufficiently
general to represent excitatory and inhibitory neurons in other systems. The differential equations
for the time-dependent variation of averaged excitatory and inhibitory neuronal activities were

τEĖ = −E + (kE − E) GE(aE + cI + Pext) (1)

τI İ = −I + (kI − I) GI( eE + fI), (2)

where the functions GE , GI and GS represent sigmoidal response functions of the excitatory,
inhibitory and sensory neuronal populations given by

G(x) =
1

1 + exp [−λ(x− θ)]
− 1

1 + exp(λθ)
, (3)

λ represents the maximum slope of the sigmoid (or if G represents an activation function, it denotes
the speed of activation) and θ represents the location of the maximum slope (or the threshold for
activation). The terms kE and kI denote the maxima of the response functions for the excitatory
and inhibitory populations, kE = 0.9945 and kI = 0.9994. The time constants τE and τI control
decay of excitatory and inhibitory activities after stimulation, and determine the timescale of
network activity. The connectivity coefficients a (or e) and c (or f) represent the average number of
excitatory and inhibitory synapses per cell in the excitatory (or inhibitory) population, respectively.
The time-varying function Pext(t) denotes the external input applied to the excitatory population of
one of the end segments to initiate a wave. Note that this input was not used during development in
the Hebbian and homeostatic models; it was only applied to test whether a network was functional
at the end of development.

To model wave propagation, we coupled eight Wilson-Cowan E-I units. Two types of con-
nections were created between neighboring segments. First, bidirectional excitatory connections
(b) between excitatory populations of neighboring segments allow activity to propagate along seg-
ments. Second, inhibitory connections (d) from the inhibitory population in one segment to the
neighboring (anterior and posterior) excitatory populations terminate activity in each previously
active segment and ensure unidirectional wave propagation (Figure 1). This network was equipped
with symmetric bidirectional connectivity such that forward and backward propagating waves were
generated with similar properties, consistent with experiments (Gjorgjieva et al., 2013). We list
parameter values that generate a functional wave (assuming appropriate connectivity) in Table 1.

A ‘contraction’ in the model was defined as supra-threshold activity (activity above a thresh-
old, 0.2 or 0.3) of the excitatory population (Figure 1B, horizontal dashed line). Such contractions
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were used to implement the activity-dependent weight refinement in the Hebbian and homeostatic
development models. We examined the timing relations between neighboring segments during prop-
agating waves of supra-threshold activity in the model by analyzing two quantities: The duty cycle
was the total time that each excitatory activity is supra-threshold relative to the wave duration.
The interburst interval was the time from the initiation of supra-threshold activity of one seg-
ment to the initiation of supra-threshold activity of the neighboring segment, normalized by wave
duration.

Weights are labeled with a superscript ‘f’ or ‘b’, to denote their respective role in forward or
backward wave propagation (Figure 1). Thus, there were 28 modifiable weights:

- seven bfi weights connecting Ei+1 to Ei,

- seven bbi weights connecting Ei to Ei+1,

- seven dfi weights connecting Ii to Ei+1, and

- seven dbi weights connecting Ii+1 to Ei, where i = {1, . . . 7}.

The model was initialized with weak connectivity incapable of generating waves. We considered
two scenarios: (1) All the weights started identically b = −d = 2; this was 10% of the values
used to generate robust waves (Gjorgjieva et al., 2013); (2) The weights were independent random
samples drawn from a uniform distribution in the range between 0 and 5 for excitatory weights,
and −5 to 0 for inhibitory weights. The final value of the weights was somewhat dependent on the
initial conditions, and in general, the steady state weights showed greater variability when starting
from random initial conditions. However, the stability of the weights was unaffected. The other
weights within the same segment, a, c, e and f , were kept fixed as in Table 1. All parameters were
dimensionless and time in the model was measured in arbitrary time units (t.u.).

Time of development

For both activity-dependent models simulations of development were conducted for a total time of
2× 105 t.u. The total simulation time depends on the time constant of weight update, the nature
of spontaneous activity and how spontaneous activity changes during development. The notion of
‘developmental time’ in the model is useful in describing the gradual improvement of coordination
in the activity patterns of the developing network.

Generating spontaneous activity

As there is little quantitative characterization of spontaneous activity in the Drosophila motor
network during development, here we made simple approximations to generate spontaneous activity.
Inputs of strength Ri for duration Ti were applied to each excitatory population Ei (Figure 1).
When the spontaneous input into a given population Ei was sufficiently strong, Ei became supra-
threshold. At the time of threshold-crossing, activity-dependent mechanisms were applied to modify
the weights. The duration of each spontaneous input, Ti, was a random number drawn from a
uniform distribution, U(x1, x2), determining the total time for which the input of strength Ri was
applied to Ei before choosing a new spontaneous input. Sampling the duration of spontaneous
input from a distribution ensured that neuronal activity in different populations crossed threshold
at different times as we did not want to introduce correlations in spontaneous activity. Since
network connectivity is recurrent, the network itself generates a significant proportion of activity
when the weights are sufficiently strong. This automatically generates correlations between the

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2015. ; https://doi.org/10.1101/033548doi: bioRxiv preprint 

https://doi.org/10.1101/033548


5

activations of neighboring segments, even though spontaneous activity itself is uncorrelated. The
strength of spontaneous input, Ri, was also a random number; this input was applied to Ei for
time Ti. We used a truncated Gaussian distribution with mean µ and variance σ2, [N(µ, σ)]+, to
ensure that spontaneous input remained positive.

The parameters of the distribution for Ti did not greatly affect the frequency of supra-threshold
events in a given excitatory population (data not shown). In contrast, Ri had a strong effect upon
the frequency of threshold crossings in the model network. This was partially because weights were
modified precisely at the time when population activity crossed threshold. Therefore, we explored
the effect of the distribution of Ri on the outcome of weight development in the two plasticity
models.

During development of Drosophila embryos, frequent random activity uncoordinated across
segments gradually becomes replaced by coordinated activity ranging across several neighboring
segments, with all contraction activity ceasing shortly before hatching when the larva emerges
from the egg shell and starts to crawl (Crisp et al., 2008). This is consistent with a model where
spontaneous activity decreases during development. To model this effect, we considered decreasing
either the mean or the variance of the Gaussian distribution for Ri. In the Hebbian model we
decreased the standard deviation in steps; however, the model was insensitive to how spontaneous
activity was reduced. The homeostatic model was also robust to the decrease of spontaneous
activity, though the speed of decrease of spontaneous activity affected the speed at which weights
stabilized.

The Hebbian bidirectional model

Weight updates followed the rate-based formulation of Hebbian plasticity: if presynaptic precedes
postsynaptic activity then the corresponding weight is potentiated, else the weight is depressed.
For any two populations connected by a weight the activity which crossed threshold first was
presynaptic. Weights were modified only for the direction in which a wave would have propagated
had the connection between the two populations been sufficiently strong (Figure 2A,B). Namely, if
Ei+1 crossed threshold before Ei, then bfi was potentiated, while bbi was depressed. To implement
potentiation, a small constant, ∆+ > 0, was added to the weight

bfi(t+ ∆t) = bfi(t) + ∆+ (4)

and similarly, if the constant for weight depression was denoted by ∆− > 0, bbi depressed.

bbi (t+ ∆t) = bbi (t)−∆−. (5)

If Ei crossed threshold before Ei+1, then bbi (t) potentiated

bbi (t+ ∆t) = bbi (t) + ∆+ (6)

and bfi(t) depressed
bfi(t+ ∆t) = bfi(t)−∆−. (7)

For the inhibitory weights, if Ii crossed threshold before Ei+1, then dfi(t) strengthened

dfi(t+ ∆t) = dfi(t)−∆+, (8)

while if Ei+1 crossed threshold before Ii, then dfi(t) weakened

dfi(t+ ∆t) = dfi(t) + ∆−. (9)
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And similarly if Ii+1 crossed threshold before Ei, then dbi (t) strengthened

dbi (t+ ∆t) = dbi (t)−∆+. (10)

while if Ei crossed threshold before Ii+1, then dbi (t) weakened

dbi (t+ ∆t) = dbi (t) + ∆−. (11)

For a weight to be modified, activity of the pre- and postsynaptic populations connected by the
weight had to be simultaneously supra-threshold. Weight changes were applied instantaneously,
immediately after the second of the two populations connected by the weight crossed threshold.
However, the model was robust to this requirement, and the weight could also be updated as the
activity of each population dropped below threshold.

The Hebbian efficacy model

In the Hebbian efficacy model, synchronous threshold crossing of activity in neighboring populations
resulted only in weight potentiation and no depression. To ensure that weights did not grow without
a bound, weight increase was limited by the frequency of contraction of the neuronal populations
connected by the synaptic weight. Such activity-dependent control of the weights was motivated by
the regulation of activity-dependent depression in developing motor networks (Crisp et al., 2008;
Fedirchuk et al., 1999).

To implement this activity-dependent synaptic depression, a ‘synaptic efficacy’ variable was
introduced in the Hebbian model (Froemke and Dan, 2002). This efficacy variable ε depressed to
0 at the time when the activity of a neuronal population crossed threshold (Figure 2C). Then,
in equations (4) and (6), when the excitatory activity in two populations crossed threshold, the
excitatory weights, bfi and bbi , were respectively modified by εfi(t)∆+ and εbi (t)∆+. Similarly, instead
of Eqs. (8) and (10), the inhibitory weights, dfi and dbi , were decreased by ηfi(t)∆+ and ηbi (t)∆+,
respectively, with efficacies

εi(t) or ηi(t) =

{
0, t < tref,

1− e−(t−tref−te)/τrec , t > tref.
(12)

Here, te denotes the time when activity of the two neuronal populations connected by the weight
crossed threshold (Figure 2C). The efficacy was held at 0 for a refractory time period tref, after
which it recovered to 1 with a time constant of τrec. The refractory period was implemented to
ensure that after the weights had strengthened stufficiently to generate waves, threshold crossings of
the activity in neuronal populations during propagating waves did not further modify the weights.
The value of τrec was chosen such that the period between two consecutive waves was larger than
the refractory period tref.

To equalize the frequency of threshold crossing among the different excitatory populations, an
additional ‘end drive’ was applied to the end excitatory populations, E8 and E1 (Figure 5). This
drive was applied to one of E8 or E1 chosen randomly for a duration Ti = 3 t.u. instead of the
spontaneous input Ri. We assumed the strength of this end drive increased as spontaneous activity
decreased during development, reaching a final value of 1.7.

The homeostatic model

The homeostatic model was implemented as in the Bienenstock-Cooper-Munroe (BCM) theory for
synaptic plasticity (Bienenstock et al., 1982). Weight modification was bidirectional (potentiation
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or depression) to maintain a constant averaged activity of each excitatory population, ri

τrṙi(t) = −ri(t), where ri(t)→ ri(t) + 1 when Ei(t) crosses threshold. (13)

The time constant τr was chosen to be much longer than the timescale of neuronal dynamics.
Weight potentiation or depression depended on whether the average excitatory activity in a given
segment was greater or smaller than a threshold for synaptic modification, θ. The homeostatic
model is activity-dependent, thus in the absence of spontaneous activity (µ→ 0) the weights in the
network will not be modified. The threshold is defined to be a function of the averaged excitatory
activity itself

θ(ri(t)) =

(
ri(t)

r0

)p
, (14)

where r0 = 2.0 was a constant and p > 1 (here, p = 1.5). The modification function φ depends on
ri(t) and θi(ri(t))

φ(ri(t), θ(ri(t))) = ri(t)− θ(ri(t)) = ri(t)−
(
ri(t)

r0

)p
. (15)

Then, synaptic weight change was implemented according to

bfi(t+ ∆t) = bfi(t) + ξ φ(ri(t)) (16)

for the forward excitatory weights, and

dbi (t+ ∆t) = dbi (t)− ξ φ(ri(t)) (17)

for the backward inhibitory weights for which Ei is postsynaptic (i = {1, 2, . . . , 7}). Similarly,

bbi (t+ ∆t) = bbi (t) + ξ φ(ri+1(t)) (18)

for the backward excitatory weights, and

dfi(t+ ∆t) = dfi(t)− ξ φ(ri+1(t)) (19)

for the forward inhibitory weights for which Ei+1 is postsynaptic (i = {1, 2, . . . , 7}). The constant
ξ was a small positive number to ensure weights change slowly relative to the timescale of neuronal
dynamics (e.g. 0.001). In the limit of ri(t)� r0,

ri(t)

r0
� 1 and θ(ri(t)) =

(
ri(t)

r0

)p
� ri(t).

This leads to φ(ri(t), θ(ri(t))) > 0 since p > 1, and potentiation of the weights. In the limit of
ri(t)� r0,

ri(t)

r0
� 1 and θ(ri(t)) =

(
ri(t)

r0

)p
� ri(t).

This leads to φ(ri(t), θ(ri(t))) < 0, and depression of the weights. In both models, the weights were
prevented from changing sign in agreement with Dale’s law (Strata and Harvey, 1999).
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Results

Can spontaneous activity successfully tune a bidirectionally connected recurrent network with weak
connectivity by using local activity-dependent mechanisms that modify connection strength to
produce functional output? Here we studied the generation of unidirectional propagating waves of
activity resembling those observed during crawling in the Drosophila larval motor network. Two
main principles provided the basis for our developmental model: (1) The model should use local
activity-dependent mechanisms to tune connection strength, and (2) The connections should achieve
a stable configuration at the end of development such that the network generates propagating
waves of activity with regular timing relationships (interburst intervals and duty cycles) in different
segments.

We used a recurrent network with bidirectional connectivity which can generate forward and
backward propagating waves when appropriately tuned (Figure 1, see also Figure 3 in Gjorgjieva
et al. (2013)). The model was initialized with weak connectivity between different segments in-
capable of generating waves. Weak connectivity in the network is likely specified by activity-
independent mechanisms, which guide axons toward their correct target partners. These guidance
mechanisms are widespread throughout the central nervous system (Dickson and Gilestro, 2006;
Hand and Kolodkin, 2015; Huberman et al., 2008; Klein and Kania, 2014). Each excitatory pop-
ulation in the model network was triggered by patterned spontaneous input (see Methods), and
depending on its strength and duration, increased the activity of the populations in random seg-
ments above threshold at different times. We sought to determine the nature of activity-dependent
plasticity rules that modify the strength of excitatory and inhibitory weights, b and d, connecting
neighboring segments using the spatio-temporal activation patterns of the different segments. Hav-
ing as a goal to robustly produce propagating waves of activity with precise timing relationships,
we compared a Hebbian to an activity-dependent homeostatic model for connection tuning based
on local activity patterns.

The Hebbian bidirectional model does not generate functional weight distribu-
tions

Weight modification in the Hebbian model was based on Hebb’s mechanism (Hebb, 1949): if the
population activity in two neighboring segments is simultaneously above threshold, the weights
between the neuronal populations should increase. Even though spontaneous activity in the model
was uncorrelated across segments, correlations between the activations of neighboring segments
exist because of the network’s recurrent connectivity. Hebb’s idea has been translated into various
forms of correlation-based rules for synaptic modification, which commonly assume that synapses
change strength in proportion to the correlation of the pre- and postsynaptic activity. This in-
cludes spike-timing-dependent plasticity (STDP), where the magnitude of synaptic potentiation
and depression depends not only on the order of pre- and postsynaptic activity, but also on their
timing (Markram et al., 1997). Hebbian plasticity has been successfully applied to activity-driven
refinement of developing circuits and learning in neuronal networks in many brain regions, includ-
ing hippocampus, neocortex, and cerebellum (Bliss and Collingridge, 1993; Bliss and Lomø, 1973;
Malenka and Bear, 2004; Malenka and Nicoll, 2009; Martin et al., 2000). Correlation-based Heb-
bian rules have been often used to model map formation in the visual system (Miller, 1992; Miller
et al., 1989). Therefore, we first characterize the role of Hebbian rules in connectivity tuning in the
recurrent networks for motor output studied here.

A common challenge that Hebbian mechanisms face is unbounded growth of synaptic weights.
Although upper bounds on synaptic strength can be imposed, and most biological systems probably
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have a saturation constraint limiting synaptic growth, it is unlikely that this upper bound is always
fixed to the same value and that the system knows this value a priori. To prevent unbounded
synaptic growth, we considered two implementations of the Hebbian model. One implementation
is based on bidirectional plasticity, which evokes synaptic potentiation if presynaptic activity comes
before postsynaptic activity, and depression if the order of activity is reversed (in line with STDP).
This model has been referred to as the Hebbian bidirectional model (see Methods). The Hebbian
bidirectional model fails to produce stable bidirectional connections because the weights develop in
a biased way: some potentiate, while others decrease to zero, uncoupling neighboring populations
(Figure 3).

What is the reason for this bias? Because random spontaneous input is applied to each excita-
tory population in the network with initially small b and d, some weights randomly potentiate more
than others. However, each pair of neighboring excitatory populations is connected by weights for
wave propagation in both directions, so whenever the weight for one direction potentiates, the cor-
responding weight in the other direction depresses. This creates a feedback loop, in which stronger
weights produce more frequent supra-threshold activity, further amplifying the same sets of weights,
while the weights in the opposite direction decay to zero (Figure 3). Therefore, it is not possible
to strengthen synaptic connections in both directions between neighboring excitatory populations
appropriately for wave generation, because of the asymmetric integration window of the Hebbian
model. This is consistent with other models of STDP (Abbott and Nelson, 2000; Song and Ab-
bott, 2001). Non-linear plasticity rules can generate functional bidirectional connectivity, but such
models are based on detailed spiking and voltage trajectories of individual neurons (Clopath et al.,
2010).

The Hebbian efficacy model requires balancing of activity across the network

We therefore considered an alternate implementation of the Hebbian model, where synaptic po-
tentiation is induced if presynaptic activity occurs before postsynaptic activity, augmented by
activity-dependent synaptic efficacy to prevent unbounded weight increase, but without any synap-
tic depression. This model has been referred to as the Hebbian efficacy model.

The amplitude of weight modification in the Hebbian efficacy model is inversely proportional
to the frequency of threshold crossings in segments connected by that weight (see Methods). The
model produces bidirectional weights that become ordered in the direction of wave propagation
(Figure 4A). Thus, of all excitatory weights for forward propagation, the most posterior (bf7) be-
comes the largest, while the weights in the middle of the network become the smallest (bf4 and
bf3). We found this to be due to a combination of (1) the difference in total input (synaptic and
spontaneous) received by each excitatory population, and (2) the preference for synaptic potenti-
ation of the forward weights induced by the order of excitatory segment activation – a hallmark
of Hebb’s rule. Indeed, segment A8 has only one neighbor and receives overall less drive than the
other segments in the network; thus, its efficacy is the largest, evoking the highest potentiation of
bf7. While the most anterior segment, A1, also has only one neighbor, it can also be driven from its
neighboring segment (A2) in the forward direction so bf1 has a lower efficacy and does not potentiate
as much. The weights in the middle are most frequently activated, they have the lowest efficacy
and are potentiated the least.

We examine this in greater detail. The threshold crossing frequency of excitatory activity (nec-
essary to trigger weight change) depends strongly on the strength of the weights at a given time
point during the development simulation (Figure 5A). When weights are small, threshold crossing
is purely the result of spontaneous drive, which is approximately uniform across all segments –
thus, all segments exhibit approximately the same number of threshold crossings (blue, Figure 5A).
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When the weights are sufficiently strong to generate waves, then the activation of any one segment
propagates to all remaining segments, again activating all of them uniformly. Hence, all segments
again exhibit approximately the same number of threshold crossings (red, Figure 5A). The biggest
discrepancy between the frequency of supra-threshold activity in different segments occurs at inter-
mediate synaptic strength (yellow, Figure 5A). In this scenario, the end segments of the network
have only one neighboring segment and receive the lowest synaptic input, and so have the low-
est overall input. Weights connecting neuronal populations whose activity crosses threshold more
frequently due to the higher overall drive (in the middle of the network) have smaller efficacies
compared to other weights which connect less active populations (at the ends of the network).
Therefore, the former weights potentiate less than the latter. The outcome of this process produces
variable weights (Figure 4A). Taking the weights at the end of the developmental period fails to
produce propagating waves of activity across the network (data not shown).

If Hebbian-style activity-dependent mechanisms indeed tune synaptic connectivity in the bidi-
rectionally connected network, then to equalize the total amount of input received by each segment,
the end segments must receive additional spontaneous input (Figure 5B). Furthermore, as sponta-
neous activation of all segments decreases during development (Crisp et al., 2008), then the intensity
of additional spontaneous drive to the end segments must increase. The increase in the end drive
during development might correspond to the biological system progressively testing more frequently
whether the network is fully assembled to produce waves. Thus, towards the of development, the
only drive to the network is to the end segments which will initiate either forward or backward
waves (Figure 5B).

Weight distributions from the Hebbian efficacy model produce unreliable waves
even with balanced activity

The Hebbian efficacy model with additional end drive successfully produces stable and functional
weight distributions (Figure 4B). To examine the progression of network output during develop-
ment, we recorded the spatio-temporal activity patterns in the network over a given period (Fig-
ure 6A–E) at the developmental time points denoted with arrows in Figure 4B. The network output
gradually becomes more coordinated similarly to motor development in Drosophila (Crisp et al.,
2008). Furthermore, partial motifs of coordinated output, which involve the simultaneous supra-
threshold activity of excitatory populations in several neighboring segments, typically originate at
one end of the network. This makes a concrete experimental prediction for how coordinated activity
emerges gradually during development if the Hebbian model with additional end drive organizes
the network.

The Hebbian efficacy model with balanced activity across the segments generated stable weight
distributions even when the initial conditions for the weights were randomly distributed in a given
range, albeit still weak (Figure 4C). Increasing that range of initial conditions fails to produce stable
weights (data not shown). To determine if the final weights can indeed generate waves, forward
waves were initiated by driving the most posterior population E8 in twenty networks where the
weights were generated from random initial conditions (Figure 6F). The resulting waves show
variable interburst intervals and variable duty cycles across the different segments that often fall
outside the experimentally measured ranges (Figure 6G,H).

Wave sensitivity to spontaneous activity patterns in the Hebbian efficacy model

How sensitive is weight development and wave generation in the model to changes in the properties
of spontaneous activity? Modest changes to the distribution for the generation of spontaneous
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input strength Ri preserve the interburst intervals, but retain the irregular duty cycles during wave
propagation (Figure 7). Some cases, however, produce a stable configuration of weights too small
to generate robust waves (data not shown). More substantial variations in the spontaneous input
strength result in more significant degradation of the final weight distributions and ultimate failure
of the network to generate waves. Similarly, stable weight distributions and propagating waves are
produced only for a small subset of efficacy time constants recovery parameters. Mistuning these
parameters either destabilizes the weights so that they never saturate to a stable value, or stabilizes
the weights too early before they are sufficiently strong for wave generation (data not shown).

Conclusion for the Hebbian model(s)

For our networks with predetermined connectivity spanning only neighboring segments, we conclude
that the basic requirement for coincident pre- and postsynaptic activity in the Hebbian model is
insufficient to generate functional weight distributions that produce propagating waves with the
appropriate timing relationships. Although model performance improved with the introduction of
new assumptions (synaptic efficacy and additional spontaneous drive to the end segments), the
final weight distributions and waves were highly variable. This suggests that Hebbian mechanisms
likely play a minor role in tuning the motor network for wave propagation.

The homeostatic model

When experimentally challenged with perturbations in synaptic structure and function, neurons
have the remarkable ability to regulate their synaptic strengths back to the normal range. Various
homeostatic mechanisms that maintain neuronal stability have been identified in invertebrates
and vertebrates (Davis, 2006; Marder, 2012; Marder and Goaillard, 2006; Perez-Otano and Ehlers,
2005; Pozo and Goda, 2010; Turrigiano, 2008). One of the best-defined systems for analysis of the
homeostatic mechanisms that regulate synaptic efficacy is the Drosophila neuromuscular junction
(NMJ). The NMJ exhibits a strong homeostatic response to changes in postsynaptic excitability
(Davis et al., 1998; Petersen et al., 1997). In contrast to the popular view that homeostatic plasticity
is a slow phenomenon involving many neurons simultaneously, neurons may also undergo rapid
synaptic tuning (Pozo and Goda, 2010).

Therefore, we considered a different model to regulate synaptic strength: a homeostatic mech-
anism that maintains network activity at stable levels based on spontaneous input. In our imple-
mentation of the homeostatic model, synaptic weights are potentiated or depressed to maintain
a constant average activity of the excitatory population in each segment (see Methods). Spon-
taneous input is necessary for synaptic change. As such, our homeostatic model falls under the
category of local activity-dependent models which require that each neuronal population computes
a running average of its activity and the weights are modified to maintain that quantify (Zenke
et al., 2013). A different class of homeostatic models are non-local models, which requires that all
incoming weights to neuronal population are kept normalized even in the absence of activity (such
as synaptic scaling) (Turrigiano et al., 1998).

The mechanisms for bidirectional homeostatic plasticity (simultaneously inducing potentiation
and depression) have recently been demonstrated for the Drosophila NMJ (Gaviño et al., 2015),
and also in Drosophila central neurons. The motor and visual system of developing larvae also
show bidirectional structural homeostasis (Tripodi et al., 2008; Yuan et al., 2011), as well as the
mushroom body of the adult (Kremer et al., 2010). In our homeostatic plasticity model, weights
potentiate or depress to maintain excitatory activity in all segments (postsynaptic to both excitatory
and inhibitory weights) at the same target level. For instance, weights potentiate or depress based
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on whether the average excitatory activity ri in a segment i is larger than the modification threshold,
θ(ri); the threshold itself is a nonlinear function of the slow average of postsynaptic activity, as
proposed in the BCM plasticity model (Bienenstock et al., 1982) (Figure 8A,B). To determine the
steady state activity, we can solve for the case when the weights are also at a steady state. Then
from equations (15)–(19)

φ(ri(t)) = ri(t)−
(
ri(t)

r0

)p
= 0 (20)

and the steady state excitatory activity is

req = r
p

p−1

0 . (21)

When r0 = 2.0 and p = 1.5, then req = 8.0 (Figure 8A). Varying p affects the value of the steady
state excitatory activity req (Eq. 21) and the steady state weights in the network (Figure 8C). For
instance, when p = 1.7, maintaining req = 5.4 requires smaller weights in the network (Figure 8D).
Similarly, when p = 1.3, maintaining req = 20.2 requires larger weights (Figure 8E). The timescale
τr also has an effect on the steady state weights. Increasing τr results in lower average excitatory
activity, ri, (Eq. 13) and smaller steady state weights (Figure 8F). Therefore, the parameters in
the homeostatic plasticity model determine the average activity of the excitatory populations and
the strength of the steady state weights in the network necessary to maintain that activity.

The homeostatic model produces stable weight distributions

Figure 8 shows that even at a constant level of spontaneous network activity during a simulation
of development, the weights stabilize to maintain the target level of postsynaptic activity. If the
amount of spontaneous activity decreases during the developmental period as the network assembles
(Crisp et al., 2008), then the weights increase more gradually (Figure 9A), with a time constant
combining the slow synaptic weight change and the decrease in spontaneous activity. Weight
evolution goes through a plateau before the network has fully assembled. This plateau occurs as a
result of the interaction of spontaneous input and recurrent activity in the network when the weights
strengthen sufficiently to propagate activity to neighboring segment. Changing the properties of
spontaneous activity can change when (and whether at all) this plateau occurs (Figure 11).

During forward wave propagation, all but one of the excitatory weights (bf2, . . . , b
f
7) have as

postsynaptic activity the excitatory activity of a segment in the middle of the body (E2, . . . E7). The
postsynaptic activity for bf1 is E1, which is coupled only to a single neighboring segment, E2. Thus,
to achieve the same target activity, bf1 potentiates more strongly than the other forward excitatory
weights (Figure 9A). The homeostatic model generates stable and functional weight distributions
even when the weights start randomly distributed in a given range (Figure 9B,D). In contrast to the
Hebbian model, the homeostatic model successfully generates stable weight distributions for larger
ranges of initial conditions. For especially large ranges of initial weights, functional connectivity
does not emerge as some weights become potentiated, while others depressed depending on their
strength (data not shown).

Lastly, the homeostatic model can maintain weights at functional ranges even when network
connectivity is perturbed. Following appropriate weight development in our functional model net-
work, we ‘cut’ all connections between segments A3 and A4 (by setting the weights to 0) which
eliminated wave generation (Figure 9E). Allowing the homeostatic model to act in the presence of
spontaneous input recovered functional weights and appropriately timed waves (Figure 9C,F).
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The homeostatic model generates appropriately timed propagating waves

To examine the output of the model during development, we recorded the spatio-temporal pat-
terns of activation in the network (Figure 10A–E) at the developmental time points denoted with
arrows in Figure 9A. Coordinated output gradually improves in the network similar to the gradual
improvement of motor output during Drosophila development (Crisp et al., 2008).

Are the stable weight configurations produced by this model able to generate robust propagating
waves with appropriate timing relations? Probing twenty networks, where the weights were gener-
ated from random initial conditions, shows that the homeostatic model can indeed generate waves
with regular interburst intervals and duty cycles across the different segments that closely match
experimental variability (Figure 10G,H). This demonstrates that the homeostatic model success-
fully tunes network connectivity to a functional state which can generate propagating unidirectional
waves with the appropriate segmental timing relations.

Wave sensitivity to spontaneous activity patterns in the homeostatic model

The amount of spontaneous activity, determined by the properties of the distribution of input
strength into each excitatory population, determines the steady state value at which the network
weights saturate. To further investigate how the steady state weights depend on the nature of
spontaneous activity, we examined weight development and wave generation as a function of the
mean µ and the standard deviation σ of the distribution for spontaneous input strength Ri ∼
[N(µ, σ)]+.

Increasing µ raises the average spontaneous input strength, Ri, thus increasing the excitatory
activity in each segment, Ei. Since Ei receives two types of input (spontaneous and synaptic
input), to maintain an average activity at the target level req, the synaptic input from neighboring
populations must decrease; this can be achieved by decreasing the steady state strength of the
weights (Figure 11). Waves generated by the network using the final steady state weights become
longer as µ increases, and excitatory activity remains above threshold for a shorter time in each
segment, resulting in shorter duty cycles and longer interburst intervals. Increasing µ ≥ 0.5 makes
the influence of spontaneous input on excitatory activity so strong that very little drive from
neighboring segments is needed to maintain the average excitatory activity at target. Therefore,
the weights become too small for the network to generate waves (data not shown).

This suggests that for the homeostatic model to produce stable and functional network weights
spontaneous activity must operate within a range. It should be sufficiently frequent to drive excita-
tory activity above threshold and to enable weight potentiation; yet it should not be too frequent,
to allow steady-state population activity to be maintained by synaptic input from neighboring pop-
ulations. The model is robust to changes in the amount by which spontaneous activity decreases
during development and it can also generate stable and functional weights even when spontaneous
activity is constant during development (Figures 8 and 10G,H).

Conclusion for the homeostatic model

These results demonstrate that based on the properties of spontaneous activity, different stable
weight configurations can be achieved with the homeostatic model by maintaining a target level of
postsynaptic activity for each weight. The weights can be reliably reproduced over multiple simu-
lation runs and initial conditions, and no additional assumptions are necessary to bound synaptic
growth as for the Hebbian model. A network with the final set of weights can generate propagating
waves with precise timing properties, such as regular interburst intervals and duty cycles across the
segments. This suggests that differences in the nature of spontaneous activity during development
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may underlie variability of network connectivity and the resulting wave properties produced by the
final network. Therefore, developmental differences in spontaneous activity (endogenous or envi-
ronmental) represent one plausible way by which such variability is achieved in the motor network
of Drosophila (Berni et al., 2012; Gjorgjieva et al., 2013).

Discussion

How are neural circuits organized to maintain stable function and produce robust output? This
task is made especially difficult during circuit development, when the properties of different circuit
components are immature and changing, and input from the environment unreliable. Here we
studied a model network of recurrently connected excitatory and inhibitory neuronal populations
segmentally repeated in a single dimension, motivated by the motor network for Drosophila larval
crawling. A key feature of this network, when appropriately tuned, is its ability to generate robust
forward and backward waves of activity by driving each end of the network (Gjorgjieva et al., 2013).
Examining sets of parameters that enable wave generation in the network has revealed nontrivial
solution regions. We sought to identify plausible mechanisms by which these parameters emerge.

Activity-dependent tuning of network connectivity

While there is ample evidence that spontaneous activity patterns instruct refinement of circuit
connectivity in sensory systems (Huberman et al., 2008), the importance of spontaneous activity
for the development of motor circuits is conflicting (Li et al., 2008; Marder and Rehm, 2005; Myers
et al., 2005; Roberts et al., 2014). Network models of spontaneous activity in developing motor
circuits have typically addressed the generation and properties of high-activity episodes interrupted
by quiet periods in the embryonic chick spinal cord (Marchetti et al., 2005; Tabak et al., 2010, 2001,
2000). However, unlike sensory systems, it is unclear if this activity helps refine developing motor
circuits.

Imaging of spontaneous activity during embryogenesis in Drosophila larvae has revealed a grad-
ual progression of motor output, and manipulations of this activity point to the role of activity-
dependent mechanisms in the tuning of the network (Crisp et al., 2011, 2008; Giachello and Baines,
2015). Using computational modeling we have demonstrated that spontaneous activity can indeed
tune a weakly connected recurrent network if the appropriate activity-dependent tuning rules are
used. We examined two styles of activity-dependent mechanisms for weight development, that
through gradual improvement in network output lead to stable weight distributions to generate
propagating waves with regular interburst intervals and duty cycles.

Hebbian-style models modify synaptic strength based on coincident pre- and postsynaptic activ-
ity. While Hebbian mechanisms instruct activity-driven refinements in the developing visual system
(Huberman et al., 2008), applying similar mechanisms for the tuning of a motor network for wave
propagation yields less successful results. Unlike sensory systems where neurons topographically
project from an input to a target layer, the motor network in Drosophila larvae is segmentally
organized and recurrently connected. Although correlated activity emerges between neighboring
segments even when spontaneous input is uncorrelated, there is no obvious notion of pre- and post-
synaptic: the same segment can be both presynaptic and postsynaptic to different weights. Thus,
Hebbian mechanisms are less likely to play a fundamental role in fine-tuning network connectivity.
Indeed, both Hebbian (bidirectional and efficacy) models fail to produce functional bidirectional
weights that generates waves with appropriate timing relationships.

In systems as diverse as the crustacean stomatogastric system and the vertebrate visual system,
homeostatic mechanisms control neuronal function through the regulation of synaptic efficacy and
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the modulation of intrinsic ionic conductances (Davis, 2006; Marder, 2012; Marder and Goaillard,
2006; Perez-Otano and Ehlers, 2005; Pozo and Goda, 2010; Turrigiano, 2008). Several forms of
homeostatic plasticity have been proposed to stabilize network activity, such as regulation of the
strength of synaptic transmission and synaptic scaling as a function of global network activity
(Gonzales-Islas and Wenner, 2006; Turrigiano, 1999; Turrigiano et al., 1998; Turrigiano and Nelson,
2004). Altered activity patterns can scale synaptic connections through homeostatic mechanisms
also in motor circuits (Borodinsky et al., 2004). Our homeostatic model was based on the goal
to maintain a target level of excitatory postsynaptic activity, which was achieved by modifying
the synaptic weights for which the target population is postsynaptic. Spontaneous activity was
necessary to drive weight modifications, thus our model differs from global mechanisms like synaptic
scaling (Turrigiano et al., 1998) and is more similar to the local BCM model (Bienenstock et al.,
1982; Zenke et al., 2013).

Without any additional assumptions, the homeostatic model achieves stable and functional bidi-
rectional weight distributions that generate waves with regular duty cycles and interburst intervals.
Moreover, different wave properties can be produced from different spontaneous activity patterns,
providing a way to generate wave variability in the experimental system. Therefore, our results
suggest that activity-dependent homeostatic mechanisms are more likely to tune weak bidirec-
tional connectivity in a recurrent network than Hebbian mechanisms. During tuning, the network
gradually improves the coordination of its output, matching the gradual emergence of coordinated
output in developing Drosophila larvae. The resulting network can produce appropriately timed
network-wide waves of activity that propagate in either direction despite bidirectional connectivity.
This property can be matched to the ability of Drosophila larvae to crawl forward and backward
with similar properties (Gjorgjieva et al., 2013). The homeostatic model can also restore functional
weights following perturbations of connectivity in the presence of spontaneous input with similar
patterns as used for developmental tuning. Thus, if activity-dependent homeostasis continues to
operate after development to keep patterned activity robust, then the network must continue to
receive external input. This is likely since the Drosophila larval motor network receives descending
input during continuous crawling, as well as additional proprioceptive input from the environment.

Limitations of the plasticity models

Because no activity-dependent plasticity rules have yet been identified in developing motor circuits,
it was natural to assume here that inhibitory plasticity is similar to excitatory plasticity (notably,
homeostatic adjustment of both excitatory and inhibitory connections occurs (Gonzales-Islas and
Wenner, 2006)). In both activity-dependent models, excitatory and inhibitory weights developed
in a balanced fashion, enabling the generation of waves propagating in either direction. Therefore,
neither type of weight is stronger than the other at any time. This is currently at odds with
experimental data, where at least initially, inhibition is not required to generate output patterns
(Crisp et al., 2008).

In addition to regulation of synaptic connectivity, which is realized by both our Hebbian and
homeostatic models, homeostatic regulation may occur at the level of intrinsic neuronal excitability
through the modulation of intrinsic ionic conductances. Theoretical modulation rules have been
successfully applied to the regulation of motor output in the stomatogastric nervous system of
crustaceans (LeMasson et al., 1993; Liu et al., 1998; Marder and Goaillard, 2006; O’Leary et al.,
2014). Our current rate-based framework precludes such studies based on conductance-based mod-
els, although it can incorporate changes in intrinsic excitability by modulation of the activation
functions in the population model equations.

Mapping of circuit connectivity in EM volumes has revealed the existence of long-range connec-
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tivity that spans non-neighboring segments in the Drosophila motor network (personal communica-
tion with Albert Cardona). However, how long-range connectivity changes during embryonic devel-
opment is still unknown. Thus, we based our models on a ‘minimal’ network architecture where the
nature of connectivity (but not strengths) was predefined to be nearest neighbor (Gjorgjieva et al.,
2013). As we add other types of long-range connections, we will need other kinds of mechanisms,
some of them Hebbian, in combination with homeostatic plasticity (Vitureira and Goda, 2013;
Zenke et al., 2013) to ensure that connectivity, short and long-range, is refined in the appropriate
manner.

Generality of the network model

Although our model is motivated by the production of motor output during crawling in Drosophila
larvae, it is not an anatomical model of the Drosophila motor network and does not incorporate any
detail about the organization and neural identity of different network elements such as interneurons,
motor neurons and muscles; instead the activity of each segment is represented with a single
excitatory and inhibitory population. Therefore, our model does not capture the known molecular
underpinnings of the homeostatic mechanisms that regulate synaptic efficacy and channel function
in Drosophila (Davis and Müller, 2015; Tripodi et al., 2008). For instance, what kind of a ‘sensor’
monitors neuronal or muscle activity, and by what mechanisms is pre- and postsynaptic function
modulated?

Yet, the generality of the model allows it to be applied to other circuits where activity-dependent
refinement of connectivity leads to appropriate connectivity for generating unidirectional propaga-
tion of activity. One example is the generation of spontaneous waves in the developing mammalian
cortex; waves are produced by recurrent networks without a particular directionality of connections,
but travel along stereotypical directions (Conhaim et al., 2010; Lischalk et al., 2009).

We conclude that for the fixed network architecture with nearest-neighbor connections, Heb-
bian mechanisms are unlikely to play a major role in activity-dependent tuning of connectivity
in recurrent bidirectionally connected networks for wave propagation. By contrast, homeostatic
plasticity mechanisms, which maintain target levels of activity using spontaneous input, succeed
in generating reproducible patterns of network connectivity. As such, they are more likely than
Hebbian-style mechanisms in regulating activity-dependent tuning of bidirectional motor networks
for activity propagation. Both mechanisms are likely to be necessary for the refinement of networks
with long-range connectivity.
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Figure Legends

..................

A8

A7

A6

A5

A4

A3

A2

A1

B

0.5 t.u.

1 t.u.

0
.3

A

Figure 1. A network model for the emergence of coordinated output. A. A network model for
peristaltic wave propagation with eight segments, each consisting of an excitatory (E) and an inhibitory
(I) neuronal population. The connections within the same segment (solid lines), a, c, e and f , shown only
for the most posterior segment, are fixed during development. Nearest-neighbor segments are connected
with excitatory, b (blue, arrows), and inhibitory, d (red, dots), connections. These connections are plastic
during development as indicated by the dashed lines. The weights for forward and backward wave
propagation are identified by superscripts ‘f’ and ‘b’, respectively. Each segment receives spontaneous
random input of strength Ri for a duration of Ti, as illustrated on the left. B. An example of
supra-threshold excitatory activity (threshold for detection of supra-threshold activity is 0.3) of each
segment. Time is measured in arbitrary time units (t.u.). The inset shows excitatory activity (blue), and
inhibitory activity (red) for segment A8 with a threshold denoted by the dashed line.
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Figure 2. The Hebbian model for synaptic modification with synaptic efficacy. A. Weight
changes induced by Hebbian plasticity: A snapshot of 50 time units of activity during early development.
When activity in neighboring neuronal populations exceeds threshold simultaneously (dashed ellipses),
based on the order of threshold crossing, the respective forward or backward weights are updated, here bb1
and db1 . B. Excitatory and inhibitory activity in two neighboring segments simultaneously above threshold
is shown as a function of time. C. As the activity of two neuronal populations crossed threshold (dashed
line) simultaneously, at times denoted by te (arrows), the efficacy εi(t) was reset to 0 for a refractory period
of tref and then exponentially recovered to 1 with a timescale τrec.
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Figure 3. Weight development in the Hebbian bidirectional model without synaptic efficacy.
Weights were modified using the Hebbian bidirectional model (Eqs. 4–11) with ∆+ = 0.1 and ∆− = 0.05
without activity-dependent synaptic efficacy. Spontaneous activity was generated with Ri ∼ [N(0.2, 0.8)]+
and Ti ∼ U(2, 3). Every 8,000 time units, the standard deviation (σ = 0.8) of the distribution for Ri was
decreased by 0.05. A. Forward excitatory weights bfi, B. Backward excitatory weights bbi , C. Forward
inhibitory weights dfi and D. Backward inhibitory weights dbi .
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Figure 4. Weight development in the Hebbian efficacy model. A. The network weights were
modified using the Hebbian efficacy model (Eq. 12), where τrec = 20 t.u. and tref = 20 t.u. All weights
start at the same initial condition (b = −d = 2). B. As A but with additional end drive applied to one of
the end segments chosen randomly with equal probability (reaching 1.7 at the end of the simulation).
Spatio-temporal patterns of excitatory activity at the times denoted with arrows are shown in Figure 6. C.
Same as B but with random initial conditions starting in the range of 0 and 5. In all cases spontaneous
activity was generated with Ri ∼ [N(0.5, 0.8)]+ and Ti ∼ U(2, 3). Every 8,000 time units, the standard
deviation (σ = 0.8) of the distribution for Ri was decreased by 0.05. Only excitatory weights in the forward
direction are shown as per Figure 3.
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Figure 5. Frequency of threshold crossing of excitatory populations in the different models
with Hebbian plasticity. A. Number of threshold crossings per segment for 10,000 time units where
spontaneous activity was generated with Ri ∼ [N(0.2, 0.8)]+ and Ti ∼ U(0.5, 1.5). Here spontaneous
activity was fixed during the simulation. The strength of the intersegmental connections in the network
(Figure 1) depends on the strength of the weights, which were taken to be uniform across the network. B.
The total amount of activity received by each segment consists of different contributions from spontaneous
input and from additional end drive at different points in development. The histograms show the mean
overall drive per segment (spontaneous input and end drive) at three developmental time points (early
development, late development and maturity) showing a decrease of spontaneous activity and an increase
in end drive. The number of threshold crossings per segment is also shown (red) as in A for a simulation of
10,000 time units. The middle panel shows that with additional end drive (full line) all segments contract
at a similar frequency, compared to the case with no end drive (dashed line).
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Figure 6. Emergence of coordinated output in the Hebbian efficacy model with additional
end drive. A-E. Spatio-temporal patterns of supra-threshold excitatory activity at the developmental
time denoted with arrows in Figure 4B. Scale bar in A applies to panels A to E. F. Applying Pext = 1.7 to
E8 in the network with the final set of weights generates a forward wave. G, H. Duty cycle and interburst
interval (mean ± S.D.) for waves that were generated over 20 trials of wave development as in Figure 4C.
The model is compared to experimental data as in Gjorgjieva et al. (2013).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2015. ; https://doi.org/10.1101/033548doi: bioRxiv preprint 

https://doi.org/10.1101/033548


28

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

1 t.u.

A1

A2

A3

A6

A4

A5

A7

A8

A1

A2

A3

A6

A4

A5

A7

A8

A1

A2

A3

A6

A4

A5

A7

A8

A1

A2

A3

A6

A4

A5

A7

A8

BA

developmental time

fo
rw

a
rd

 e
x
c
it
a

to
ry

 w
e

ig
h

ts

Figure 7. Varying the mean and variance of spontaneous input in the Hebbian efficacy
model. A. Forward excitatory weights (as per Figure 3). The mean (µ) and the S.D. (σ) of the
distribution for Ri ∼ [N(µ, σ)]+ were varied as shown in the inset of each plot. Every 8,000 time units, σ
was decreased by 0.05. Compare to Figure 4 where µ = 0.5 and σ = 0.8. B. Examples of forward waves
generated with the steady state weights at the end of each simulation in A.
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Figure 8. The average segmental excitatory activity and weights in the homeostatic
plasticity model. A. The average excitatory activity of one segment, E7, is shown as a function of time
of development fluctuating around the target activity. Spontaneous activity was generated with
Ri ∼ [N(0.5, 0.4)]+ and Ti ∼ U(2, 3) throughout development. B. The modification threshold is a function
of the average activity, and determines whether the weights will be potentiated (if the threshold is smaller
the averaged activity) or depressed (if the threshold is above the averaged activity) as indicated by the
upward and downward pointing arrows respectively. The threshold is shown for the time denoted by the
bracket in A. C,D. Varying p, while keeping τr constant, affects the target activity req as in Eq. (21) and
consequently the steady state feedforward excitatory weights. E,F. Varying τr also affects the steady state
weights, even when the target activity is the same. Here, spontaneous activity was generated with
Ri ∼ [N(0.5, 0.4)]+ and Ti ∼ U(2, 3). Activity remained constant during development. In C-F, weights
shown as per Figure 3, but only forward excitatory weights for illustration.
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Figure 9. Weight development in the homeostatic model with decreasing spontaneous
activity in development. A. The development of the weights under the homeostatic model (16)–(19)
from an identical initial condition(b = −d = 2). Spatio-temporal patterns of excitatory activity at the
developmental time denoted with arrows are shown in Figure 10. B. Same as A but with random initial
conditions starting in the range of 0 and 5. C. Starting with the final weights in B (T0), only those
between segments A4 and A3 were cut (weights set to 0) as indicated by the arrow (Tcut), and allowed to
develop again under the homeostatic model (Tend). D. Forward wave generated using the final weights in B
at T0. E. The network fails to generate waves when the connections are cut using the initial weights in C
at Tcut. F. Forward wave generated by the recovered network using the final weights in C at Tend. In all
cases spontaneous activity was generated with Ri ∼ [N(0.3, 0.8)]+ and Ti ∼ U(2, 3). Every 8,000 time
units, the standard deviation (σ = 0.8) of the distribution for Ri was decreased by 0.04. Only excitatory
weights in the forward direction are shown in A, B and C as per Figure 3.
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Figure 10. Emergence of coordinated output in the homeostatic model. A-E. Spatio-temporal
patterns of supra-threshold excitatory activity at the developmental time denoted with arrows in Figure 9.
Scale bar in A applies to panels A to E. F. Applying Pext = 1.7 to E8 in the network with the final set of
weights generates a forward wave. G, H. Duty cycle and interburst interval (mean ± S.D.) for waves that
were generated over 20 trials of wave development as in Figure 4C. The model is compared to experimental
data as in Gjorgjieva et al. (2013).
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Figure 11. Varying the mean of spontaneous input in the homeostatic plasticity model. A.
Forward excitatory weights. The mean (µ) of the distribution for Ri ∼ [N(µ, σ)]+ was varied as shown in
top-left of each graph. In all cases σ = 0.8 and decreased over development by ∆σ = 0.04 every 8,000 time
units. The time when the standard deviation reached 0 is denoted with vertical dashed lines. Weights
shown as per Figure 3, but only forward excitatory weights for illustration. B. Forward waves generated
with the steady state weights at the end of each simulation in A.
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Tables

Table 1. Network parameters for wave propagation. Default parameter values for the
model simulations.

a b c d e f τE τI Pext bE bI θE θI
16 20 −12 −20 15 −3 0.5 0.5 1.7 1.3 2 4 3.7
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