
  

  

Abstract—We propose an integrative framework to select 
important genetic and epigenetic features related to ovarian 
cancer and to quantify the causal relationships among these 
features using a logistic Bayesian network model based on The 
Cancer Genome Atlas data. The constructed Bayesian network 
has identified four gene clusters of distinct cellular functions, 
13 driver genes, as well as some new biological pathways which 
may shed new light into the molecular mechanisms of ovarian 
cancer.   

I. INTRODUCTION  

While the molecular mechanism of ovarian cancer remains 
unclear, studies have suggested that many different factors 
may contribute to this disease, among which there are tens of 
well-known oncogenes and tumor suppressors including 
TP53, PIK3C, PTEN, BRCA1 and BRCA2 [1,2]. However, 
the analysis based on individual genes often fails to provide 
even moderate prediction accuracy of the cancer status. Thus 
a systems biology approach that combines multiple genetic 
and epigenetic profiles for an integrative analysis provides a 
new direction to study the regulatory network associated 
with ovarian cancer. Here we describe an integrative 
framework that presents two innovations: (1) a novel 
stepwise correlation-based selector (SCBS) for important 
pathway-relevant features; and (2) a Bayesian network (BN) 
modeling for a mixture of continuous and categorical 
variables for casual inference. This approach provides a way 
to mine the massive cancer data for important genetic and 
epigenetic features directly or indirectly associated with 
cancer phenotype, leading to discoveries of pathways 
underlying the molecular mechanism of cancers. 

II. RESULTS 

1. Predicted Bayesian network 
 

We consider four important data types in our analysis in the 
TCGA ovarian cancer data ([1], Table 1). First, 68 potential 
oncogenes and tumor suppressors (identified from both 
literature [2] and TCGA data) were used as seed genes. An 
additional 271 nodes out of more than 50,000 candidate 
features were selected by the SCBS (Methods and [3]), 
including expression level of 177 genes, 82 copy number 
variation sites, 11 methylation sites and one somatic 
mutation site at gene TP53. The predicted BN (Fig. 1) 
contains many well-known biological pathways. To name a 
few, the edge from CDKN2A to CCNE1 is a known gene-
gene regulation in the RB signaling pathway [1]. The edge 
from TPX2 to AURKA confirms that TPX2 can activate 
AURKA by inducing autophosphorylation [4].    
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                    Table 1: Summary of TCGA ovarian cancer data 
Data type                         Platform                                  Cases 
Gene expression            Agilent 244K           574 (8 organ-specific controls) 
DNA methylation          Illumina 27K           584 (8 organ-specific controls) 
Somatic mutation          Agilent 415K           579 (8 organ-specific controls) 
Copy number                 Agilent 1M              579 (8 organ-specific controls)   
 

 

 

 

2. Hub genes and sample classification 
 

We identified 13 nodes with significantly larger out-degrees 
in the network: ARID1A, C19orf53, CSNK2A1, DERL1, 
TRMT6, COL5A2, TCF21, LUM, TPX2, UBE2C, DPM1, 
NDUFB7 and NDUFB9. We show (in Fig. 2) that the 13 hub 
genes can clearly distinguish the cancer samples from the 
normal samples by a multi-dimensional scaling (MDS) plot 
based on the correlation dissimilarity metric (comparable 
clustering effect was observed based on the entire set of 245 
genes). This suggests that the thirteen hub genes may present 
the major difference between the cancer and normal 
samples. The early-stage and high-grade tumor samples 
however are not well distinguished. 
 

3. Major Gene clusters 

The 245 genes fell into four major clusters corresponding to 
distinct functions by k-means clustering method [3]. Cluster 
1 (red, Figure 3a) contained 18 genes, mainly related to cell 
division, mitosis, spindle formation etc. Cluster 2 (green, 
Figure 3a) contained 23 genes, most of which are 
functionally related to growth factor, cell shape, cell 
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Figure 1: Predicted graph by logistic BN model with 339 nodes 
including expression levels of 245 genes (yellow), copy number at 82 
sites (blue), methylation at 11 sites (green) and 1 somatic mutation at 
TP53. Direction of edges means the downstream feature is regulated by 
the upstream one. Red edges represent activation and black edges 
represent suppression.  
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motility, tumor invasion etc. Cluster 3 (black, Figure 3a) 
contained 20 genes, mostly related to mitochondrial system, 
membrane process etc. Cluster 4 (blue, Figure 3a) was the 
largest and most complicated cluster harboring 184 genes. 
This large cluster communicates between the other three 
clusters, which were nearly independent from each other 
(Figure 3b). These findings could be implicative of some 
important molecular pathways, which may or may not have 
been identified, that drive the development of ovarian 
cancer. 
 

 

 

 

 
 

III. METHODS  

1. Bayesian network with logit link function 

The Bayesian network is one way to model the causal 
relationships among a set of random variables (nodes) via a 
directed acyclic graph ([5]). In general, the joint likelihood 
of nodes ��, ��, … , �� can be expressed as follows: 

����, ��, … , ��� � 	 �
��|Π�

�

�

���

,                                        
1
 

where Π�

� stands for the parental nodes of node i in the 
graph. The proposed logistic BN model ([3]) incorporates 

both continuous and discrete variables (require discretization 
of the continuous variables). For simplicity, we illustrate the 
model under binomial case: 

log ��

1 � ��

� ��� � � ���
�	�

��  ,                                                  
2
 

where �� takes value 0 or 1 with respective probabilities 
{1 � ��, ��}. Here we transform the network structure to the 
coefficient matrix {���}, where ��� � 0 means �� � �� (no 
causal effect form node j to i) and otherwise �� � �� (with 
causal effect).  The details of the model fitting can be found 
in Zhang et al [3]. 

 

2. Stepwise correlation-based feature selector 

One important and necessary step before BN learning is 
feature selection. The prevailing method is based on 
independent test, which can falsely selects many irrelevant 
features as some features could be causal to other features 
while having no direct association with the cancer 
phenotypes. With the SCBS procedure, we start with 
detection of features significantly correlated with the cancer 
and then progressively select subsequent features that 
correlate with the selected features. Suppose we aim to 
select p variables (out of S candidates, � � �) as the nodes 
in BN based on N random samples. SCBS can be 
implemented as follows: 
 
Step 1: Calculate the correlation coefficients between the 
current node ��  and all the other nodes. Keep k most 
correlated nodes with �� for further filtering. 
Step 2: Calculate the p-value of correlation coefficient for 
each of the k nodes from step 1, Select the node if the p-
value is significant under Benjamini-Hochberg procedure 
with FDR ! 0.05. 
Step 3: Repeat step 1 and 2 until p nodes are selected. 
 
For the choice of k, we suggest k = 4, 5 or 6 in practice since 
smaller k tends to miss weakly connected nodes and larger k 
tends to catch more false positives. See a simulation study in 
[3] for detail.   
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Figure 2: MDS plots for sample classification. (a) based on 13 hub 
genes; (b) based on all 245 genes in the predicted network. Each dot 
represent on sample: red (cancer-free), green (early-stage cancer) and 
black (high-grade cancer).   
 

Figure 3: (a) MDS plot based on correlation dissimilarity metric 
between 245 genes (each circle represents one gene). Genes falling 
into four clusters (by k-means clustering method where k = 4) are 
indicated by different colors; (b) Correlation plot of the four clusters, 
the connection between a pair of genes represents a significant 
correlation. 
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