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Summary  

Temporally precise motor sequences underlie many motor skills and innate actions, yet the 

flexibility with which the timing of such stereotyped behaviors can be modified is not known. To 

probe this, we induced adaptive changes to the temporal structure of birdsong. We find that the 

duration of specific song segments can be modified without affecting the timing in other parts of 

the song. We derive formal prescriptions for how neural networks can implement such flexible 

motor timing. We find that randomly connected recurrent networks, a common approximation 

for how neocortex is wired, do not generally conform to these, though certain implementations 

can approximate them. We show that feedforward networks, by virtue of their one-to-one 

mapping between network activity and time, are better suited. Our study provides general 

prescriptions for how pattern generator networks can implement flexible motor timing, an 

important aspect of many motor skills, including birdsong and human speech.   
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Introduction 

The brain’s ability to generate spatiotemporally precise motor patterns underlies much of what 

we do, from the expert performances of athletes and musicians to the daily acts of speaking or 

walking. Despite the ubiquity and importance of stereotyped motor sequences, our 

understanding of how the brain controls and modifies their timing remains poor (Buonomano 

and Laje, 2010; Viviani and Laissard, 1991).  

 Many different neural network architectures are capable of generating temporally 

reproducible dynamics, a minimum requirement for producing precisely timed motor output 

(Abeles, 1991; Goel and Buonomano, 2014; Kleinfeld and Sompolinsky, 1988; Laje and 

Buonomano, 2013; Sompolinsky and Kanter, 1986; Sussillo and Abbott, 2009). Randomly 

connected recurrent neural networks (RNN), a common approximation for how neocortex is 

wired (Sompolinsky et al., 1988) can be trained to generate prescribed temporal patterns 

(Jaeger and Haas, 2004; Laje and Buonomano, 2013; Sussillo and Abbott, 2009). Feedforward 

networks, such as synfire chains (Abeles, 1991), naturally map network activity to elapsed time, 

and hence are also suitable for generating timing signals underlying stereotyped motor output 

(Buonomano and Laje, 2010) 

 However, demands on pattern generator networks often go beyond simply producing 

the same dynamics every time an action is executed. A characteristic of skilled performance is 

the flexibility with which established motor patterns can be modified, including changes to their 

timing (Fortune et al., 2011; Gentner, 1987; Sternberg et al., 1990). Modifying the overall tempo 

of a continuous motor sequence is an obvious and often discussed example (Carter and Shapiro, 

1984; Long and Fee, 2008) (Figure 1A). However, careful analysis of stereotyped action 

sequences suggests that the nervous system may be capable of altering motor timing in a far 

more specific and flexible manner (Figure 1A). In speech production or typing, for example, the 
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duration of discrete segments (e.g. phonemes or elements of key strokes) can change 

independently of other parts of a continuous action sequence (Sternberg et al., 1990, 1988). 

Such flexibility in motor timing can be essential for improving motor skills and adapting them to 

new contingencies or task demands. Increasing the power of your tennis serve, for example, 

may require selectively speeding up the power-generating stroke, while leaving the timing of the 

rest of the serve unchanged. Similarly, learning the speech patterns of a new language can 

benefit from being able to alter the duration of distinct phonemes and syllables in context-

specific and flexible ways (Trofimovich and Baker, 2007). 

 To better characterize the flexibility with which the brain can modify the timing of 

stereotyped motor sequences, we took advantage of an experimental paradigm that allows 

adaptive changes to the temporal structure of zebra finch song to be induced (Ali et al., 2013). 

The complex learned vocalizations of adult songbirds are in many ways similar to human speech 

(Brainard and Doupe, 2013; Doupe and Kuhl, 1999), being temporally precise but, under certain 

experimental conditions, also quite malleable (Ali et al., 2013; Cai et al., 2011). Moreover, the 

temporal precision and reproducibility of birdsong are of ethological importance (Woolley and 

Doupe, 2008) as is the capacity to change the song’s temporal structure (Fortune et al., 2011). 

These attributes make the adult zebra finch a good model for interrogating the flexibility with 

which the timing of complex and reproducible motor sequences can be modified.   

 Here we show that changes to the duration of specific song segments do not interfere 

with the temporal structure of other segments, and that two segments in the same song can be 

modified simultaneously and independently. Such flexibility in motor timing constrains the 

functional architecture of the underlying pattern generator circuits. We derive formal 

prescriptions for how such specific and adaptive changes to motor timing can be implemented 

in neural circuits. We show that vectors in synaptic weight space corresponding to maximal 
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changes in the duration of two intervals (i.e. the ‘gradient’ vectors) must be orthogonal for 

those intervals to change independently. We probe the extent to which neural networks capable 

of generating precise temporal patterns conform to this prescription. While we find that RNNs, 

in general, do not fulfill the strict conditions of orthogonality, certain implementations can 

achieve reasonable approximations. Feedforward networks, however, are more naturally suited 

as flexible time-keepers since they map network activity to time in an unambiguous manner.    

Consistent with the theoretical analysis, simulations of temporal learning using 

biologically plausible plasticity rules in a synfire chain network reproduced the phenomenology 

observed in songbirds, while similar simulations in RNNs failed to attain the required degree of 

temporal flexibility. The different network simulations also generated predictions for how 

variability in the duration of song segment should change with changes to the segment’s mean 

duration. Here too, the experimental data conformed to predictions from the synfire chain 

network, but not the RRNs. These results constrain the topology and dynamics of neural 

networks underlying flexible motor timing, and suggest that the synfire chain architecture may 

be ideally suited for generating the temporal structure of flexible motor behaviors.   

 

Results 

 

Flexible modifications to the temporal structure of birdsong  

Perhaps the best understood example of how the brain acquires and executes complex learned 

motor sequences is the courtship song of the zebra finch (Immelmann, 1969). To characterize 

the flexibility with which the pattern generator circuit underlying stereotyped adult song can 

modify motor timing (Figure 1A), we challenged adult birds to produce changes to the duration 

of specific song segments (Figure 1B), using Conditional Auditory Feedback (CAF), a 
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reinforcement learning-based paradigm (Ali et al., 2013; Tumer and Brainard, 2007) (Methods). 

By playing loud (~80-90 dB) aversive sound bursts contingent on the duration of a targeted song 

segment, significant changes to the song’s temporal structure can be induced in a matter of 

hours (Ali et al., 2013) (Figure 1C). To explore the specificity of these modifications, we 

compared changes in targeted segments to changes in other parts of the song.   

 Across the population of birds (n = 18 birds), the duration of targeted segments changed 

by, on average, 2.9 ± 1.7 ms (mean ± SD, n = 18 targets) per day relative to baseline drift (Figure 

1D, Methods). In contrast, we saw no significant changes in non-targeted segments (n = 120) 

(Figure 1D). This shows that the timing of stereotyped learned motor patterns can change in 

temporally very specific ways.  

 We next tested whether learning-induced changes to the duration of one song segment 

interferes with adaptive modifications to other parts of the song by targeting two segments 

(>100 ms apart) for CAF simultaneously (Figure 1E, Methods). Interestingly, we found no 

difference in learning rates whether a segment was targeted for modification alone (2.8 ± 2.4 ms 

per day) or in conjunction with another segment (3.0 ± 2.4 ms per day, n = 12 segments in 6 

birds, Figures 1F, G), suggesting that individual segments of song are, in terms of changes to 

their durations, independent. 

 

Constraints imposed on flexible time-keeper circuits  

 

Flexibility in motor timing can be characterized in terms of specificity and independence. 

Specificity means that changes to the duration of one part of a sequence leaves the temporal 

structure of other parts unaffected. Independence means that timing in different parts of a 

sequence can be modified simultaneously without any effect on learning rates. While many 
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different neural network architectures have been proposed to generate reproducible temporal 

patterns (Buonomano and Laje, 2010; Laje and Buonomano, 2013; Sussillo and Abbott, 2009), 

the extent to which they support such flexibility in motor timing has not been considered.  

Here we use theoretical and computational approaches to examine how specificity and 

independence in motor timing constrain the topology and dynamics of the underlying pattern 

generator networks. We assume that network output is modified by changing connection 

strengths between its neurons, and seek to understand the network properties that enable 

flexible motor timing. 

We show that in order to modify the duration of a discrete segment in a longer action 

sequence with independence and specificity (Figure 1A), there must exist a path in synaptic 

weight space along which only the duration of that segment (i.e. its interval) changes 

(specificity). Moreover, changes along such a path should not affect the network’s capacity to 

change along paths associated with other intervals (independence). The analytical proof that 

this condition can be met in a generic neural network is presented in Supplementary Note I.  

However, the existence of specific and independent paths in synaptic weight space is, 

on its own, not sufficient to ensure flexible motor timing. Such paths must be found and 

followed by biologically plausible learning algorithms. For real-world pattern generators, 

exemplified by the vocal control pathway of the zebra finch, modifications to motor timing often 

happens through trial-and-error learning, i.e. variations in temporal structure are generated and 

the certain variants reinforced (Ali et al., 2013). Our experiments with zebra finches showed that 

reinforcement targeted to specific song segments can produce specific and independent 

changes to the temporal structure of zebra finch song (Figure 1).  

Synaptic learning rules that implement reinforcement learning typically find the 

direction (or gradient) in synaptic weight space that maximizes reward (or minimizes 
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punishment) and updates synaptic weights along that direction (Doya and Sejnowski, 1995; I. R. 

Fiete et al., 2007; Fiete and Seung, 2006; Williams, 1992). Restricting our discussion to this 

scenario, we show that specificity requires the direction in synaptic weight space corresponding 

to maximal changes in an interval (its ‘gradient vector’) to be orthogonal to all others gradients, 

or formally:  

 ,                       (1) 

where Iα denotes the duration for interval α, Wij the strength of the connection from neuron j to 

i, and  the gradient for interval 𝛼, with the summation being over all synapses (see also 

Supplementary Note I). Importantly, the orthogonality constraint should hold throughout 

learning, not only for the original network. Otherwise, a network that initially exhibits specificity, 

could lose that property as the target segment (and the network) changes. See Supplementary 

Note I for a comprehensive discussion of this point. Importantly, equation (1) also ensures 

independent learning, assuming that the effect of separately delivered reinforcers sum linearly 

(see Supplementary Note I). 

 We next asked whether neural network architectures proposed to underlie the 

temporal patterning of complex action sequences conform to the prescriptions we derived. We 

consider two broad classes of networks: randomly connected recurrent networks (RNNs) (Laje 

and Buonomano, 2013; Sompolinsky et al., 1988; Sussillo and Abbott, 2009) and feedforward 

networks (Abeles, 1991; Goldman, 2009), and investigate the condition under which 

instantiations of these networks satisfy or approximate the orthogonality condition in equation 

(1). To quantify the extent to which a network deviates from the specificity and independence 

criterion (eq. 1), we numerically calculate the gradient vector associated with each interval and 
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then compute the “learning matrix”, i.e. a symmetric matrix whose elements are given by the 

inner products of the gradients associated with pairs of target segments: 

,                  (2)  

This matrix has non-zero off-diagonal elements when gradients are non-orthogonal. 

 The learning matrix of a pattern generator network quantifies the degree to which the 

network is flexible. For example, in an ‘experiment’ akin to the one we performed in songbirds 

(Figure 1), where the duration of a segment 𝛼 (i.e. its interval) is targeted for modification, the 

expected change to the duration of another segment  𝛽, normalized by the change in the target 

interval 𝛼, is given by:  

Δ𝐼𝛽

Δ𝐼𝛼
=
𝑀𝛽𝛼

𝑀𝛼𝛼
,                                                               (3)  

Equation (3) shows how the learning matrix relates to specificity. Suppose 𝛼 ≠ 𝛽. If the 

gradients with respect to intervals 𝛼 and  𝛽 are non-orthogonal, then 𝑀𝛽𝛼 is non-zero and there 

is a change in interval 𝛽, even though the reward was targeted at 𝛼. Hence, timing modifications 

are not specific to the targeted interval. In an ‘experiment’ where two intervals (𝛼 and 𝛽) are 

targeted for modification simultaneously, the expected change in interval 𝛼, compared to the 

expected change in an ‘experiment’ where only interval 𝛼 is targeted, is given by:  

Δ𝐼𝑡𝑤𝑜−𝑡𝑎𝑟.
𝛼

Δ𝐼𝑠𝑖𝑛𝑔𝑙𝑒−𝑡𝑎𝑟.
𝛼 = 1 +

𝑀𝛽𝛼

𝑀𝛼𝛼

𝑑𝑅𝛽
𝑑𝐼𝛽
𝑑𝑅𝛼
𝑑𝐼𝛼

,                                                         (4)  

where 𝑅𝛼  denotes the reinforcement targeted at interval 𝛼. Equation (4) shows how the 

learning matrix relates to independence. If the gradients with respect to intervals 𝛼 and  𝛽 are 

non-orthogonal, then 𝑀𝛽𝛼 is non-zero, meaning that learning directed at interval 𝛽 will affect 

the learning rate of interval 𝛼. Hence, temporal modifications to different segments are not 
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independent. We note that the ratio 𝑀𝛽𝛼/𝑀𝛼𝛼 appears in both equations (3) and (4) and 

quantifies the deviation from specificity and independence. Below, we use it, or rather its 

absolute value, as a measure of non-flexibility, and call it the interference between intervals 𝛼 

and 𝛽. Therefore, with the knowledge of the learning matrix, we can quantify the degree to 

which a time-keeper network allows for flexible motor timing.  

 

 
Probing random recurrent networks as flexible time-keepers    

RNNs in their chaotic regime (Sompolinsky et al., 1988) produce spatiotemporal patterns 

suitable for generating complex motor output. However, chaotic network dynamics cannot 

produce the same output repeatedly and reliably because even small perturbations to the 

network can cause large changes in its output. Recently, algorithms that suppress chaos in RNNs 

(Laje and Buonomano, 2013; Sussillo and Abbott, 2009) have demonstrated the capacity of 

recurrent networks to learn and reliably produce complex stereotyped output, making them 

suitable as pattern generators. Next, we examine the extent to which such networks, specifically 

the feedback-stabilized RNNs of Sussillo and Abbott (2009) and the dynamic attractor networks 

of Laje and Bounomano (2013), support flexibility in motor timing. 

 

FORCE training of feedback-stabilized RNNs exhibits a robustness-flexibility trade-off 

Using the FORCE algorithm (Sussillo and Abbott, 2009), we trained the read-out units of an RNN 

with 500 ‘rate’ neurons to produce an output pattern with readily identifiable ‘intervals’ (Figure 

2A). In this network, chaos in the network is suppressed by having the linear read-out neuron 

feed back to neurons in the RNN (Rajan et al., 2010; Sussillo and Abbott, 2009), and hence we 

refer to it as “feedback-stabilized RNN” or fsRNN. For simplicity, we trained the network to 

produce a waveform with 10 equally spaced peaks, 50ms apart (Figure 2A, Supplementary 
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Figure 1A, Methods). This allowed us to define the start and end of ‘segments’ as the times the 

output crossed a preset threshold.  

 In fsRNNs, feedback from the read-out unit to the neurons in the RNN should be 

comparable in strength to the recurrent inputs to those neurons in order to suppress chaos and 

allow for successful training (Sussillo and Abbott, 2009). In our implementation, the strength of 

the feedback is governed by the parameter  𝑔𝐹𝐵 , which is typically set to be around 1 in 

applications of FORCE training RNNs (Boström et al., 2013; Hoerzer et al., 2014; Sussillo and 

Abbott, 2012, 2009). We varied this number from 0 to 5, trained 20 networks for each value, 

and found that increased feedback improves training success as reflected by a decrease in the 

‘test’ error, i.e. the normalized error between network output and desired output (Figure 2B, 

Methods). To assess whether such networks can produce precise timing signals, we quantified 

the fraction of simulations (out of 400) in which the network failed to produce all 10 intervals 

within 3ms (i.e. 6%) of the target duration (the ‘timing failure rate’, Figure 2B). This metric was 

close to zero even when the strength of the feedback was low, meaning that even networks 

with outputs further from the specified target can produce activity modulations useful for 

marking the starts and ends of intervals.  

Looking at the networks more closely, we found that changes in feedback strength led 

to qualitatively different solutions (Figure 2A). When feedback was strong, it dominated the 

recurrent input to the pattern generator network close to interval borders. Because the 

feedback input was periodic, the network state, defined by the vector of all instantaneous unit 

activities, was reset to the same state at interval borders (Figure 2C), leading to periodic activity 

in the pattern generator network (see example unit dynamics in a network with 𝑔𝐹𝐵 = 2, Figure 

2A). When feedback strength was low, the recurrent input dominated, causing non-periodic 

network activity (see example unit dynamics in a network with 𝑔𝐹𝐵 = 1, Figure 2A). Given these 
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qualitatively different dynamic regimes, we probed RNNs with varying degrees of feedback in 

terms of their capacity for robust and flexible time-keeping. 

  We first quantified the robustness of the network as a function of feedback by injecting 

10ms perturbation pulses of different magnitudes into all units of the network similar to Laje 

and Buonomano (2013) (Figure 2D, Supplementary Figure 1B). We applied this perturbation 

during the second interval and found that the timing failure rate decreased with increased 

feedback, though not much beyond 𝑔𝐹𝐵 = 1. This implies that networks become more robust as 

the strength of feedback is increased. 

 We next examined how these networks cope with demands for timing flexibility by 

calculating their learning matrices (Figure 2E). We found that learning matrices are sensitive to 

the strength of the feedback, 𝑔𝐹𝐵: at low feedback, off-diagonal elements are small, implying 

relatively low interference between intervals and high specificity. At high feedback, off-diagonal 

elements are almost as large as diagonal elements, implying high interference and low 

specificity. Interestingly, at high feedback, the first interval behaves differently than the others, 

and interferes much less. This is because the network state at the beginning of the first interval, 

set by an external start signal, is different than the network states at the beginning of other 

intervals (Figure 2C), which are determined largely by the feedback.   

 Timing flexibility was quantified by calculating the normalized learning matrix 

elements,�
𝑀𝛽𝛼

𝑀𝛼𝛼
�× 100%, which reflect interference for all pairs of intervals as discussed above. 

Interference went from ~20% to almost 100% as feedback increased (Figure 2F). Taken together, 

our results (Figures 2C-F) show that feedback leads to a trade-off between robustness and 

timing flexibility, with strong feedback making the network more robust to perturbations, but 

less flexible in the timing domain. 
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 Thus far, we have inferred flexibility from gradient vectors in synaptic weight space and 

metrics derived from those. Biological implementations of reinforcement learning, however, 

must find those gradients. To understand how this affects timing flexibility, we simulated the 

process of reinforcement learning by implementing a biologically plausible rule that adaptively 

updates synaptic weights to maximize reward on average  (Ila R. Fiete et al., 2007; Fiete and 

Seung, 2006) (Methods). Noise was added to the network units to ensure trial-by-trial variability 

in interval durations (Methods). Reinforcement was provided to the network in a manner 

analogous to our CAF experiments: if the target interval differed from the running average in the 

desired direction (Methods), reinforcement was delivered at the end of the interval (Methods). 

This learning rule successfully modified the duration of target intervals, with learning rates 

comparable to those seen during CAF (Figures 2G, H). When averaged across multiple runs of 

the simulated learning ‘experiments’, the interference patterns were largely predicted by and 

consistent with the learning matrix calculations (Figures 2I, J). Interference in single 

‘experiments’, however, exceeded the predictions from gradient descent, i.e. the learning 

matrix, by a significant amount (Figure 2K), suggesting that experiment-to-experiment variability 

in changes to non-target intervals is large. The single experiment interference decreased with 

feedback and saturated around 35% (averaged across intervals, networks and simulations, 

Figure 2K, Methods).  

 To assess independence in the temporal domain, we targeted two intervals for 

modification as we had done experimentally in songbirds, with separate reinforcements given 

contingent on the duration of both intervals (Methods). As expected from the learning matrices, 

this resulted in destructive interference, meaning that learning rates for individual intervals 

decreased when they were modified in conjunction with another (Supplementary Figures 1C-E). 

This interference increased with feedback, leading to almost no learning for 𝑔𝐹𝐵 > 2 (Figure x).  
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Time-keeping with dynamic attractor networks  

Recently Laje and Buonomano (2013) proposed a new dynamic regime for RNNs, the dynamic 

attractor, which they showed can serve as a “population clock” suitable for reliably generating 

temporally precise output due to its robustness to perturbations. However, the extent to which 

the dynamic attractor allows flexible motor timing was not considered.  

The dynamic attractor has a similar architecture to the fsRNN, but differs from it in that 

there is no feedback (Figure 3A). The RNN is instead trained using an “innate training” 

procedure (Laje and Buonomano, 2013), which applies the FORCE algorithm to neurons in the 

pattern generator network to stabilize a chaotic trajectory already produced by the network. 

This turns the trajectory into an attractor such that even if the network is perturbed, it returns 

to the original trajectory, yielding a reliable and precise output.  

We trained instantiations of the dynamic attractor network, matched in size and other 

parameters to those of the fsRNNs (Methods), to produce output patterns from which interval 

durations could readily be extracted (Figure 3A, Methods). We found that a large fraction of the 

trained networks successfully produced all 10 intervals within 3 ms of their target duration 

(Figure 3B). In our analysis, we only considered networks that were successful >99% of the time 

(out of 400 simulations, 14 out of 20 trained networks). The robustness of these networks to 

perturbations was comparable to fsRNNs with low feedback (𝑔𝐹𝐵 ≈ 1), i.e. similar perturbation 

magnitudes led to similar failure rates (Figure 3C). These results ensured that our dynamic 

attractor networks were comparable to fsRNNs in reliability and robustness, allowing us to 

compare them in terms of their capacity to support flexible motor timing. 

Learning matrices revealed less interference across intervals (~12%) than the low 

feedback RNNs (~23%)  (Figures 3D,E). In contrast to the fsRNNs trained by the FORCE learning 
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algorithm, the interference between adjacent intervals was, on average, much larger (~35%) 

than the average interference (Figure 3E). This is consistent with the dynamic attractor trying to 

‘return’ to its original pattern, compensating for a decrease/increase in the duration of an 

interval by increasing/decreasing the duration of adjacent intervals. In line with this, the 

learning matrix elements corresponding to adjacent intervals consistently had negative signs 

(Figure 3D). 

 When we modified the duration of targeted intervals with the same reinforcement 

learning algorithm that we used for the fsRNNs (Methods), learning rates were similar to the 

simulated experiments in fsRNNs and comparable to what we observe in songbirds (Figures 3F, 

G). Changes in the duration of target and non-target intervals were, over all, well predicted by 

the learning matrices (Figure 3H), though as with the fsRNNs, interference on average (~20%) 

exceeded what was expected by gradient descent (~12%) (Figure 3I).  

To assess independence, we again targeted two non-adjacent intervals for simultaneous 

modification. Reductions in learning rates were well predicted by the associated learning 

matrices (Supplementary Figure 2). The changes in learning rates were less (~10%) compared to 

low feedback fsRNNs (~20%), consistent with dynamic attractors having less interference on 

average, with the interference affecting primarily intervals adjacent to the target. 

These results suggest that dynamic attractor networks, as in Laje and Buonomano 

(2013), allow for more flexible adjustments to motor timing than fsRNNs. In contrast to the 

fsRNNs, the interference was largely concentrated on nearest neighbor intervals and changes to 

non-targeted intervals were opposite in sign to the target.  

 

Flexible time-keeping in feedforward networks requires unique mapping between synapses 

and interval durations  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2015. ; https://doi.org/10.1101/033472doi: bioRxiv preprint 

https://doi.org/10.1101/033472


15 of 44 

Feedforward networks have been proposed as alternatives to RNNs for generating temporal 

patterns (Buonomano and Laje, 2010; Fiete et al., 2004; Goldman, 2009) (Fig 5A). By organizing 

neurons into layers connected in a feedforward manner, these networks naturally map layer-

specific neural activity to elapsed time (Buonomano and Laje, 2010). In this section, we focus on 

feedforward networks with a single neuron per layer. This simplification allows us to analytically 

study the constraints imposed on feedforward network dynamics by demands for flexible time 

keeping. Using the insight garnered from this, we discuss more realistic feedforward networks in 

the next section. 

 Applying the orthogonality constraint (eq. 1) to such networks revealed that flexible 

time-keeping requires synaptic weights to be mapped to interval durations in a unique one-to-

one manner (Supplementary Note II). Consider an interval 𝐼𝛼, the duration of which depends on 

activity in layers 𝛼 − 1 and 𝛼. In Supplementary Note II we prove that for flexible time-keeping, 

changes to the synaptic weights between layers 𝛼 − 1 and 𝛼  should only affect the duration of 

𝐼𝛼: If 𝑊𝑖𝑗  is not a synapse between neurons in layers 𝛼 − 1 and 𝛼, then 

 .      (5) 

Note that this requirement is naturally satisfied by the synaptic connections between 

downstream layers, as they cannot affect activity in upstream layers. Still, equation (5) 

constrains the types of dynamics a feedforward network can exhibit. As we show (see 

Supplementary Note II), the one-to-one mapping constraint (eq. 5) is satisfied only if synaptic 

weight changes alters the timing of the post-synaptic neuron’s activity, but not its shape or 

magnitude. This ensures that downstream neurons encoding non-target intervals shift their 

activity in time by the same amount, keeping non-target interval durations unchanged, thus 

satisfying equation (5).  
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 To further illustrate the constraints equation (5) imposes on dynamics, we present two 

simple and analytically tractable examples of feedforward networks, and show how they fail or 

succeed in flexible time-keeping. The first example is a chain of simple integrate-and-fire 

neurons. The initial synaptic weights are chosen such that when the first neuron in the chain 

produces a single spike, downstream neurons in the chain propagate activity by producing a 

single spike each. Spike timings mark interval boundaries. This network satisfies the one-to-one 

mapping constraint (eq. 5) for a finite volume of synaptic weights in weight space:  

,    (6) 

where 𝐸(𝑡) is the shape of the excitatory post-synaptic potential, 𝑤𝑙 the weight of the synapse 

between neuron 𝑙 − 1  and 𝑙, 𝜏 the membrane time constant, and 𝑉𝑡ℎ the threshold potential 

for spiking. If 𝑤𝑙 is increased, it will advance the firing of the 𝑙𝑡ℎ neuron, since it will reach 

spiking threshold sooner. However, as long as the neuron produces only one spike, the time it 

takes for the next neuron to spike will not change, keeping all subsequent intervals unchanged. 

Similarly, decreasing 𝑤𝑙 causes the the duration of interval 𝐼𝑙 to increase, without effecting the 

others.  Note that this is exactly the mechanism described in the previous paragraph, as synaptic 

weight changes affect the timing of the post-synaptic response, but not its magnitude or shape. 

Therefore, constraint (eq. 5) is satisfied and the interference matrix is diagonal.  

 There are limitations to how much flexibility a chain of integrate-and-fire neurons can 

exhibit. Flexibility breaks down if the synaptic weights decrease below a point where the 

excitation in the post-synaptic neuron no longer drives it above spiking threshold. In this case 

chain propagation stops. On the other end, if the synaptic weight increases to a point where the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 2, 2015. ; https://doi.org/10.1101/033472doi: bioRxiv preprint 

https://doi.org/10.1101/033472


17 of 44 

post-synaptic neuron produces multiple spikes, then the next interval gets shorter as the boost 

in excitation from the extra spike(s) will cause the next neuron in the chain to reach threshold 

sooner. Therefore, equation (6) holds for a finite range of synaptic weights (see Supplementary 

Note III for the exact expressions). Importantly, this range can be increased by other 

mechanisms that make the shape of the post-synaptic response less sensitive to changes in 

input, such as refractoriness or active burst-generating mechanisms (Long et al., 2010).  

 The second example is a chain of rate neurons with linear activation functions. If the 

first neuron in the chain is excited with a unit pulse, the activity of neurons in the network is 

given by 𝑟𝑖(𝑡) = �∏ 𝑤𝑗𝑖
𝑗=1 � 𝑡𝑛

𝑛!𝜏𝑛
𝑒−𝑡/𝜏 , where 𝜏  is the neural time constant. The upward 

threshold crossings of the instantaneous firing rates mark interval boundaries. Let 𝑡𝑖 be the time 

at which the instantaneous firing rate of the  𝑖𝑡ℎ neuron crosses its threshold, which can be set 

arbitrarily as long as neurons cross the threshold in the order of chain progression. Then,  

.    (7) 

Equation (7) leads to an interesting conclusion: the orthogonality constraint (eq. 5) is satisfied 

only when intervals have equal duration, i.e. when 𝑡𝑘/𝑘𝜏 is constant. Any change from the 

equally spaced interval boundaries would lead to a violation of the constraint in equation (5), 

meaning that such networks cannot implement flexible time-keeping. The reason linear rate 

networks fail is that weight changes do not only shift the postsynaptic response in time, but also 

in magnitude. This leads to interference effects by altering the duration of subsequent intervals. 
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In realistic feedforward networks with multiple spiking neurons per layer, layer-to-layer 

propagation of excitation can occur in asynchronous or synchronous modes (Abeles, 1991). The 

rate-neuron chain operates effectively models the asynchronous mode, where each rate-

neuron’s activity is the population average of the spiking-neurons instantaneous firing rates 

within a layer. In such a network, aggregate activity in each layer depends on the magnitude of 

presynaptic input. Hence synaptic changes in one part of the chain will affect the activity of 

downstream neurons. The synchronous state, as we show next, is closer to the spiking-neuron 

chain example and conforms to the constraints on flexible time-keeper networks.  

 

Synfire chains are flexible time-keepers  

We simulated a chain of integrate-and-burst spiking neurons, modeled on the calcium-spike 

generated bursts observed in the putative time-keeper circuit of the songbird (Long et al., 2010). 

The network had 140 layers with 15 neurons per layer, for a total of 2100 neurons (Figure 4A, 

Methods), and was configured to propagate activity in a synchronous mode, hence a ‘synfire 

chain’ (Figure 4B). Output neurons received input from all neurons in every 14th layer. The first 

spike of each output neuron marked the time of an interval boundary (Figures 4A,B), yielding 10 

intervals of roughly 50 ms average duration. As expected from the analogy with the single 

spiking-neuron chain, the learning matrix for the synfire chain was diagonal, i.e. non-diagonal 

elements were close to zero, with the average non-target interference being 0.3 ± 0.7% (Figure 

4C). 

 Modifying the duration of specific intervals using the same reinforcement learning 

algorithm as for the recurrent networks (Methods), resulted in learning rates comparable to 

what is seen in songbirds (Figure 4D). Changes in the duration of targeted and non-targeted 

intervals were, on average, well predicted by the learning matrices (Figure 4E). The interference 
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was an order of magnitude smaller than in the recurrent networks (~1-2%, Figure 4F), and 

consistent with what we observed in songbirds.  

 To assess independence, we targeted two non-adjacent intervals for simultaneous 

modification. The average reduction in learning rates was small (~3-5%) (Supplementary Figure 

3), again consistent with our observations in songbirds (Figure 1G). These results suggest that 

synfire chains allow for flexible adjustments to motor timing.  

 

Variability in temporal structure 

To further constrain the likely network architecture underlying song timing in zebra finches 

(Long et al., 2010; Yamashita et al., 2008), we analyzed temporal variability of the song 

segments targeted in our CAF paradigm. We found that when segments were shortened, 

variability in their duration decreased, while when the segments were lengthened their duration 

variability increased (Figure 5A). This linear relationship held across multiple days of learning for 

the same target (Pearson’s correlation coefficient, r = 0.98, p = 6.1 x 10-6, n = 9 days; Figure 5B). 

When compared across different targets (CV - normalized variability) in our population of birds, 

the correlation remained high (r = 0.7, p = 6.5 x 10-4; n=20 birds; Figure 5C). 

We proceeded to analyze the extent to which the network models we have considered 

reproduce the linear relationship between mean change in interval duration and its variability. 

For both types of recurrent pattern generator networks, we found the relationship between 

target interval duration and variability to be inconsistent. Different networks produced different 

relations: variability could increase, decrease or have no correlation with interval duration. It 

could even have a convex shape (Figures 5D-E). The synfire chain networks however, showed a 

linear increase in variability as a function of target interval duration (Figure 5F), conforming to 

the experimental observations in songbirds. 
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Discussion 

Modifying the temporal structure of stereotyped motor sequences is an important means of 

adapting motor skills to new task demands (Ali et al., 2013; Fortune et al., 2011; Gentner, 1987; 

Sternberg et al., 1990). Here we combined learning experiments in songbirds with theory and 

network simulations to explore the flexibility with which pattern generator circuits, real and 

simulated, can modify the temporal structure of their outputs. We found that the timing of 

zebra finch song can be altered with a high degree of specificity (Figure 1), and derived formal 

prescriptions for the neural networks that implement such flexible motor timing. 

 We show that gradient vectors in synaptic weight space associated with different 

intervals in a sequence must be orthogonal for the intervals to be independently modifiable. 

Certain feedforward networks satisfy this criterion making them ideally suited as flexible time-

keepers. The general topology of RNNs, however, does not guarantee such flexibility. Whereas 

synapses in feedforward networks naturally map onto specific time points in a sequence, 

synapses in RNNs that contribute to changing one interval are often not unique from those that 

drive changes in other intervals, leading to interference in the time domain.   

 We found that the degree of timing flexibility further depends on the specifics of the 

networks and the properties of its neurons. In RNNs, strong feedback from its output neurons 

back to the RNN, which can increase the network’s robustness to perturbations (Figure 2D), 

makes the network less flexible in the temporal domain (Figure 2F). The dynamic attractor 

network of Laje and Buonomano (2013), which does not require any feedback, shows overall 

less interference (Figure 3). While feedforward networks are structurally better suited, we found 

that flexible time-keeping is compromised in these networks if synaptic changes between 

neurons in successive layers of the netork alter the post-synaptic spiking responses beyond just 
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shifting them in time. In this regime, modifying the strength of a synapse will not only affect the 

interval associated with that synapse, but it will also propagate the effect to downstream 

neurons causing interference in subsequent intervals (Supplementary Notes II and III).  

The range over which feedforward networks operate as flexible time-keepers can be 

extended by making its neurons’ spiking responses less sensitive to the magnitude of 

presynaptic input. Interestingly, projection neurons in HVC, the putative time-keeper circuit in 

songbirds (Hahnloser et al., 2002; Long et al., 2010; Long and Fee, 2008), generate calcium 

bursts that accomplish just that. Modeling a synfire chain network with integrate-and-burst 

neurons, akin to those described in HVC (Long et al., 2010), recapitulated the flexible timing 

observed in songbirds (Figure 4).  

Additional support for the idea that song-timing is governed by a synfire chain-like 

network comes from the relationship between variability in interval duration and changes to its 

mean (Figures 5A-C). Whereas RNNs show no consistent relationship (Figures 5D,E), synfire 

chain predict the linear relationship between variability and mean duration we observe (Figure 

5F). This relationship is a consequence of how interval durations are altered in feedforward 

networks: synaptic strengthening between neurons in subsequent layers makes the signal 

propagate faster, shortening the associated interval. But synaptic strengthening also makes the 

synapse less prone to noise and hence less variable (Garst-Orozco et al., 2015), while weakening 

the synapse has the opposite effects. Whether this characteristic linear relationship between 

interval duration and variability, suggestive of an underlying feedforward network architecture, 

is seen also in other flexible behaviors, such as speech, remains to be investigated (Cai et al., 

2011). 

While both recurrent and feedforward networks have been proposed to underlie the 

temporal structure of birdsong (Hahnloser et al., 2002; Yamashita et al., 2008), our findings 
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together with other recent experimental results (Long et al., 2010; Long and Fee, 2008), suggest 

that the network that controls song timing indeed functions as a synfire chain.   

We also found that trial-and-error learning in RNN networks resulted in more temporal 

interference than predicted by gradient descent (Figures 2K and 3I). This is because individual 

learning experiments do not find the optimal synaptic updates, i.e. those that align with the 

gradient. This solution only emerges after averaging over many experiments. For an intuition as 

to why trial-and-error learning leads to more interference, consider two intervals whose 

gradients are orthogonal, one of which is targeted for modification by trial-and-error learning. 

Because the synaptic updates at the end of an experiment will not exactly point along the target 

interval gradient, the updates will not be orthogonal to the gradient of the non-targeted interval 

and will hence cause a change in its duration too, i.e. interference. 

While we have limited our study to structurally feedforward networks, our results 

generalize also to functionally feedforward networks (Goldman, 2009). In these networks, 

specific modes of network activity (Schur modes), rather than individual neurons, are organized 

into layers and the connectivity matrix is feedforward in the basis of these modes. Our results 

suggests that timing flexibility in such networks would be compromised if synaptic changes alter 

the Schur modes beyond just shifting them in time. Functionally feedforward networks made of 

rate neurons will suffer from this, as do the feedforward networks of rate neurons we discuss 

(equation 7). What is needed for flexible time-keeping is a ‘generalization’ of the synfire chain to 

a functionally feedforward architecture. How such generalizations can be made remains to be 

understood. Asymmetric Hopfield networks (Kleinfeld and Sompolinsky, 1988; Sompolinsky and 

Kanter, 1986) might provide insight into how to build such networks. Even though these 

networks are built with binary neurons, they describe dynamics that evolve from one attractor 

to another in manner that approximates Markovian behavior, and their connectivity has a 
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feedforward structure in the basis of these attractors. We speculate that the attractor states of 

the asymmetric Hopfield networks might be analogous to synchronous spiking of neurons in a 

synfire chain. 

One could also consider hybrid architectures, where separate RNNs encode the 

individual segments of a longer sequence (e.g. song) and are then coupled in a feedforward 

manner. If learning-induced modifications to the feedforward connections only shift the time at 

which the next recurrent network starts its activity, this architecture would also function as a 

temporally flexible pattern generator.   

Modifications to timing could also occur by changing the spatiotemporal profile of the 

inputs to a pattern generator circuit, as opposed to synaptic plasticity within the pattern 

generator as considered here. This amounts to pushing the problem we have discussed 

upstream of the pattern generator, since it is now the network providing the input that must 

ensure that timing is modified flexibly. Interestingly, synfire chains provide a simple way for 

upstream networks to control timing in a flexible manner. Suppose all neurons in a layer gets a 

common tonic input from an upstream area, and these inputs are independent from layer to 

layer. Simply by increasing or decreasing the tonic input a layer gets, without changing its 

temporal profile, the upstream area can make the neurons in the layer fire earlier or faster, 

without interfering with other interval durations. Such control of timing by changes in the 

spatial, but not temporal, profiles of inputs is made possible by the one-to-one mapping of time 

to space a synfire chain provides. 

In this study, we only discussed flexibility in motor timing. However, depending on the 

structure of the network controlling the behavior, temporal changes could also interfere with 

spatial aspects of motor output (Buonomano and Laje, 2010). In the songbird system, for 

example, the output neurons of the time-keeper network, HVC, synapse onto motor cortex 
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analogue neurons that, indirectly, drive vocal muscles (Fee and Scharff, 2010). If modifications 

to the song’s temporal structure change the magnitude of the spiking response in the output 

neurons, this could change not only the timing of muscle activations but also their magnitude. 

Thus separating temporal and spatial aspects of movement control (Ali et al., 2013), requires 

separating the timing of an time-keeper neuron’s firing from its magnitude. In general, neither 

RNNs nor feedforward networks ensure such a separation. However, synfire chains do, 

suggesting another reason why synfire chains might have the ideal topology and dynamics for 

implementing the timing of flexible motor behaviors.  

 Maximal flexibility in modifying motor skills would analogously require the capacity to 

change specific movement features independently, i.e. without having them interfere with other 

aspects of motor output. This is not generally ensured. For example, in a reinforcement learning 

model of a reaching task (Krakauer et al., 2000), interference between different movements 

were seen (Darshan et al., 2014), and this accounted for a significant slowing down of the 

learning process. The methods and formalisms we present for understanding the network 

constrains associated with flexible motor timing can be extended to study networks underlying 

flexibility in the spatial domain. 

 

 

Methods 

Birdsong Experiments 

Animals  
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The care and experimental manipulation of all animals were reviewed and approved by the 

Harvard Institutional Animal Care and Use Committee. Experimental subjects were adult male 

zebra finches (> 90 days post-hatch, n = 24).  

 

Behavioral Experiments 

Experiments to induce adaptive changes to the duration of targeted song segments were done 

as previously described (Ali et al., 2013). Briefly, we computed the duration of the target 

segment in real-time using a static threshold crossing of the smoothed amplitude envelope (5 

ms boxcar filter with 1 ms advancement). If it did not meet the threshold, a burst of white noise 

(80-90dB) was played through a loudspeaker for 50-100 ms with a short latency (~1-3 ms). 

Syllable onsets are associated with rapid increases in sound amplitude, which makes the 

estimates of their timing more robust to noise. Thus, we mostly targeted ‘syllable + gap’ 

segments and estimated the target segments from the onset of the target syllable to the onset 

of the following syllable. In a typical single target experiment, birds underwent 3-5 days of CAF 

to lengthen the target followed immediately by 3-5 days of CAF to shorten the target (for a total 

of 6-10 days for each experimental block) and no CAF for at least 4 days before subsequent 

experiments.  

When comparing learning rates across experiments in which one versus two targets 

were targeted for modification,  we chose targets that were separated by at least 100 ms. We 

first ran the CAF protocol (n = 3 birds) for target 1, then for target 2, before targeting both 

intervals in the same experiment. In another group of birds (n = 3), we counterbalanced the 

order, running the two-target experiments first, followed by single target experiments. Two 

targets in the same song were modified in opposite directions.  
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Birdsong analysis  

All analyses of learning rates and variability of segment durations were done offline on "catch 

trials" during which the white noise feedback was turned off for up to 100 song renditions in the 

morning (AM) and again approximately 8 hours later in the evening (PM). The method for 

obtaining estimates of song segment durations has previously been described (Ali et al., 2013). 

To calculate learning rates, we computed the change in target duration from the start to the end 

of a CAF run (up or down) and divided it by the number of intervening days. We compared both 

morning and afternoon catch trials, averaging across them to obtain a more robust estimate of 

learning rate. Variability was measured as standard deviation (SD) of the distribution of interval 

durations while coefficient of variation (CV), as is standard, was defined as the SD divided by the 

mean duration of the same distribution. We compared variability for the same time period in 

the day in order to rule out potential circadian effects.  

To compare changes in segment durations during CAF to baseline drift, we also analyzed 

the duration of song segments during days (6-10 days) when no CAF was imposed. We 

subtracted the absolute value of this baseline drift from the CAF-induced changes to obtain a 

better estimate of learning. We did the same for non-target interval, discarding the signs for 

each non-target interval change when averaging within a bird to rule out different signs 

negating each other that can potentially mask major non-target effects. 

 

Statistical tests.  

All statistics presented in the main text refer to mean ± SD, while error bars in the figures all 

represent SEM. For the birdsong analysis, we used parametric statistical tests as noted in the 

main text. 
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Computational Methods 

Feedback-stabilized RNNs 

Network setup and training: We simulated recurrent neural networks with 𝑁 = 500 neurons. 

The neural dynamics is described by, 

𝜏
𝑑𝑥𝑖
𝑑𝑡

= −𝑥𝑖 + �𝑊𝑖𝑗

𝑁

𝑗=1

𝑟𝑗(𝑡) + �𝑊𝑖𝑗
In𝑦𝑗(𝑡)

2

𝑗=1

+ 𝑔𝐹𝐵𝑊𝑖
FB𝑧(𝑡) + �𝜏𝜂𝜎𝜂𝑖(𝑡), 

𝑟𝑖(𝑡) = tanh�𝑥𝑖(𝑡)�, 

𝑧(𝑡) = �𝑊𝑖𝑗
Out𝑟𝑗(𝑡),

𝑁

𝑗=1

 

where 𝑖 = 1, … ,𝑁, 𝑟𝑖(𝑡) are the firing rates of the neurons, 𝑦𝑗(𝑡) are the inputs and 𝑧(𝑡) is the 

output. The neural time constant is 𝜏 = 10 ms. Recurrent synaptic connectivity matrix, 𝑾, is 

sparse: 𝑊𝑖𝑗  is 0 with probability 1 − 𝑝, with 𝑝 = 0.1. Non-zero elements of 𝑾 were drawn 

independently from a Gaussian distribution with 0 mean and variance 1.5/(𝑝𝑁), ensuring that 

the network is in the chaotic regime without the feedback from the output (Sompolinsky et al., 

1988). Elements of 𝑾In and 𝑾FB are independently drawn from a uniform distribution between 

-1 and 1. The strength of feedback 𝑔𝐹𝐵 was varied, as discussed in the main text. Unless stated 

otherwise, the networks were simulated with independently injected noise to neurons, 

including during training: 𝜂𝑖(𝑡)  is a zero-mean Gaussian white noise with covariance <

𝜂𝑖(𝑡)𝜂𝑖(𝑡′) >= 𝛿(𝑡 − 𝑡′), 𝜏𝜂 = 10 ms and 𝜎 = 0.01.  

There are two types of inputs: 1) 𝑦1(𝑡) is a unit pulse of duration 50 ms and amplitude 

5. This input was delivered for all simulations. The end of the pulse marked the beginning of the 

first interval.  2) 𝑦2(𝑡) is a unit pulse of duration 10 ms and amplitude 𝑃 that was varied. It 
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arrived 120 ms after the start of the first interval. This input was used only when assessing the 

robustness of the network to perturbations (Figure 2D). 

The desired output was a 530 ms waveform (Supplementary Figure 1A) constructed by:  

(1) adding 10 Gaussian waveforms centered 50 ms apart with widths (standard deviation) 

of 10 ms.  

(2) normalizing the waveform such that its maximum is 1 and minimum is 0.1, and  

(3) shifting it in time such that the first threshold crossing (which is chosen to be 0.68) 

occurred 50 ms after the first interval.  

Hence the desired output marked 10 equally spaced 50 ms intervals.  𝑾In was trained using the 

FORCE algorithm (Sussillo and Abbott, 2009) for 30 training trials. After training, 10 test runs 

were performed and the error between the network output and the desired output (‘test error’) 

calculated for each test run. The test error was defined by 
�∫ �𝑧𝑑𝑒𝑠(𝑡)−𝑧(𝑡)�

2𝑑𝑡530 ms
0

�∫ 𝑧𝑑𝑒𝑠(𝑡)2𝑑𝑡530 ms
0

, where 𝑧𝑑𝑒𝑠(𝑡) 

is the desired output. 

The dynamical equations governing the network dynamics were integrated with a first-

order Euler method. The integration step size was 𝑑𝑡 = 0.1 ms, unless stated otherwise. 

 For Figure 2C, the initial state distance between two intervals was calculated by first 

making two N=500 dimensional vector of the instantaneous firing rates of the network neurons 

at the beginning of the two intervals and then calculating the L2-norm of the difference of these 

vectors. 

 

Learning matrix: To calculate the learning matrices of trained fsRNNs, we calculated the 

gradients of interval durations numerically: one-by-one, each non-zero synaptic weight was 

increased by 𝑑𝑊 = 0.05  and the change in interval durations measured. In these simulations, 
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𝜎 = 0 and 𝑑𝑡 = 0.01 ms. Our results were verified by running the same calculation with varying 

𝑑𝑡 and 𝑑𝑊 parameters for some of the networks. 

 

Reinforcement learning: We implemented a modified version of the synaptic plasticity rule of (I. 

R. Fiete et al., 2007; Fiete and Seung, 2006) to change non-zero elements of 𝑾. Specifically, 

changes to synaptic weight 𝑊𝑖𝑗  is given by 

∆𝑊𝑖𝑗 = 𝛾� 𝑅(𝑡)𝑒𝑖𝑗(𝑡)
𝑡𝐾

0
𝑑𝑡, 

where 𝑡𝐾 is the end of the last interval, 𝛾 = 0.004, 𝑒𝑖𝑗(𝑡) is the eligibility trace and 𝑅(𝑡) is the 

reward.  𝛾 is chosen to match learning rates observed in experiments with songbirds. The 

eligibility trace is given by 

𝑒𝑖𝑗(𝑡) = �
𝑑𝑡′
𝜏𝑒

𝑡

0
 𝑒−(𝑡−𝑡′)/𝜏𝑒𝜂𝑖(𝑡′)𝑟𝑗(𝑡′), 

where 𝜏𝑒 = 35 ms. The reward signal is given by 𝑅(𝑡) = 𝑅𝑡𝑎𝑟1  𝛿�𝑡 − 𝑡𝑡𝑎𝑟1� in a single-target 

interval ‘experiment’ and by 𝑅(𝑡) = 𝑅𝑡𝑎𝑟1  𝛿�𝑡 − 𝑡𝑡𝑎𝑟1� + 𝑅𝑡𝑎𝑟2𝛿�𝑡 − 𝑡𝑡𝑎𝑟2� in a two-target 

intervals ‘experiment’, where 𝑡𝑡𝑎𝑟1  and 𝑡𝑡𝑎𝑟2  are the timings of ends of 1st and 2nd target 

intervals respectively, and 𝑅𝑡𝑎𝑟1  and 𝑅𝑡𝑎𝑟2  are 0-1 rewards contingent on 1st and 2nd target 

intervals respectively. If the interval is not targeted, the reward is always 0. If the interval is 

targeted for modification, the rewards are calculated by comparing the interval duration in the 

current trial, 𝐼𝑡𝑎𝑟, to the running average of the target interval duration, 𝐼𝑡̅𝑎𝑟, which is updated 

in each trial as follows: 𝐼𝑡̅𝑎𝑟 ← 0.995 𝐼𝑡̅𝑎𝑟 + 0.005𝐼𝑡𝑎𝑟. If the interval is targeted for stretching, 

the reward is 1 if 𝐼𝑡𝑎𝑟 > 𝐼𝑡̅𝑎𝑟 , and 0 otherwise. If the interval is targeted for shrinking, the 

reward is 1 if 𝐼𝑡𝑎𝑟 < 𝐼𝑡̅𝑎𝑟, and 0 otherwise. 

Interval duration changes during a reinforcement learning experiment are calculated by 

a running (200 point window) across trials and subtracting from them their baseline values. The 
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baseline values are averages of the interval durations across 400 trials where no reinforcement 

is delivered. 

 

Dynamic Attractor 

Network setup and training: The architecture of this network, the dynamics of its neurons and 

the numerical integration of the dynamical equations, its connectivity and noise parameters, 

and its input and output waveforms are the same as the fsRNNs, except the feedback from the 

output was set to zero, i.e. 𝑔𝐹𝐵 = 0.  

The networks are trained using the ‘innate training’ procedure of (Laje and Buonomano, 

2013), which consists of two stages:  

(1) 70% of non-zero elements of 𝑾 are trained using the FORCE algorithm (30 training 

trials) to stabilize an innately produced trajectory of duration 530 ms. See (Laje and 

Buonomano, 2013) for details.  

(2) 𝑾In is trained using the FORCE algorithm to produce the desired output waveform, 

exactly as in fsRNNs. 

 

Learning matrix: The procedures for calculating the learning matrices were the same as for the 

fsRNNs. 

 

Reinforcement learning: The procedures for reinforcement learning was the same as the fsRNNs, 

except that 𝛾 = 0.004/3. 

 
 
Synfire Chain  
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Network setup and training:  Our synfire chain model consisted of 2,100 integrate-and-burst 

neurons organized into 1400 layers, with 15 neurons in each layer (Figure 4A). Neurons in a 

layer projected to all neurons in the next layer, forming a chain topology. The subthreshold 

membrane potential of the thi  neuron, iV , obeys: 

𝐶
𝑑𝑉𝑖
𝑑𝑡

= −𝑔𝐿(𝑉𝑖 − 𝑉𝐿) + 𝐼𝑠𝑦𝑛,𝑖(𝑡) + 𝐼𝑒𝑥𝑡,𝑖(𝑡) + �𝜏𝜂𝜎𝜂𝑖(𝑡), 

 

where 𝐶 = 1 µF/cm2  is the membrane time constant, 𝑔𝐿 = 0.4 mS/cm2  is the leak 

conductance, 𝑉𝐿 = −60 mV is the leak potential, 𝜂𝑖(𝑡) is a zero-mean Gaussian white noise with 

covariance < 𝜂𝑖(𝑡)𝜂𝑖(𝑡′) >= 𝛿(𝑡 − 𝑡′), 𝜏𝜂 = 10 ms and 𝜎 = 260 nA/cm2. The synaptic input is 

given by 𝐼𝑠𝑦𝑛,𝑖(𝑡) = ∑ 𝑊𝑖𝑗𝑗 ∑ 𝜀�𝑡 − 𝑡𝑗𝑘�𝑘 , where  k
jt denotes the thk  spike of  thj neuron, 

𝜀(𝑡) = Θ(𝑡)𝑒−𝑡/𝜏𝑠  with Θ(𝑡) being the step function and 𝜏𝑠 = 5ms, and 𝑊𝑖𝑗  is 271.8 nA/cm2 

for synapses from a neuron to the neurons in the next layer and 0 otherwise. When the 

membrane potential of the integrate-and-burst neuron reaches threshold, 𝑉𝑡ℎ = −50 mV, the 

neuron emits 4 spikes with 2 ms intervals and the membrane potential is reset to , 𝑉𝑅 =

−55 mV after a refractory period of 4 ms. Chain propagation was started by 𝐼𝑒𝑥𝑡,𝑖(𝑡), a 5 ms 

pulse input with magnitude 6.7 µA/cm2 applied only to the neurons in the first node.  

 To map network dynamics to timing, an integrate-and-fire readout neuron was 

connected to all the neurons in every 14th layer, making a total of 10 readout neurons. Their 

dynamics were governed by the same equations as the chain neurons, except they did not 

receive any external input or noise. They synaptic weights were 266.7 nA/cm2. The first spikes 

of the output neurons were taken to mark interval boundaries. The first interval is taken to start 

with the start of the external pulse. 
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The dynamical equations governing the network dynamics were integrated with a first-

order Euler method. The integration step size was 𝑑𝑡 = 0.1 ms, unless stated otherwise. 

 

Learning matrix: To calculate the learning matrices of the synfire chain, we calculated the 

gradients of interval durations numerically: one-by-one, each non-zero synaptic weight was 

increased by 𝑑𝑊 = 27.18 µA/cm2  and running the change in interval durations were 

measured. In these simulations, 𝜎 = 0 and 𝑑𝑡 = 0.01 ms. Our results were verified by running 

the same calculation with varying 𝑑𝑡 and 𝑑𝑊 parameters for some of the networks. 

 

Reinforcement learning: The procedures for reinforcement learning was the same as the fsRNNs, 

except that 𝛾 = 956.7 nA/cm2 and the eligibility trace is given by 

𝑒𝑖𝑗(𝑡) = �
𝑑𝑡′
𝜏𝑒

𝑡

0
 𝑒−(𝑡−𝑡′)/𝜏𝑒𝜂𝑖(𝑡′)𝑠𝑖𝑗(𝑡′), 

where 𝜏𝑒 = 35 ms, and 𝑠𝑖𝑗(𝑡) = 1
𝜏𝑠
∑ 𝜀�𝑡 − 𝑡𝑗𝑘�𝑘 . The synaptic weights were not allowed to 

increase above 341.8 nA/cm2 nor fall below 216.8 nA/cm2 for stability of chain propagation: 

weights above the upper bound led to explosion, and weights below the lower bound led to 

activity propagation terminating before reaching the end of the chain. 

 
Statistics  

In figures, all reported error bars are standard deviations over different trained networks unless 

stated otherwise.  

 

Figure legends 

Figure 1: Flexible modification of motor timing in songbirds  
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(A) Schematic showing different ways in which the temporal structure of a motor sequence 

(made from motor segments m1-m6) can change. (Left). Global change – duration of all 

segments change together. (Middle) Interference – Modifications to the duration of one 

segment (m3) interferes with (i.e. changes) the duration of others. (Right) Specificity – each 

segment can change independently of others. (B) (Top) Spectrogram of a zebra finch song, 

divided into four segments. One of these (‘target’) was targeted for lengthening/shortening by 

delivering aversive noise bursts after the end of the target segment when its duration was 

below/above a threshold (Bottom, see Methods). (C) Duration distributions for the segments in 

(B) when the target segment was lengthened by our CAF paradigm. (D) Summary statistics 

(mean ± SEM) of the daily changes to the duration of target and non-target segments (N=18 

targeted segments and n=120 non-targeted segments in 18 birds). Changes in target intervals 

differed significantly from zero (p = 1.6 x 10-6, one-sample t-test), whereas non-targets did not 

(p=0.96, one-sample t-test). (E) Spectrogram of a song for which two segments were targeted 

for modification, either alone or in conjunction with each other. (F) Learning trajectories (mean 

± SEM) during CAF experiments designed to change the duration of the targets in (E) either 

alone or together. Arrows denote the direction in which the duration of the targets were 

induced to change by the CAF paradigm. (G) Summary statistics (mean ± SEM)  of the daily 

changes to the duration of targeted segments, as a function of whether they were targeted 

alone or together with another segment (n=12 segments in 6 birds, p = 0.54, paired-samples t-

test).  

 

Figure 2: Feedback-stabilized RNNs exhibit a robustness-flexibility trade-off 

(A) (Left) Schematic showing the network architecture. Trained connections are marked in red. 

(Middle, right) Firing rates of example neurons pattern generator networks with different 
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feedback strengths, and the output of those networks. (B) Training performance (test error, 

Methods) and timing failure rate, i.e. the frequency with which the network fails to produce all 

10 intervals within 6% of their target durations (calculated for 400 trials), shown as a function of 

feedback strength. (C) The distance between two firing rate vectors, each constructed from the 

instantaneous firing rates of all neurons in the network at the beginning of an interval  

(Methods), averaged over all interval pairs for intervals 3 to 10, 20 trained fsRNNs and 100 runs 

over each fsRNN. A small distance means that the firing rate vectors are more similar to each 

other at the beginning of intervals, signaling periodic activity. (D) Timing failure rate in response 

to a perturbation pulse (P) of varying magnitudes delivered to the network, plotted as a function 

of the feedback strength. Error bars show standard error across 20 trained fsRNNs. (E) Example 

learning matrices for fsRNNS with two different feedback strengths, one for a value where the 

network activity is periodic (gFB=2) and one not periodic (gFB= 1). (F) Relative change in the 

duration of non-targeted intervals as a function of the change in targeted intervals (‘Average 

Interference’), calculated from the off-diagonal elements of the learning matrix. The plot shows 

averages over all pairings of intervals 2 to 10 for 20 trained fsRNNs at each feedback strength. 

(G) Examples of a reinforcement learning ‘experiment’ that targeted interval 3 for lengthening.  

Shown is the effect on all intervals after for 3000 trials for fsRNN with different feedback 

strengths (Methods). (H) Learning rate, defined as the absolute value of the change in the target 

interval duration after 1000 trials, averaged over 20 learning ‘experiments’ in 20 trained 

networks.  (I) Interval duration changes (Methods) after 1000 trials for the ‘experiments’ in G, 

averaged across 20 different simulations, regressed to the elements of the 3rd row (i.e. those 

associated with the target interval) of the networks’ learning matrices. Error bars show standard 

error across 20 simulations. (J) The analysis of H applied to 100 trained fsRNNs (20 for each of 

gFB=0.5,1,1.5,2,3), 2 times each, one for stretching the 3rd interval and one for shrinking the 3rd 
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interval. Plotted is the median correlation coefficients over the 200 regressions performed. Error 

bars denote 25th and 75th percentiles respectively. (K)  Change in non-targeted intervals in the 

first 1000 trials of reinforcement learning simulations, relative to the change in the target 

interval (interference).  Average over all non-target intervals and 20 simulations across 20 

trained fsRNNs as a function of feedback strength. The blue portion of the bars show the 

average interference calculated from the learning matrix (as in H).  

 

Figure 3: Flexible timing with dynamic attractor networks  

(A) Schematic showing the network architecture. Recurrent connections as well as the 

connections to the output neuron are trained. On the right are the activities of example neurons 

from the pattern generator network and the output neuron. (B) Box plots of training (test error, 

Methods) and timing (timing failure rate out of 400 trials) performances of 20 trained networks. 

Whiskers show maxima and minima. 14 out of 20 networks were successfully trained and used 

for the subsequent analysis in this figure. (C) Timing failure rates (out of 400 trials) of the 

network when perturbed by a pulse input of varying magnitude. (D) Example learning matrix. (E) 

Relative change in the duration of non-targeted intervals as a function of the change in targeted 

intervals (‘Average Interference’), calculated from the off-diagonal elements of the learning 

matrix, as in Figure 2F except that the 1st interval is also taken into account. The average 

interference is compared to the interference in intervals adjacent to the target, and for fsRNNs 

with gFB=1. (F) Example of a reinforcement learning ‘experiment’ that targeted interval 3 for 

lengthening.  Shown is the effect on all intervals after for 3000 trials. (G) Learning rate averaged 

across networks as in Figure 2I.  (H) Median correlation coefficient between the interval changes 

calculated from the learning matrix and from the reinforcement learning simulations (as in 

Figure 2I). Error bars denote 25th and 75th percentiles respectively. (I) Average interference in 
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reinforcement learning simulations as in Figure 2K. The blue portion of the bars show the 

average interference calculated from the learning matrix  

 

Figure 4: Flexible timing with synfire chains 

(A) Schematic showing the network architecture and interval (I) time readout. (B) Example run 

of the synfire chain. Only one neuron per layer is shown. On bottom is the activity of the read-

out neurons, defining the interval boundaries. (C) The learning matrix of the synfire chain. (D) 

Examples of a reinforcement learning ‘experiment’ that targeted interval 5 for lengthening.  

Shown is the effect on all intervals after for 5000 trials. (E) Correlation coefficient between the 

interval changes calculated from the learning matrix and from the reinforcement learning 

simulations (as in Figure 2I). (F) Average interference per interval in reinforcement learning 

simulations, averaged across 20 learning simulations. Error bar shows standard deviation across 

simulations. 

 

Figure 5: Changes in temporal variability with learning 

(A) (Top) Spectrogram of a zebra finch song showing the target segment. (Middle) Histograms of 

mean durations of a target segment after it had been shortened and lengthened respectively 

using our CAF paradigm. Mean at baseline denoted by the dotted line. (B) Scatterplot of 

variability (standard deviation) as a function of mean segment duration for the same example as 

(A) across 9 days of CAF. Black line is the linear fit to the data. (C) Scatterplot of percent change 

in normalized variability (CV) as a function of percent change in mean segment duration (both 

relative to baseline before CAF). Black line is the linear fit to the data. (D) Standard deviation of 

target duration as a function of the target’s mean duration for fsRNNs with gFB=1. Target 

intervals were lengthened and shortened from baseline for 3000 trials each. Data from 200 
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‘catch’ (i.e. non-reinforced) trials interspersed between every 1000 trials, averaged across 20 

simulations. Example from four fsRNNs are shown. Error bars are standard deviations across 

simulations.  (Bottom) Box plot of all correlation coefficients between interval variability and 

interval duration, across 20 networks, 2 target intervals each (3rd and 8th). (E) Same as D for 

dynamic attractor networks. Box plot of all correlation coefficients across 14 networks, 1 target 

interval each (3rd). (F)  Same as D, but for synfire chains. Data from 200 ‘catch’ trials interspersed 

between every 1000 trials, averaged across 20 simulations. Target interval was the 3rd.  

 

Supplementary Figure 1: Flexibility and robustness of fsRNNs 

(A) The signal that the fsRNN and dynamic attractor networks were trained to produce. (B) An 

example of what happens when the network is perturbed, and fails to produce the right timing 

interval. Black shows a successful output when no perturbation is delivered. Dashed blue line 

shows the output when perturbation was delivered to the network during the time denoted by 

the brown bar. Even though the output crossed the threshold sufficiently many times, the 

interval durations were not within the desired 6% of their targets. (C) Example reinforcement 

learning simulations for a two-target ‘experiments’ run for 3000 trials in a fsRNN, where the 3rd  

and 8th interval was targeted for lengthening and shortening respectively. Shown for different 

feedback strengths. (D) Change in average learning rates of the 3rd and 8th intervals (across 20 

simulations) when they are targeted together relative to when they are targeted alone. For each 

network, average learning rates (across 20 simulations) were calculated (as for Figure 2J) for 

both intervals in single-target and two-target ‘experiments’. Error bars are standard deviations 

across 20 networks. (E) Reduction in learning rate is well predicted by the learning matrices. 

Each dot represents a network, pooled over 100 trained fsRNNs (20 for each of 
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gFB=0.5,1,1.5,2,3), 2 intervals each (3rd and 8th). Reduction in average learning rate (across 20 

simulations) plotted against 
𝑀𝜇𝜈

𝑀𝜇𝜇
× 100% (see equation 4 of main text) for that network. 

 

Supplementary Figure 2: Two-target reinforcement learning in a dynamic attractor 

(A) Example reinforcement learning simulations for a two-target ‘experiments’ run for 3000 

trials in a dynamic attractor network, where the 3rd  and 8th interval was targeted for 

lengthening and shortening respectively. (B) Change in average learning rates of the 3rd and 8th 

intervals (across 20 simulations) when they are targeted together relative to when they are 

targeted alone. Error bars are standard deviations across 14 networks. (C) Reduction in learning 

rate is well predicted by the learning matrices. Each dot represents a network, pooled over 100 

trained networks, 2 intervals each (3rd and 8th). Reduction in average learning rate (across 20 

simulations) plotted against 
𝑀𝜇𝜈

𝑀𝜇𝜇
× 100% (see equation 4 of main text) for that network. 

 

Supplementary Figure 3: Two-target reinforcement learning in a synfire chain 

 (A) Example reinforcement learning ‘experiment’ for two-target ‘experiments’ run for 5000 

trials in a synfire chain. 5th interval is lengthened and the 8th interval is shortened. (B) Change in 

average learning rates of the 5th and 8th intervals (across 20 simulations) when they are targeted 

together relative to when they are targeted alone. Error bars are standard deviations across 20 

simulations. For comparison, learning rate changes for the fsRNNs and the dynamic attractor are 

also provided. 
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1 Supplementary Note I: Flexible modifications to tem-

poral patterns by changes in synaptic weights

Here we lay out the general conditions under which a pattern generator network can perform
specific and independent modifications to the temporal structure of its output by changes
to its synaptic weights.

We consider a pattern generator network with N neurons. Let Wij be the strength of
synaptic connections from jth to ith neuron. The network produces K intervals, Iα, with
α = 1, . . . , K. These intervals are functions of the synaptic connectivity matrix, a fact which
we denote by the notation Iα(W).

1.1 Specific trajectories in synaptic weight space

Specificity of temporal modifications requires the existence of trajectories in synaptic weight
space along which only a single interval monotonically changes. Suppose an interval β is to
be modified specifically. Is there a trajectory, Wβ(l), in synaptic weight space along which
only interval β changes monotonically? We choose our parametrization such that l = 0 is
the original network’s synaptic weight matrix and l > 0 parametrizes a slowing down of the
interval, without loss of generality. We assume that along these trajectories no new synapses
are formed, i.e. synapses with zero weight remain with weight zero. Then, for specificity,
along Wβ(l), the following conditions must be satisfied

Iα(Wβ(l)) = Iα(Wβ(0)) if α 6= β,

Iβ(Wβ(l)) is an arbitrary monotonically increasing function of l. (S.1)

The temporal range, that is the maximum and minimum values of Iα(Wβ(l)), for which (S.1)
must hold depends on the needs of the organism and the behavior that the pattern generator
is governing. Complemented with such a range, Eq. (S.1) is the most general statement of
specificity.

What can be learned from such a statement? Taking a derivative of both sides and
applying the chain rule, one gets:

∂Iα(W+)

∂W+

∣∣∣∣
W+=Wβ

+(l)

· dW
β
+(l)

dl
= δαβ

dIββ (l)

dl
, (S.2)

where W+ refers to a vector composed from the non-zero elements of W, and δαβ is the
Kronecker delta. Eq. (S.2) implies that along a specific trajectory, gradients of non-target
interval durations with respect to synpatic weights must be orthogonal to the tangent vector
of the trajectory.

Eq. (S.2) defines a non-linear system of K ordinary differential equations (one for each
α), with initial conditions Wβ(0) = W for S unknowns, S being the number of non-zero
elements of W. The right hand sides of these equations are all zero except when α = β, for
which the equation is:

∂Iα(W+)

∂W+

∣∣∣∣
W+=Wβ

+(l)

· dW
β
+(l)

dl
=
dIββ (l)

dl
. (S.3)
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Let us remember that Iβ(Wβ(l)) is an arbitrary monotonically increasing function of l. We
can deal with this degree of freedom by reparametrizing l. We define

l̄(l) := Iβ(Wβ(l)). (S.4)

In terms of this new parameter, (S.2) becomes,

∂Iα(W+)

∂W+

∣∣∣∣
W+=Wβ

+(l̄)

· dW
β
+(l̄)

dl̄
= δαβ. (S.5)

Hence, we are left with K equation for S unknown functions with no extra degree of freedom.
In ordinary situations, K << S and hence these equations are underdetermined and solutions
to them can be found, provided that the dependence of interval durations on synaptic weights
are “well-behaved” (in a sense that will be made precise in the next paragraph) for a range
of interval durations that are required by the behavioral task at hand. This argument can be
separately repeated for all the intervals that the pattern generator produces. Then, requiring
the existence of specific trajectories starting from the original network state does not restrict
the network architecture.

In our discussion, we implicitly assumed that the pattern generator circuit is well-
behaved, meaning that the following two cases are excluded:

1. ∂Iα(W+)
∂W+

= 0. We exclude this case because the pattern generator doesn’t allow local

changes to αth interval and hence is not flexible.

2. Iα(W+) is not differentiable. This situation could occur, for example, if the network
is poised at a bifurcation point. We exclude this case, because such networks will not
exhibit the robustness required of a pattern generator circuit.

Until now, we have only considered specific changes to intervals starting from the original
network connectivity. What if a specific change to another interval is required after a specific
change to the network has already been made? Such a scenario can be generalized to task-
specific combinations of intervals and interval changes, each of which would add constraints
of the form (S.2), starting from different network connectivities. In this paper, we only focus
on changes from the original network connectivity.

1.2 Independent trajectories in synaptic weight space

Next, we discuss independent trajectories. These are trajectories along which multiple inter-
vals can change simultaneously without interference, by which we mean that their rates of
change do not suffer compared to how they would change on their own. Suppose β1, . . . , βr
are the intervals targeted for change. Is there an independent trajectory, Wβ1,...,βr(l), in
synaptic weight space for changing the duration of these intervals?

To quantify interference, we need to compare the rate of interval changes along Wβ1,...,βr(l)
to the rate interval changes along specific trajectories. Therefore, to have a well-defined
problem we need to assume the existence of specific trajectories (see above). Then, we can
state the condition for independence as:

Iα(Wβ1,...,βr(l)) = Iα(Wβ1(l)) + . . .+ Iα(Wβr(l)), (S.6)

3
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where Iα(Wβi(l)) are specific trajectories. The parametrization of specific trajectories can
be chosen freely for the current discussion, but in a biological setting that will be discussed
in the next section, l relates to the learning rate during single- and multiple-target learning.
Taking derivatives with respect to l and applying the chain rule on both sides gives:

∂Iα(W)

∂W+

∣∣∣∣
W=Wβ1,...,βr (l)

·dW
β1,...,βr
+ (l)

dl
=
∑
i

∂Iα(W)

∂W+

∣∣∣∣
W=Wβi (l)

· dW
βi
+ (l)

dl
. (S.7)

Note that the terms in the summation of the right hand side are zero except when α =
βi, due to specificity. Hence, independent paths must be orthogonal to gradients of non-
target intervals. For each β1, . . . , βr combination, this amounts to K equations, one for each
interval α, for S unknowns. In ordinary situations, K << S and hence these equations
are underdetermined and solutions to them can be found, provided that the dependence of
interval durations on synaptic weights are “well-behaved” for the required range of interval
durations. This argument can be separately repeated for all possible independent interval
combinations. Then, the requirement for independence of trajectories starting from the
original network state would not restrict network architecture.

Once a set of specific paths are found, locally (meaning around l = 0), a linear combina-
tion of specific paths gives an independent path. To be more precise,

Wβ1,...,βr(ε) = W + ε
∑
i

dWβi(l)

dl

∣∣∣∣
l=0

+O(ε2), (S.8)

where ε is a small parameter, solves (S.7) to order ε2. There could, however, exist other
independent paths.

The existence of specific and independent trajectories in synaptic weight space is a min-
imum and necessary requirement for flexible time-keeping, but such paths must be found
using biologically plausible learning rules, and we discuss them next.

1.3 Biologically plausible reinforcement learning of specific and
independent temporal changes

Until now we discussed the existence of trajectories in weight space along which modification
to individual intervals is specific and independent. In reality, such trajectories have to be
traced by synaptic plasticity during a trial-and-error learning. The information available at
each synapse is very restricted: a signal about the produced target interval as well as knowl-
edge about the synaptic weight of the synapse and the states of the pre- and postsynaptic
neurons. This poses a serious problem for biologically plausible specific and independent
modifications to timing. What neurons as a population can do, instead of solving (S.2) and
(S.7), is to learn to increase reward. In fact, there are many biologically plausible reinforce-
ment learning models in the literature, e.g. [1, 2, 3], which suggest plasticity rules that find
the direction of maximum reward increase in synaptic weight space when averaged across
many trials, i.e. the ‘gradient’.

Leaving the trial-and-error aspect of learning aside (it is addressed in the main paper),
let us for a moment assume that the network has calculated a trajectory that is a gradient
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ascent on reward, Rβ = Rβ(Iβ) (β is the target interval):

dWβ
+

dl
= η

∂Rβ

∂W+

= η
dRβ

dIβ

∂Iβ
∂W+

, (S.9)

where η is a positive parameter that governs the rate of change. Then, using (S.2) and
(S.9), we deduce that biologically plausible specific modification of interval duration requires
orthogonality:

dRβ

dPβ

∂Iβ
∂W+

· ∂Iα
∂W+

=
dRβ

dPβ
Mβα = Dβα(l), (S.10)

where Dβα(l) is diagonal with positive diagonals, M is the learning matrix defined in the
main text, and Wβ(l) is now the trajectory obtained by the reinforcement learning algorithm.
Note that this relation has to hold at each point along the trajectory. Equation (S.10) is a
design constraint on a pattern generator network and in the main text we check whether the
right hand side is indeed a diagonal function for various possible pattern generator networks
(Figs. 2D, 3D and 4C).

Simultaneous and independent modifications to multiple intervals require multiple rein-
forcement signals delivered to the network. Here we assume that the combined effect of such
reinforcement is given by an addition of each reinforcement. Borrowing notation from the
previous section:

Rβ1,...,βr = Rβ1 + . . .+Rβr . (S.11)

With this assumption, specificity in a reinforcement learning experiment would imply inde-
pendence, as, locally, independent paths will be linear combinations of specific paths, as in
(S.8).
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2 Supplementary Note II: Flexible time-keeping in feed-

forward networks require a one-to-one mapping be-

tween synapses and the interval durations they affect

Here we discuss flexible time-keeping in a pattern generator network with feedforward archi-
tecture, making the following general assumptions:

1. The mapping between network activity and time is layer specific: the kth time point is
a function of only the activity of neurons in the kth layer.

2. Time increases with progression through the feedforward network. Activity in each
layer codes for the start of an interval and end of the previous one.

3. Only the initial layer, which we call 0th layer, receives external input.

For example, mean spike times of neurons in the kth layer could code for the beginning of
the kth interval and the end of the (k − 1)th interval. These very generic assumptions are
sufficient to prove that in a feedforward network, specificity and independence of gradient
ascent reinforcement learning is possible only if the duration of the kth interval depends only
on the synaptic weights between kth and (k − 1)th layers.

2.1 The case of a single neuron per layer

For simplicity, let’s first assume a single neuron per layer. We will discuss the generalization
of our results to multiple neurons per layer in the next section. We denote the activity of the
ith neuron by ri(t), which can be spikes or firing rate. The feedforward architecture makes
ri(t) a function of the activity of the presynaptic neuron ri−1(t) and the connection between
them wi:

ri(t) = ri (wi, ri−1(t)) . (S.12)

Interval boundaries, on the other hand, depend on the activity of neurons

ti = ti (ri(t)) = ti (wi, ri−1(t)) , (S.13)

where ti denotes the end of ith interval.

Claim 1: In a feedforward network with a single neuron per layer, under the assumptions
listed above, flexible time-keeping requires that the kth interval, Ik = tk − tk−1 depends only
on wk, i.e.

∂Ik
∂wl

= 0 if k 6= l,

∂Ik
∂wl
6= 0 if k = l. (S.14)

Hence, synaptic weights affect only specific interval durations.
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Proof. We will prove this claim using strong induction, but, first note that the statement
always holds for l > k as activity of postsynaptic neurons do not affect activity of presynaptic
neurons in a chain,

∂tk
∂wl

= 0, w > l. (S.15)

We prove the claim for the first interval as the base case. Note that,

∂I1

∂w1

=
∂t1
∂w1

− ∂t0
∂w1

,

∂I1

∂wi
= 0, i > 1. (S.16)

Flexible learning requires the learning matrix to be diagonal with positive diagonal elements
(see (S.10)). The first row and column of the matrix are given by:

M1,i = Mi,1 =
∑
j

∂I1

∂wj

∂Ii
∂wj

=
∂I1

∂w1

∂Ii
∂w1

∝ δi1. (S.17)

Hence, flexible learning requires

∂Ii
∂w1

∝ δi1. (S.18)

Now the (strong) induction step: Assume that the claim holds for k = 1 to k = p − 1.
We prove that this implies that the claim holds for k = p. Note that,

∂Ip
∂wl

=


∂tp
∂wl
− ∂tp−1

∂wl
l < p

∂tp
∂wp

l = p

0 l > p

(S.19)

Flexible learning requires learning matrix to be diagonal with positive diagonal elements.
The pth row and column of the matrix are given by:

Mp,i = Mi,p =
∑
j

∂Ip
∂wj

∂Ii
∂wj

∝ δip. (S.20)

Looking at the right hand side, we note that the terms in the summation for which j >
min(i, p) are 0 by (S.15) and for which j < i are 0 by our induction assumption. Then, the
only possibly non-zero term in the summation is:

Mp,i = Mi,p =
∂Ip
∂wi

∂Ii
∂wi
∝ δip. (S.21)

Since ∂Ii
∂wi
6= 0, flexible learning requires

∂Ip
∂wi
∝ δip. (S.22)
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Next, we present a sufficiency condition for a feedforward network to exhibit flexible
timing.

Claim 2: Suppose all neurons’ activities are time-invariant with respect to their pre-synaptic
partners, i.e. if the pre-synaptic neuron activity is shifted in time by t′, the result is a
temporal shift in the post-synaptic neuron’s activity by t′. Then, a feedforward network
exhibits flexible time-keeping if changing a weight wk leads to a time-shift only of the kth

neuron activity.

Proof. If wk perturbation leads to a time-shift of kth neuron activity, all later neuron activities
are time shifted by the same amount by time-invariance property, and therefore no other
interval than Ik is affected.

2.2 The case of multiple neurons per layer

The argument presented above applied to having a single neuron per layer. The argument
can be extended to multiple neurons per layer with extra assumptions. We chose a notation
that makes the layered structure of the feedforward network explicit. Let’s denote by rk,i(t)
to be the activity of the ith neuron in the kth layer and wk,ij to be the synaptic weight from
the jth neuron in the (k− 1)th layer to the ith neuron in the kth layer. We assume that there
are nk neurons in each layer. The feedforward architecture makes rk,i(t) to be a function of
the activity of the presynaptic neurons rk−1,j(t) and the synapses between them wk,ij:

rk,i(t) = rk,i
(
wk,i1, . . . , wk,ink−1

, rk−1,1(t), . . . , rk−1,nk−1
(t)
)
. (S.23)

Interval boundaries, on the other hand, depend on the activity of neurons

tk = tk (rk,i(t), . . . , rk,nk(t))

= ti
(
wk,i1, . . . , wk,ink−1

, rk−1,1(t), . . . , rk−1,nk−1
(t)
)
. (S.24)

Claim 3: In a feedforward network with a multiple neurons per layer, under the assumptions
listed above, it is sufficient for flexible time-keeping that kth interval, Ik = tk − tk−1 depends
only on wk,ij, i.e.

∂Ik
∂wl,ij

= 0 if k 6= l,

∂Ik
∂wl,ij

6= 0 if k = l for at least one {i, j} pair. (S.25)

If we further have the extra condition that intervals cannot increase with weight increases,
i.e. ∂Ik

∂wl,ij
≤ 0, than (S.25) is both necessary and sufficient for flexible time-keeping.

Proof. We will prove this claim using strong induction. We note that the claim already holds
for l > k as activity of postsynaptic neurons do not affect activity of presynaptic neurons in
a chain,

∂tk
∂wl,ij

= 0, w > l. (S.26)
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We prove the claim for the first interval as the base case. Note that,

∂I1

∂w1,ij

=
∂t1
∂w1,ij

− ∂t0
∂w1,ij

=
∂t1
∂w1,ij

,

∂I1

∂wl,ij
= 0, l > 1. (S.27)

Flexible learning requires learning matrix to be diagonal with positive diagonal elements (see
(S.10)). The first row and column of the matrix are given by:

M1,l = Ml,1 =
∑
m

∑
i

∑
j

∂I1

∂wm,ij

∂Il
∂wm,ij

=
∑
i

∑
j

∂I1

∂w1,ij

∂Il
∂w1,ij

. (S.28)

If (S.25) holds, then

M1,l = Ml,1 ∝ δl1, (S.29)

ensuring flexible learning. Further, if intervals cannot increase with weight increases, then
(S.25) for k = 1 is necessary for flexible learning.

Now the (strong) induction step: Assume that the claim 3 holds for k = 1 to k = p− 1.
We prove that this implies that the claim holds for k = p. Note that,

∂Ip
∂wl,ij

=


∂tp
∂wl,ij

− ∂tp−1

∂wl,ij
l < p

∂tp
∂wp,ij

l = p

0 l > p

(S.30)

Flexible learning requires learning matrix to be diagonal with positive diagonal elements.
The pth row and column of the matrix are given by:

Mp,l = Ml,p =
∑
m

∑
i

∑
j

∂Ip
∂wm,ij

∂Il
∂wm,ij

(S.31)

Looking at the right hand side, we note that the terms in the summation for which m >
min(l, p) are 0 by (S.26) and for which m < l are 0 by our induction assumption. Then, the
only possibly non-zero terms in the summation are:

Mp,l = Ml,p =
∑
i

∑
j

∂Ip
∂wl,ij

∂Il
∂wl,ij

. (S.32)

If (S.25) holds, then

Ml,p = Mp,l ∝ δpl, (S.33)

ensuring flexible learning. Further, if intervals cannot increase with weight increases, then
(S.25) for k = p is necessary for flexible learning.
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3 Supplementary Note III: Flexibility range of a chain

of integrate-and-fire neurons

Here we present a calculation of the range of synaptic weight strengths within which a chain
of integrate-and-fire neurons exhibit flexible timing. Integrate-and-fire neurons are arranged
in a chain with a single neuron per layer, and the first spikes of neurons mark interval
boundaries. The sub-threshold dynamics of neuron k is given by:

τ
dVk
dt

= −Vk + wk
∑
j

E(t− tjk−1). (S.34)

E(t) is the excitatory post-synaptic current (EPSC) which is 0 for t < 0 and normalized to
unit area,

∫∞
0
dtE(t) = 1 , tjk−1 is the jth spike of the (k − 1)th neuron. When the neuron

reaches threshold, which we choose to be 1, the neuron produces a spike and the membrane
potential is reset to 0. We assume that the neuron is at rest potential, 0, when the first pre-
synaptic spike arrives. The membrane potential of the neuron after the first pre-synaptic
spike and before its own spike is given by:

Vk(t+ tk−1) = wk

∫ t

0

dt′

τ
e−(t−t′)/τE(t′). (S.35)

We will work in the synaptic weight regime where the activity propagates in the chain with
each neuron producing a single spike, therefore we will omit the j index in the rest of this
section.

The minimum synaptic weight strength for producing a spike happens when the maximum
value of the membrane potential hits the spiking threshold. Taking a derivative of the
membrane potential and setting it to zero, we get an implicit equation for the time of the
maximum potential, tmax:

E(tmax) =

∫ tmax

0

dt′

τ
e−(tmax−t′)/τE(t′). (S.36)

Then, the minimum synaptic weight at which a spike is produced is given by:

wk,min =
1∫ tmax

0
dt′

τ
e−(tmax−t′)/τE(t′)

. (S.37)

As an example, assume that E(t) = Θ(t) e−t/τs/τs, where Θ(t) is the step function and τs is

the synaptic time constant. When τs 6= τ , tmax = ττs ln(τ/τs)
τ−τs and wk,min = τs

(
τs
τ

) τ
τs−τ . When

τs = τ , tmax = τ and wk,min = τe. wk,min monotonically increases with τs, starting with
wk,min = 0 for τs = 0, which is the delta-function EPSC limit. The intuition behind this
behavior is that as τs get bigger, less of the EPSC falls in the time window of integration
(∼ τ) and the rise in membrane potential becomes smaller. To compensate for this effect,
the synaptic weight has to get stronger.

The maximum synaptic weight strength for flexible timing depends on the configuration
of intervals in the network. One can increase the synaptic weight until a second postsynaptic
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spike is generated without any effect on the durations of downstream intervals. The second
spike, however, increases the excitation in the (k + 1)th neuron, and may lead to earlier
spiking of the (k + 1)th. If the (k + 1)th neuron spiked before the second spike of the kth

neuron, there won’t be a change in the duration of the (k+1)th interval, however, downstream
intervals may become affected by the second volley of spikes that propagate down the chain.
Therefore, a lower bound for the maximum synaptic weight strength for flexibility, is the
strength at which a second spike is generated by the kth neuron. The membrane potential
after the first spike is

Vk(t+ tk) = wk

∫ t

tk(wk)

dt′

τ
e−(t−t′)/τE(t′). (S.38)

Note that tk is implicitly a function of wk as synaptic weight strength changes the timing
of the first spike. The maximum of membrane potential after the first spike is given by the
solution to

E(t̄max) =

∫ t̄max

tk(wk)

dt′

τ
e−(t̄max−t′)/τE(t′). (S.39)

The lower bound on maximum weight is when the membrane potential reaches spiking thresh-
old at t = t̄max:

wk,max =
1∫ t̄max

tk(wk)
dt′

τ
e−(t̄max−t′)/τE(t′)

. (S.40)

A refractory period, or a bursting mechanism such as generated by calcium spikes that
extends through the timing of a possible second spike/burst will increase the lower bound
on maximum synaptic weight.
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