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ABSTRACT Inferring and understanding changes in effective population size over time is a major challenge for
population genetics. Here we investigate some theoretical properties of random mating populations with varying size
over time. In particular, we present an exact method to compute the population size as a function of time using the
distributions of coalescent-times of samples of any size. This result reduces the problem of population size inference
to a problem of estimating coalescent-time distributions. Using tree inference algorithms and genetic data, we can
investigate the effects of a range of conditions associated with real data, for instance finite number of loci, sample size,
mutation rate and presence of cryptic recombination. We show that our method requires at least a modest number of
loci (10,000 or more) and that increasing the sample size from 2 to 10 greatly improves the inference whereas further
increase in sample size only results in a modest improvement, even under as scenario of exponential growth. We also
show that small amounts of recombination can lead to biased population size reconstruction when unaccounted for.
The approach can handle large sample sizes and the computations are fast. We apply our method on human genomes
from 4 populations and reconstruct population size profiles that are coherent with previous knowledge, including
the Out-of-Africa bottleneck. Additionally, a potential difference in population size between African and non-African
populations as early as 400 thousand years ago is uncovered.
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Natural populations vary in size over time, sometimes
drastically, like the bottleneck caused by the domestication

of the dog (Lindblad-Toh et al. 2005) or the explosive growth
of human populations in the past 2000 years (Cohen 1995).
Inferring the demographic history of populations has various
applications: it may lead to a better understanding of the
impacts of major ecological or historical events (glacial peri-
ods (Lahr and Foley 2001; Palkopoulou et al. 2013), agricultural
shifts or technological advances (Boserup 1981) and population
admixture (Tishkoff et al. 2009; Schlebusch et al. 2012)). The
demographic history should also be accounted for in studies of
natural selection or in genome-wide association studies to avoid
spurious results (Nielsen 2005; Marchini et al. 2004).
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The particular problem of estimating past effective pop-
ulation size has gained considerable interest in recent years,
in particular with the publication of methods such as the
Bayesian skyline plots implemented in BEAST (Drummond et al.
2012) (see Ho and Shapiro (2011) for a review of this school of
methods), and even more recently, methods such as PSMC (Li
and Durbin 2011), MSMC (Schiffels and Durbin 2013) and
DiCal (Sheehan et al. 2013). The former type of methods can
use a rather large sample size, but can only account for a small
number of loci. These methods have often been used solely for
analyzing mitochondrial DNA. The latter group of methods are
designed to handle genome-wide data and explicitly model
recombination using a Markovian assumption for neighboring
gene-genealogies (McVean and Cardin 2005). PSMC works with
a single (diploid) individual, which lead to simple underlying
tree topologies without requiring phase information. However,
the inference power in the recent past is limited, as most
coalescences in a sample of size 2 are not expected to occur in
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the recent past (Li and Durbin 2011). MSMC and DiCal extend
this approach by using information from multiple samples.
MSMC focuses on the first coalescence event in the sample at
each locus and ignores the remaining coalescence events. The
algorithm can deal with genome-wide data in a computationally
efficient way. DiCal, on the other hand, uses all coalescent
events in the gene-genealogies to provide estimates of the
population size, assuming a Markov property between sites
as well (Sheehan et al. 2013). The algorithm quickly becomes
computationally intensive as the sample size increases, thus a
genome-wide use of the method is currently still limited.

There are two important steps for most of these types of ap-
proaches: the inference of the underlying gene-genealogies, and
the inference of population size as a function of time from the
inferred genealogies. In this paper we introduce the Population
Size Coalescent-times based Estimator (Popsicle), an analytical
method for solving the second part of the problem. We derive
the relationship between the population size as a function of
time and the coalescent-time-distributions by inverting the
relationship of the coalescent-time-distributions and population
size derived by Polanski and colleagues (Polanski et al. 2003),
where they expressed the distribution of coalescent-times as
linear combinations of a family of functions that we describe
below. Using a simple algorithm of tree inference from genetic
data, we can investigate the effects of a range of conditions asso-
ciated with real data such as finite number of loci, sample size,
frequency of mutation and presence of cryptic recombination.
We apply Popsicle to sequence data from the 1000 genomes
Project and uncover population size histories that are coherent
with general knowledge of human past effective population size.

From the distributions of coalescent-times to the popu-
lation size

Under the constant population size model, the waiting times
Tn, Tn−1, · · · , T2 between coalescent events are independent
exponentially distributed random variables. In particular, the
time Tk during which there are exactly k lineages follows an
exponential distribution with rate (k

2)/N generations. When
population size varies as a function of time (N = N(t)), the
waiting times to coalescence are not independent any longer.
Specifically, for k ∈ [2, n − 1], Tk depends on all the previous
coalescent-times from Tk+1 to Tn (see e.g. Wakeley (2009) for an
extensive description of the coalescent).

In this paper, we derive a relationship between N(t) and the
distributions of the cumulative coalescent-times, that we denote
by V. More specifically, for k ∈ [2, n]:

Vk = Tn + · · ·+ Tk. (1)

The Vk variables represent the sum of times from present to
each coalescent event. Because we only use the cumulative
coalescent-times Vk and not the individual times Tk, we refer to
as coalescent-times the times Vk for k ∈ [2, n], omitting the term
cumulative for convenience. For example, the random variable
V2 represents the time to the Most Recent Common Ancestor
(TMRCA). All coalescent-times Vk are expressed in generations.
We denote as πk the density function of Vk.

Polanski and colleagues (Polanski et al. 2003) derived the
density function of coalescent-times under varying population

size as linear combinations of a set of functions (qj)26j6n, where

qj(t) =
( j

2)
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j
2
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dσ

)
. (2)

Similar functions have previously been used in a context
of varying population size (Griffiths and Tavare 1994). For
k ∈ [2, n], the relationship between the density function πk and
(qj)26j6n is

πk(t) =
n

∑
j=k
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We also define the integral of qj with respect to t as
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(5)

From equations 2 and 5 we can derive that:

N(t) =
(

j
2

)1−Qj(t)
qj(t)

. (6)

The principle of our method is to use the distributions of the
coalescent-times to get to the qj functions. In other words, we
invert the result of Polanski et al. (2003).

Given a sample of size n,

qj(t) =
n

∑
k=j

Bj
kπk(t),

with

Bj
k =

( j
2)

(k
2)

n

∏
l=k+1

(
1−

( j
2)

( l
2)

)
, for k < n, k > j,

Bj
k =

( j
2)

(k
2)

, for k = n

Bj
k = 0 for k < j

Theorem 1.

The proof of the theorem is given in the Supporting Infor-
mation. This theorem implies that for any time t generations
in the past, qj(t) and Qj(t) can be obtained using the distribu-
tions of coalescent-times. From each qj (and its integral Qj), the
function N(t) can be obtained using equation 6. In contrast to
the Ak

j coefficients (equation 4) which can become very large as
n increases and are of alternate signs (Polanski et al. 2003), the
Bj

k coefficients introduced in theorem 1 are stable, positive and
take values between 0 and 1 (Fig. 1). Thus, our formula is not
constrained by numerical limitations and can be used for very
large sample sizes.
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Figure 1 Heatmap of the values of log10(Bj
k) for n = 50,

as function of k and j. The white area represents the region
where Bj

k = 0.

Application of the theorem on simulated gene-
genealogies

Theorem 1 states that the population size can be computed at
any time in the past, provided that we know all the n− 1 distri-
butions of coalescent-times for any time in the past. However,
this knowledge would require to observe the genealogies of an
infinite number of independent loci evolving under the same N
function over time. In practice, genomes are finite so we only
have access to a finite number of loci to estimate of the coalescent-
time distributions. We use empirical distribution functions Π̂k(t)
to estimate the cumulative distribution functions Πk(t) of the
coalescent-times as these estimators have good statistical prop-
erties: they are unbiased and asymptotically consistent Van der
Vaart (2000). From Theorem 1, we estimate the Qj functions by

Q̂j(t) =
n

∑
k=j

Bj
kΠ̂k(t). (7)

Because of the finite number of loci, time is discretized into inter-
vals and N(t) within each interval is estimated by its harmonic
mean, as the harmonic mean of N has a simple relationship to
the Qj functions:

H[a,b](N) = −
(

j
2

)−1 b− a
log(1−Qj(b))− log(1−Qj(a))

. (8)

In the remainder of the paper, we set j = 2 (in equations 7
and 8), as it incorporates information from all coalescent-time
distributions and perform well even for very recent times (see
Supporting Information Figures S1, S2 and S3).

Evaluation of N(t) inference.
In order to evaluate the inference of N(t), we used the software
ms (Hudson 2002) to simulate samples under different popula-
tion models with varying population size. We investigated 4
demographic scenarii illustrated in Fig. 2. The first 3 scenarii
describe demographic models that span between the present

and 100,000 generations in the past and that include various
periods of constant population size, instantaneous changes,
exponential growth or decline. In contrast to scenarii 1, 2 and
3, scenario 4 describes changes in size that occur in the recent
past, within the last 2,000 generations. Detailed descriptions
of each scenario and the ms commands for the simulations are
given in the Supporting Information (Section 2 and tables S1, S2,
S3 and S4). In each studied scenario, we simulated 1,000,000
independent gene-genealogies of 20 haploid gene-copies
(note that we will investigate the effect of number of loci and
hence reduce that number for certain cases, see below). We
assume that the true gene-genealogies are known and omit
any inference of genealogies from polymorphism data at this
stage. The genealogies were used to estimate coalescent-time
distributions and in turn reconstruct the population size profile
using theorem 1. We discretized time into 100 equally long
intervals (1,000 generations in each interval for scenarii 1, 2 and
3, and 20 generations in each interval for scenario 4).

0 20 40 60 80 100

10
00

0
20

00
0

30
00

0
40

00
0

N
(t)

10
00

0
20

00
0

30
00

0
40

00
0

N
(t)

N
(t)

10
00

0
20

00
0

30
00

0
40

00
0

N
(t)

0 0.5 1 1.5 2

0
50

00
0

10
00

00
15

00
00

20
00

00

1 2

3 4

0 20 40 60 80 100

0 20 40 60 80 100

Time (x10  generations)3 Time (x10  generations)3

Time (x10  generations)3Time (x10  generations)3

Figure 2 Estimation of N based on simulated gene-
genealogies. Four scenarii of variable population sizes are
used to generate 1,000,000 independent loci in each scenario,
for a sample of size 20 (10 diploid individuals). Time is di-
vided into 100 regular intervals and estimates of the harmonic
mean of N (purple solid lines) for all intervals are plotted. The
true values of N over time are indicated by gray dashed lines.

The harmonic mean estimates are very close to the true size
in all 4 scenarii, with better accuracy in the recent past than in
the distant past (Fig. 2). The division of time into 100 intervals is
arbitrary and dividing time using the true break points of the sce-
narii leads to an almost perfect fit for the time periods where the
population size is constant, whereas dividing time more finely in
the periods of variable size improves the estimation, as long as
there are enough coalescent-times occurring within the interval
to get a good estimate of the cumulative distribution function
(results not shown). The N(t) estimation is very accurate in
periods of small population size, especially when it is followed
by an expansion. Estimates of N(t) are more variable around the
true value when population size was larger in the past (scenario
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3). These observations can be understood intuitively by the fact
that π(t) will be better estimated in time-periods of small N
as the coalescence rate is proportional to the inverse of N. The
resolution of the reconstruction method for N is also accurate in
the recent past, even for drastic or rapid changes in size over a
couple of hundred generations (scenario 4). In summary, with
a finite but sufficiently large number of loci to estimate the cu-
mulative distributions of coalescent-times, we can accurately
reconstruct the global shape of the population size over time,
from very recent times to far into the past.

Effect of sample size

We tested the accuracy of our method for different sample sizes.
To be able to quantify the performance in reconstructing the
population size over time, we introduced two statistics: the
average relative difference (ARD), and the average relative error
(ARE). The former quantifies a systematic deviation from the
true value of the population size, while the latter quantifies the
error of the estimation (see Methods section for the computation
of ARD and ARE). We used scenarii 1 and 4, from which we
simulated 1,000,000 independent gene-genealogies with sample
sizes taken from the values {2, 5, 10, 15, 20, 30}. Each scenario
was divided into large periods, to be able to discriminate the
effect of sample size in the N(t) reconstruction between recent
and old time periods and between periods of large and small
population sizes. Scenario 1 was divided into 5 periods, while
scenario 4 was divided into 6 periods (table 1, Fig. 3). Within
each period, we discretized the time into 100 equally long
intervals and assessed the N(t) reconstruction with ARD and
ARE (Fig. 3).

Period Scenario

1 4

1 [0-1,000] [0-400]

2 [1,000-10,000] [400-800]

3 [10,000-20,000] [800-1,200]

4 [20,000-60,000] [1,200-1,400]

5 [60,000-100,000] [1,400-1,600]

6 - [1,600-2,000]

Table 1 Division of scenarii 1 and 4. Time intervals are given
in generations.

In general, scenario 1 is predicted more accurately than sce-
nario 4, with an average relative error ranging between 0.2% and
3.6% compared to a range of 0.4% to 12.1% for scenario 4. There
is little bias in the reconstruction of the 2 scenarii, except maybe
for sample of size 2 in scenario 4, where there may be an upward
bias of some 5% in period 4. In both scenarii and in all periods,
the accuracy of the estimates are improved by increasing the
sample size. The improvement is substantial when increasing
the sample size from 2 to 10 and increasing the sample size fur-
ther only results in modest improvements. Note the relatively
higher error for the instantaneous population expansion of sce-
nario 4 (period 4), irrespective of sample size, suggesting that
a large population size for a brief period of time is difficult to
infer. Accurate estimates of N for such periods require a greater
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Figure 3 Effect of sample size. We divide scenario 1 (left
panel) and scenario 4 (right panel) into smaller periods of
time were we assess the average relative error and the average
relative difference on the N estimates compared to the true
values of N, as functions of the sample size used for the esti-
mation. 1,000,000 loci were simulated for each scenario and
each sample size. The original scaling for the x and y axis of
both scenarii can be found in Fig. 2.

number of loci to obtain resolution on par with time-periods
with smaller N, as the number of coalescences is reduced for
periods of large N. This effect is investigated further in the next
section.

Effect of the number of loci
With the full knowledge of the density functions πk, we could
potentially compute N at any time in the past. However,
in practice, the distributions can only be estimated where
observations are made, hence we are limited to the time ranges
where reasonable estimates of the distributions can be computed
because we have enough observations. For that reason, the
more loci, the more coalescent-times can be observed within
a time interval and the better the estimate of the cumulative
distributions. Here we investigate the robustness of Popsicle to
varying number of loci, by simulating genealogies of samples
of size 20 under scenarii 1 and 4. We compare the effect of the
number of loci for different periods in the past, as described in
table 1, divide each period into 100 regular intervals on which
we estimate the harmonic mean of N and measure the accuracy
within each period with ARD and ARE.

As expected, the accuracy of the N estimates in all periods
for both scenarii increases with increasing number of loci (fig. 4).
For small numbers of loci, errors can reach 40% and more. For
scenario 1 and 1,000 loci, no coalescence occurred during pe-
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Figure 4 Effect of the number of loci. We divide scenario 1
(left panel) and scenario 4 (right panel) into smaller periods of
time were we assess the average relative error and the average
relative difference on the N estimates compared to the true
values of N, as functions of the number of loci used for the es-
timation. The sample size for all simulations is 20. The original
scaling for the x and y axis of both scenarii can be found in
figure 2.

riods 4 and 5 in any of the simulations, making the inference
impossible for these periods. Similarly, there were no coales-
cence events in period 5 of scenario 1 with 5,000 loci, as well as
periods 4 and 6 in scenario 4 with 1,000 loci. This illustrates the
greater difficulty of accurate N reconstruction for older periods
of time, and periods of large population size, both subject to low
probabilities of observing coalescences. Thus, depending on the
history of the population and how far back in time N is of inter-
est, the required number of loci will vary. Sub-sampling from
some particular number of loci might give an idea on whether
or not that number is enough for a good estimation of N over
time.

Discussion

In this paper, we derived the analytical relationships existing
between the population size over time of a randomly mating
population and the distributions of coalescent-times. We
showed by simulations that with a sufficient number of loci
and their underlying gene-genealogies, we can reconstruct N(t)
accurately at various time scales, with a greater accuracy in the
recent past and in periods of smaller population size (Fig. 4,
Supporting Information Figure S4). The results also showed an
improvement in the reconstruction of N(t) with an increase in
sample size, however the improvement becomes modest for
sample sizes larger than 15 haploid gene-copies.

The major implication of our main result is to reduce the
problem of N(t) reconstruction from polymorphism data to a
problem of gene-genealogy inference. If local gene-genealogies
in the genome can be inferred accurately from observed
polymorphism data, then our theorem can be used to estimate
N(t) with great accuracy as well. Currently, however, local gene-
genealogy inference remains a challenge. First, most genomes
do not consist in large sets of independent non-recombining
loci, but rather in sets of recombining chromosomes. Each
chromosome can be seen as a linear structure of successive
non-recombining loci whose underlying genealogies are corre-
lated with one another. This correlation decays with distance
between loci due to recombination. Also, in a given sample, the
exact positions on the chromosome of the recombination events,
hence the break points between the non-recombining bits of
DNA, are unknown. Fully recovering the genealogies along the
chromosome means reconstructing the ancestral recombination
graph from polymorphism data and this is a challenging prob-
lem that has drawn much attention in the last decades (Griffiths
and Marjoram 1996; McVean and Cardin 2005; Parida et al. 2008;
Zheng et al. 2014; Rasmussen et al. 2014). Ignoring recombination
and treating recombining loci as non-recombining can lead
to the inference of spurious changes in population size, even
under the simple model of constant population size (Fig. 5,
Supporting Information Figure S5), because of the effect it
has on genealogies. In particular, genealogies inferred from
recombining loci are weighted averages of the underlying
genealogies of the non-recombining fragments of the loci, and
therefore tend to be more star-like as well as of intermediate size.
Estimating one single gene-genealogy from such a mosaic of
correlated gene-genealogies will have an impact on the distribu-
tions of coalescent-times (see Supporting Information Figure S6).

For some species, there might be simply not enough
mutation events to be able to infer the local gene-genealogies
of non-recombining segments. In humans for example, the
ratio between the mutation rate per site and per generation
and the recombination rate per site and per generation is likely
close to 1 (or 2, depending on the mutation rate assumed, the
pedigree based mutation rate or the divergence based mutation
rate, see e.g. Scally and Durbin (2012)). Hence, on average,
for each mutation observed locally in a sample, there is also
a recombination break-point nearby. We assessed the effect
of the mutation rate per locus by using a simple algorithm of
gene-genealogy inference from polymorphism data and applied
Popsicle on the obtained distributions of coalescent-times (Fig. 6,
see also Methods section for a description of the employed
algorithm). The mutation rate is important for an accurate
reconstruction of N(t): the higher the mutation rate, the more
information there is to infer the gene-genealogies and the
better is the reconstruction of N(t). This effect is particularly
important for recent times where enough mutations are required
to accumulate to infer the very recent population sizes (S7 Fig).

Application to the 1000 Genomes sequence data

Despite the challenges of inferring gene-genealogies discussed
above, it is possible to apply our method on empirical sequence
data. The effect of recombination can be mitigated by consider-
ing only regions of the genome with low or no recombination,
provided that we have access to a good genetic map. Following
this principle, we applied Popsicle to human genome sequence
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Figure 5 Effect of ignoring recombination. Comparison be-
tween N(t) reconstructed using gene-genealogies computed
as a weighted average of the gene-genealogies obtained from
ms and true N(t) (black lines) under a model of constant pop-
ulation size. We generated 1,000,000 independent loci for 20
haploid gene-copies for 5 different levels of recombination
within each locus. The different cryptic recombination rates
for each locus (in Morgan) is indicated by different colors and
the values of the recombination of the segments are given in
the legend. Assuming a recombination rate r per site and per
generation of 1.25× 10−8, the considered sequences are 80, 400,
800, 4000 and 8000 base pairs long.

data from the 1000 Genomes Project (Complete Genomics high
coverage samples from the (Complete Genomics data from
1000 Genomes public repository 2013)), for Yoruba individuals
from Nigeria, for American individuals of European ancestry
from Utah, U.S.A, for Han Chinese individuals from southern
China and for Peruvian individuals. We extracted regions
of no recombination according to the Decode recombination
map (Kong et al. 2002) (see Methods section for a description
of the data preparation). We inferred N(t) profiles for the 4
populations in two ways: a) using single individuals (as PSMC
does) and averaging across individuals (denoted ’Popsicle
1’), and b) using 5 individuals at once from the population
and averaging across the the samples of individuals (denoted
’Popsicle 5’).

Overall, the Popsicle profiles of effective population size in
the last million years for every population largely resemble
the vague knowledge about past human population sizes as
well as the N(t) profiles inferred by e.g. PSMC (Fig. 7A). For
instance, Popsicle reveals a steady but slow increase in effective
population size staring around 1 million years ago, reaching a
maximum between 200,000 and 500,000 years ago, followed
by a sharper decline and a recovery during the last 100,000
years for European and East Asian populations. However,
prior to a million years ago, the population size inferred by
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Figure 6 Effect of estimating gene-genealogies from poly-
morphism data. Reconstruction of N(t) from distributions of
coalescent-times computed from gene-genealogies inferred
from polymorphism data. We used a sample size of 20 and
1,000,000 independent loci, evolving under scenario 1. The
mutation rate per locus Lµ is indicated by the color of the line
and the legend gives the mutation rates.

PSMC is higher than the population size inferred by Popsicle
(Supporting Information Figure S8). In addition, Popsicle
infers a less sharp decline in population size than PSMC does,
for all four populations, and infers a population size history
markedly different for Yoruba compared to the three other
non-African populations (Fig. 7B and Fig. 7C) whereas the
Yoruban population follows the non-African populations rather
closely in the PSMC results (Supporting Information Figure
S9). Popsicle results suggest a somewhat larger ancestral
population for Yoruba than the ancestral population size of
the 3 non-African populations, which could be interpreted
as deep and long-lasting population structure within Africa
between 400,000 and 100,000 years ago. Note however that the
non-recombining regions have been chosen using the Decode
recombination map, a genetic map formed by tracking more
than 2,000 meioses in Islandic lineages. Recombination patterns
and hotspots in particular are believed to be variable across
populations (Myers et al. 2005; Baudat et al. 2010), thus the
non-recombining regions selected using the Decode map might
be in fact recombining in Yoruba, resulting in a bias of the
population size estimates (see Fig. 5). Recombination maps for
Yoruba have been computed (Frazer et al. 2007), but because they
have been inferred using properties of linkage disequilibrium
which itself depends on demography, they are cannot be used
in this context. A future pedigree- or sperm-typing-based
recombination map for the Yoruba would likely resolve the
differently inferred N(t) profiles for African and non-African
populations.

Popsicle 1 and Popsicle 5 give similar effective population
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Figure 7 Comparison of N(t) between CEU, CHS, PEL and
YRI. The time scale is computed assuming a mutation rate of
1.25× 10−8 and a generation time of 25 years.

size profiles (Fig. 7B and 7C) but the time of the major features
in Popsicle 5 are shifted to older times compared to Popsicle
1. Whereas Popsicle 1 suggests a bottleneck in non-African
populations that reaches its strongest effect between 30,000
and 40,000 years ago, Popsicle 5 places the bottleneck between
70,000 and 80,000 years ago, which is more in line with the
estimates of timing of the founder effects due to a dispersal
out-of-Africa (Scally and Durbin 2012). In none of the applied
methods (Popsicle or PSMC) do we see the super-exponential
increase in size that has occurred in all populations since the
spread of agriculture (Keinan and Clark 2012). It is possible that
too few loci are included for a reliable inference in the recent
times or that the mutation rate per locus does not allow us
the required time resolution to observe this phenomenon, as
very recent gene-genealogies are likely to contain no mutation
thus no information if the mutation rate is too low. Another
possible explanation could be that we cannot observe enough
rare variants with only 22,321 loci, which has been recently
deemed necessary to observe the exponential growth human
populations have been going through in the past thousands of

years (Keinan and Clark 2012).

The resolution of Popsicle can be better than that of PSMC,
as Popsicle does not constrain the coalescent-times into a finite
(and usually rather small) set of values like PSMC does. In
principle, any time discretization for computing the harmonic
mean of the effective population size over time can be used,
though in practice we need to make sure that there are enough
coalescences within each time interval to get reliable estimates
of the effective size. Popsicle is also markedly faster than PSMC,
not only because it uses a low number of non-recombining
regions, but also because of the closed form relationship
between population size and coalescent-time distributions.
Most of the computational time is spent on inferring the
gene-genealogies (which takes less than 20 minutes for the
22,321 loci in the data application). Once the gene-genealogies
are computed, the application of the theorem for reconstructing
the population size takes a few seconds. Finally, Popsicle
accommodates for samples of any size, which should lead to
more reliable results, especially in the recent times, provided
that the phasing of the genomes is accurate.

Applying Popsicle on extracted regions of limited recombina-
tion should not bias the results in principle. Regardless of the
molecular reason explaining the low rate of recombination in the
region (for instance, limited access for crossovers or conserva-
tion constraints due to functional importance of the region), the
fact that there is one local gene-genealogy for the entire region is
what matters for the method to work. However for applications
to empirical data, variation in the local mutation rate, due to
purifying selection for example, will affect the reconstruction
of the gene-genealogy by changing the estimates of the branch
lengths for different loci. This could potentially cause bias in
the reconstructed Popsicle profiles, as all gene-genealogies are
inferred using one mutation rate. Using a mutation map ob-
tained from the study of de novo mutations in trios or pedigrees
could alleviate this issue and infer the local gene-genealogies
from genetic data using a specific mutation rate for each region.

Conclusion
We present a novel method for inferring population size over
time, a problem that has recently gained great attention due to
the availability of genome data. By analytically relating N(t) to
the distribution of coalescent-times, we have connected N(t) to
the problem of inferring the ancestral recombination graph from
polymorphism data, which remains a challenge in population
genetics. We showed that, even using a moderate number of
loci and a simple algorithm for genealogy inference, our method
Popsicle was able to recover the general pattern of population
size as a function of time, which have been observed previously
using other methods, but with greater resolution and faster
computational time, which will be useful for future large-scale
genome studies.

Methods

Quantifying the accuracy of the method
Let’s consider a time discretization (t0, t1, · · · , tm), then we de-
fine ARD and ARE are defined as:

ARBm =
1
m

m

∑
i=1

Ĥ[ti−1,ti ](N)− H[ti−1,ti ](N)

H[ti−1,ti ](N)
(9)
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and

AREm =
1
m

m

∑
i=1

|Ĥ[ti−1,ti ](N)− H[ti−1,ti ](N)|
H[ti−1,ti ](N)

, (10)

where Ĥ[ti−1,ti ](N) is the estimate of the harmonic mean of N
during the time interval [ti−1, ti] as defined in equation 8 with
j = 2 and Q2 replaced by its estimate Q̂2, whereas H[ti−1,ti ](N) is
the value for the true harmonic mean of N on the corresponding
interval.

Effect of ignoring recombination
We explore the robustness of the N(t) reconstruction when
recombination occurs in the loci but each locus is treated as
non-recombining. Instead of considering the multiplicity of
trees within one locus, we consider the entire segment as non-
recombining and having a single genealogy, represented by an
average tree. The true nature of this "average tree" can be dif-
ficult to define when the sample size is strictly greater than
2, however for a sample of size 2, the average tree is simply
the weighted mean of the trees of the non-recombining seg-
ments, with the weight being the relative length of each non-
recombining segment compared to the total segment length. We
investigate the effect of ignoring recombination for samples of
size 2 and for samples of size 20, for different levels of recombi-
nation within each simulated locus. For the samples of size 20,
we build the "average tree" by applying a UPGMA algorithm
on the weighted average matrix of pairwise time to coalescence
between all pairs of haploid individuals. We use scenarii 1 and 4,
as well as the constant size model, to study the robustness of the
method to different levels of recombination. We tested 5 levels of
recombination within the locus: 10−6, 5× 10−6, 10−5, 5× 10−5

and 10−4. Assuming a recombination rate of 1.25× 10−8 per site
per generation, which is around the estimated average of the
human recombination rate, these 5 levels represent loci of length
80, 400, 800, 4,000 and 8,000 base pairs.

Inferring gene-genealogies from polymorphism data
We apply a simple 2-step algorithm to infer gene-genealogies
from polymorphism data. In the first step, we naively recon-
struct the genealogy for each locus using the UPGMA algorithm
on the matrix of pairwise differences then convert the branch
lengths from a time scale in mutations to a time scale in gener-
ations using the mutation rate per locus, which is considered
known. Because of the discrete behavior of mutation, we do not
really have resolution at this stage for time intervals smaller than
1/(2Lµ) generations, with Lµ being the total mutation rate of
each locus. So, we discretize the time space into equal intervals
of size 1/(2Lµ), starting at 0 and estimate the harmonic mean of
N on each interval using the method. This gives us a first view
on the profile of the population size over time. In the second
step, we refine our reconstruction by using the N(t) profile com-
puted in the first step. More precisely, we now use the pairwise
differences between haploid individuals to estimate the time to
the most recent common ancestor of each pair of individuals
and thus define a distance matrix on which we apply UPGMA
to reconstruct the genealogy. We compute the coalescent-times
between the pairs using a Gamma distribution, following the
idea that if mutations are Poisson distributed onto the coalescent
tree of a given pair, and if the height of the tree is exponentially
distributed with rate 1/Ne (which is the case under the constant
model of N(t) = Ne), then the height of the tree T, conditional
on the number of pairwise differences S between the two indi-
viduals, is Gamma distributed with shape S + 1 and with rate

2Lµ + 1/Ne Tavaré et al. (1997):

fT|S=s(t) ∝ P(S = s|T = t) fT(t)

∝
(2Lµt)s

s!
e−2Lµt × 1

Ne
e
−

t
Ne

∼ Γ(s + 1, 2Lµ +
1

Ne
).

(11)

We use the first step to compute Ne as the harmonic mean of
the inferred N from present to the time interval corresponding
to the number of observed differences between the two individ-
uals. We present the results of the described protocol applied
on samples of size 20, simulated with values of Lµ taken from
{10−4, 5× 10−4, 10−3, 5× 10−3, 10−2}, for 1,000,000 loci and un-
der scenarii 1 and 4 (Fig. 6 and S7 Fig). For reference, with a
mutation rate of 1.25× 10−8 per base pair per generation, the
range of Lµ values corresponds to loci of 8, 40, 80, 400 and 800
kb respectively.

Application to Human data
Data preparation. We use high coverage sequencing data
from the 1000 Genomes Project, publicly available at
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/. The data is
downloaded as VCF formatted files, from which we retain vari-
ant positions passing the filters set up by the 1000 Genomes
Project, replacing the filtered out positions by missing genotypes.
We retain only the trios and within each population existing in
the sample, we phased the individuals using BEAGLE Browning
and Browning (2007) under the trios file input option, but retain
only the parents after phasing, as a sample of unrelated indi-
viduals. In doing the phasing, BEAGLE also imputes missing
genotypes. We extract sequences corresponding to regions of
supposedly no recombination as indicated by a recombination
rate of 0 in the Decode genetic map Kong et al. (2002). The de-
scription of how those regions were ascertained is given below.
The populations we use in our study are CEU (individuals of
European ancestry from Utah, USA, sample size of 64), CHS
(southern Han Chinese individuals, China, sample size of 56),
PEL (Peruvian individuals from Lima, Peru, sample size of 58)
and YRI (Yoruba individuals from Ibadan, Nigeria, sample size
of 38).

Genetic map and no recombination regions. We used the Decode
genetic map in this study, which has been obtained by tracking
more than 2,000 meioses in Islandic lineages Kong et al. (2002).
The map was downloaded from the Table tool on the UCSC
genome browser website Genome Bioinformatics Group of UC
Santa Cruz (2013). We extract from the map regions having a
recombination rate of exactly 0. There were 22,321 such regions,
of varying lengths (see Supporting Information Figure S10), with
the most common length being 10kb (6,457 regions) and mean
length being around 48kb. We did not use HapMap recombi-
nation maps, as those are obtained using statistics of linkage
disequilibrium (LD), which are affected by demography. In par-
ticular regions of high LD can be suggestive of either a low local
recombination rate, or a short gene-genealogy of the sample
used for LD computation, or both. So, by extracting regions of
low "recombination rate" in LD-based genetic map, we might
enrich the chosen regions in small underlying gene-genealogies,
hence leading to the inference of a smaller population size. We
saw this effect when applying Popsicle to regions extracted us-
ing HapMapCEU with a total recombination threshold of 10−5

Morgans per region (Supporting Information Figure S11).
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Comparison with PSMC. Since its publication, the PSMC
method has been widely used to estimate past population size
over time in a number of organisms. Thus, it is important to
assess how our reconstruction methods compares to the results
of PSMC. We use the sequences of the parents, with missing
genotypes imputed by BEAGLE, and cut the sequences into re-
gions of 100 base pairs, as it is done in the original paper. If no
pairwise difference is observed within a region between the pairs
of alleles at the 100 base pairs, the region is considered homozy-
gote. If at least one pairwise difference is observed, the region
is considered heterozygote. PSMC is developed as a Hidden
Markov Model, where the hidden states are the coalescent-times
of each region, while the observed states are the heterozygos-
ity of the regions. It models recombination in the transition
probabilities from one region to its neighbor. Intuitively, if a
locus has many heterozygote regions, its underlying coalescent-
time is going to be inferred as large, whereas if a locus contains
mostly homozygote regions, the coalescent-time is inferred as
small. Chromosomes are given as independent sequences and
only autosomes are used. We present the results of PSMC per
population, as an average of the PSMC results over all parents
within each population. For running PSMC, we use the same
time intervals as the human study in the original PSMC paper.

Application of Popsicle. We apply Popsicle on the 22,321 low
recombining regions for the 4 populations, under 2 different
settings: in the first setting, we reconstruct an effective popu-
lation size profile for every individual and average the results
across all individuals from the same population (we refer to that
setting as ’Popsicle 1’); in the second setting, we use Popsicle
on sub-samples of size 5 and compute the average of the ob-
tained N(t) estimates within each population (we refer to that
setting as ’Popsicle 5’). We use the 2-step procedure described in
the subsection "Inferring gene-genealogies from polymorphism
data". Because PSMC also infers the local gene-genealogies
when performing its MCMC computations, we also extracted
the local gene-genealogies from PSMC’s decoding (option -d of
the program) and apply Popsicle 1 to them. The results seem
highly unstable, questioning the reliability of the inferred lo-
cal gene-genealogies from PSMC (see Supporting Information
Figure S12).

Data availability. Simulated data can be regenerated using
the commands given in the Supporting Information. Data
from the 1000 Genomes Project is available on the ftp server
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
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Supporting Information

Derivation of the Bj
k

The relationship between the density function of the cumulative coalescent-times πk and the family of functions qj can be written
under a matrix form. We define −→π (t) the vector of density functions of cumulative coalescent-times (π2(t), · · · , πn(t)),

−→q (t) the
vector (q2(t), · · · , qn(t)) and the upper triangular matrix A = (Aij)26i,j6n = (Ai

j)26i,j6n. Then from equation 3, from Polanski et al.
(2003) we have

−→π (t) = A−→q (t)

To prove that the Bj
k defined in theorem 1 can invert the relationship between πk(t) and qj(t), we show that the matrix B defined

by (Bij)26i,j6n = (Bi
j)26i,j6n is the inverse matrix of A. We define C = (Cij)26i,j6n = A× B. Our aim is to prove that C is in fact the

identity matrix. First, we know that C is an upper triangular matrix, as both A and B are upper triangular matrices. To do so, we cover
4 separate cases: Cin for 2 6 i < n, Cij for 2 6 i < j < n, Cii for 2 6 i < n and finally Cnn. For the computation of the two first cases,
we need to introduce a notation:

Fi,j,n =
n

∏
l=i,l 6=j

1

( l
2)− ( j

2)
(12)

We know from partial fraction decomposition that

Fi,j,n = (−1)
n

∑
l=i,l 6=j

n

∏
m=i,m 6=l

1

(m
2 )− ( l

2)

= (−1)
n

∑
l=i,l 6=j

Fi,l,n.
(13)

We compute the coefficients Cin, for 2 6 i < n:

Cin =
n

∑
k=2

AikBkn

=
n

∑
k=i

∏n
l=i,l 6=k (

l
2)

∏n
l=i,l 6=k

[
( l

2)− (k
2)
] × (k

2)

(n
2)

=
n−1

∏
l=i

(
l
2

) n

∑
k=i

Fi,k,n

=
n−1

∏
l=i

(
l
2

) n

∑
k=i

(−1)
n

∑
l=i,l 6=k

Fi,l,n

= (−1)
n−1

∏
l=i

(
l
2

) n

∑
l=i

n

∑
k=i,k 6=l

Fi,l,n

= (−1)(n− i)
n−1

∏
l=i

(
l
2

) n

∑
l=i

Fi,l,n

= (−1)(n− i)Cin.

(14)

In the above calculation, we go from line 3 to line 4 by using equation 12. Then on the next line we exchange the two sums and by
noticing that the terms under the k-indexed sum are not dependent on k, we obtain line 6. On line 6, we can notice that the factor after
(−1)(n− k) is exactly the same as in line 3, thus is equal to Cin. Since n 6= k, only Cin = 0 can satisfy Cin = (i− n)Cin.
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We go on by computing our second case: the coefficients Cij for i < j < n:

Cij =
n

∑
k=2

AikBkj

=
j

∑
k=i

AikBkj

=
j

∑
k=i

∏n
l=i,l 6=k (

l
2)

∏n
l=i,l 6=k

[
( l

2)− (k
2)
] × (k

2)

( j
2)

n

∏
l=j+1

(
1−

(k
2)

( l
2)

)

=
j−1

∏
l=i

(
l
2

) j

∑
k=i

∏n
l=j+1

[
( l

2)− (k
2)
]

∏n
l=i,l 6=k

[
( l

2)− (k
2)
]

=
j−1

∏
l=i

(
l
2

) j

∑
k=i

Fi,k,j

=
j−1

∏
l=i

(
l
2

) j

∑
k=i

(−1)
j

∑
l=i,l 6=k

Fi,l,j

= (−1)
j−1

∏
l=i

(
l
2

) j

∑
l=i

j

∑
k=i,k 6=l

Fi,l,j

= (−1)(j− k)
j−1

∏
l=i

(
l
2

) j

∑
l=i

Fi,l,j

= (−1)(j− k)Cij.

(15)

Similarly to the computation of Cin above, the only way to satisfy Cij = (i− j)Cij for i < j < n is to have Cij = 0. Now, the remaining
coefficients to be computed are the diagonal coefficients. For 2 6 i < n:

Cii = AiiBii

=
∏n

l=i+1 (
l
2)

∏n
l=i+1

[
( l

2)− ( i
2)
] × ( i

2)

( i
2)

n

∏
l=i+1

(
1−

( i
2)

( l
2)

)

= 1.

(16)

Finally,
Cnn = AnnBnn = 1 (17)

All the above computed coefficients prove that the matrix C is the identity matrix, hence B is the inverse matrix of A, which achieves
to demonstrate theorem 1.

The ms commands for the simulations.
All the times are given in units of 2 times the present haploid population size (see tab:s1 to tab:s4 for the exact values). The letter n
can be replaced by any desired sample size.

• scenario 1: ms n 1 -t 1 -eN 0.025 2 -eN 0.25 0.5 -eN 0.5 1.5 -T
• scenario 2: ms n 1 -t 1 -G 6.93 -eG 0.2 0.0 -eN 0.3 0.5 -T
• scenario 3: ms n 1 -t 1 -G -0.732408192445406 -eG 1.5 0.0 -eN 2 4 -eN 3 3
• scenario 4: ms n 1 -t 1 -G 4605.17018598809 -eG 0.001 -2302.58509299405 -eG 0.002 0 -eN 0.003 0.2 -eN 0.0035 0.05 -eN 0.004 0.1
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Figure S1 Accuracy of estimates of recent N as function of j. We compare estimates of N under scenario 1 with n = 20, between
present and generation 1000 back in the past. Time is discretized in 100 equally sized bins and the accuracy of the N estimation is
measured by the average relative error (see equation 10 in the main text).
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Figure S2 Estimation of N(t) depending on j during the first generations, scenario 1. Different values of j are indicated by the
color of the solid lines, with a rainbow gradient from red (j = 2) to dark blue (j = 20).
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Figure S3 Estimation of N(t) depending on j during during the first generations, scenario 4. Different values of j are indicated by
the color of the solid lines, with a rainbow gradient from red (j = 2) to dark blue (j = 20).
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Figure S4 Uncertainty on the estimates of N(t). Results obtained by first simulating 1,000,000 independent gene-genealogies
from model 1 with 20 haploid gene-copies and then (A) apply the theorem 10,000 times using 10,000 randomly sampled gene-
genealogies from the 1,000,000 genealogies, or (B) apply the theorem 10,000 times using 50,000 randomly sampled gene-genealogies
from the 1,000,000 genealogies. (C) Bootstrap results for model 1 using 20,000 gene-genealogies and 10,000 bootstrap replicates. (D)
Bootstrap results for model 4 using 20,000 gene-genealogies and 10,000 bootstrap replicates. Time is discretized into 100 equally
long intervals. We marked by a two solid gray lines the 2.5 and 97.5 percentiles of the 10,000 estimates of N within each interval.
For (A) and (B), the black solid line represents the true value of N(t). For (C) and (D), the black solid line represents the recon-
structed N(t) profile using our method on the 20,000 independent gene-genealogies.
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Figure S5 Effect of ignoring recombination. Comparison between N(t) reconstructed using average trees and true N(t) (black
lines). The left column and right column display the results for samples of size 2 and 20 respectively, for different demographic sce-
narii: the constant size model (top line), scenario 1 (middle line) and scenario 4 (bottom line). The different cryptic recombination
rates for each locus (in Morgan) is indicated by different colors and the values of the recombination of the segments are given in the
legend.
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Figure S6 Density of V2 with cryptic recombination. Comparison between the expected density of V2 under the constant model
for n = 2 (solid blue line) and the observed density of V2 under the constant model with recombination of Lr = 10−4 in green.
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Figure S7 Effect of estimating trees from polymorphism data. Results of the 2 steps reconstruction method, applied with a sample
size of 20, for 1,000,000 independent loci, evolving under scenario 1 (top figure) and scenario 4 (bottom figure). The mutation rate
per locus Lµ is indicated by the color of the line and the legend gives the correspondence between the colors and the values.
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Figure S8 Comparison of methods on the CEU individuals. Zoomed out plot of the main figure 7.
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Figure S9 Results of PSMC on CEU, CHS, PEL and YRI. Thin light lines represent the population size reconstruction for one in-
dividual and thick lines indicate the average across individuals for a given population. Individuals from PEL have more variance
in the estimated scaled mutation rate by PSMC, thus have time intervals that differ quite a bit from individual to individual when
scaled back in years.
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Figure S10 Distribution of length for the no recombining regions of the Decode genetic map.
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Figure S11 Comparison between Popsicle 1 using no recombining Decode regions (green lines) and Popsicle 1 using low recom-
bining regions extracted from HapMapCEU. CEU samples.
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Figure S12 Application of Popsicle 1 to PSMC decoding gene-genealogies. Lower panel is a zoom in of the upper panel curve for
smaller population size.
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Table S1 Scenario 1

Period (in gen.) Haploid Size

0-1,000 20,000

1,000-10,000 40,000

10,000-20,000 10,000

> 20,000 30,000

Table S2 Scenario 2

Period (in gen.) Haploid Size Parameters

0-16,000 N0 exp(−αt) N0 = 40, 000, α = 6.93/(2N0)

16,000-24,000 10,000

> 24,000 20,000

Table S3 Scenario 3

Period (in gen.) Haploid Size Parameters

0-30,000 N0 exp(−αt) N0 = 10, 000, α = −0.732/(2N0)

30,000-40,000 30,000

40,000-60,000 40,000

> 60,000 30,000
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Table S4 Scenario 4

Period (in gen.) Haploid Size Parameters

0-400 N0 exp(−α1t) N0 = 200, 000, α1 = 4605.2/(2N0)

400-800 N1 exp(−α2(t− 400)) N1 = 2, 000, α2 = −2302.6/(2N0)

800-1,200 20,000

1,200-1,400 40,000

1,400-1,600 10,000

> 1,600 20,000
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