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Qingyang Zhang and Ji-Ping Wang, Northwestern PSOC members

Abstract—We propose an integrative framework to select
important genetic and epigenetic features related to ovarian
cancer and to quantify the causal relationships among these
features using a logistic Bayesian network model based on The
Cancer Genome Atlas data. The constructed Bayesian network
has identified four gene clusters of distinct cellular functions,
13 driver genes, as well as some new biological pathways which
may shed new light into the molecular mechanisms of ovarian
cancer.

|. INTRODUCTION

While the molecular mechanism of ovarian cancer remains
unclear, studies have suggested that many different factors
may contribute to this disease, among which there are tens of
well-known oncogenes and tumor suppressors including
TP53, PIK3C, PTEN, BRCAL and BRCAZ2 [1,2]. However,
the analysis based on individual genes often fails to provide
even moderate prediction accuracy of the cancer status. Thus
a systems biology approach that combines multiple genetic
and epigenetic profiles for an integrative anaysis provides a
new direction to study the regulatory network associated
with ovarian cancer. Here we describe an integrative
framework that presents two innovations. (1) a novel
stepwise correlation-based selector (SCBS) for important
pathway-relevant features, and (2) a Bayesian network (BN)
modeling for a mixture of continuous and categorical
variables for casual inference. This approach provides a way
to mine the massive cancer data for important genetic and
epigenetic features directly or indirectly associated with
cancer phenotype, leading to discoveries of pathways
underlying the molecular mechanism of cancers.

Il. RESULTS
1. Predicted Bayesian network

We consider four important data types in our analysis in the
TCGA ovarian cancer data ([1], Table 1). First, 68 potential
oncogenes and tumor suppressors (identified from both
literature [2] and TCGA data) were used as seed genes. An
additional 271 nodes out of more than 50,000 candidate
features were selected by the SCBS (Methods and [3]),
including expression level of 177 genes, 82 copy number
variation sites, 11 methylation sites and one somatic
mutation site at gene TP53. The predicted BN (Fig. 1)
contains many well-known biological pathways. To name a
few, the edge from CDKN2A to CCNEL is a known gene-
gene regulation in the RB signaling pathway [1]. The edge
from TPX2 to AURKA confirms that TPX2 can activate
AURKA by inducing autophosphorylation [4].
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Table 1. Summary of TCGA ovarian cancer data

Datatype Platform Cases

Gene expression Agilent 244K 574 (8 organ-specific controls)
DNA methylation Ilumina 27K 584 (8 organ-specific controls)
Somatic mutation Agilent 415K 579 (8 organ-specific controls)
Copy number Agilent 1M 579 (8 organ-specific controls)

@

Figure 1: Predicted graph by logistic BN model with 339 nodes
including expression levels of 245 genes (yellow), copy number at 82
sites (blue), methylation at 11 sites (green) and 1 somatic mutation at
TP53. Direction of edges means the downstream feature is regulated by
the upstream one. Red edges represent activation and black edges
represent suppression.

2. Hub genes and sample classification

We identified 13 nodes with significantly larger out-degrees
in the network: ARID1A, C19orf53, CSNK2Al, DERL],
TRMT6, COL5A2, TCF21, LUM, TPX2, UBE2C, DPM1,
NDUFB7 and NDUFB9. We show (in Fig. 2) that the 13 hub
genes can clearly distinguish the cancer samples from the
normal samples by a multi-dimensional scaling (MDS) plot
based on the correlation dissimilarity metric (comparable
clustering effect was observed based on the entire set of 245
genes). This suggests that the thirteen hub genes may present
the major difference between the cancer and normal
samples. The early-stage and high-grade tumor samples
however are not well distinguished.

3. Magjor Geneclusters

The 245 genes fell into four major clusters corresponding to
distinct functions by k-means clustering method [3]. Cluster
1 (red, Figure 3a) contained 18 genes, mainly related to cell
division, mitosis, spindle formation etc. Cluster 2 (green,
Figure 3a) contained 23 genes, most of which are
functionally related to growth factor, cell shape, cell
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motility, tumor invasion etc. Cluster 3 (black, Figure 33)
contained 20 genes, mostly related to mitochondrial system,
membrane process etc. Cluster 4 (blue, Figure 3a) was the
largest and most complicated cluster harboring 184 genes.
This large cluster communicates between the other three
clusters, which were nearly independent from each other
(Figure 3b). These findings could be implicative of some
important molecular pathways, which may or may not have
been identified, that drive the development of ovarian
cancer.

a MDS plot based on 13 local drivers b MDS plot based on 245 cancer-related genes
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Figure 2. MDS plots for sample classification. (a) based on 13 hub
genes; (b) based on all 245 genes in the predicted network. Each dot
represent on sample: red (cancer-free), green (early-stage cancer) and
black (high-grade cancer).
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Figure 3: (@) MDS plot based on correlation dissimilarity metric
between 245 genes (each circle represents one gene). Genes falling
into four clusters (by k-means clustering method where k = 4) are
indicated by different colors; (b) Correlation plot of the four clusters,
the connection between a pair of genes represents a significant
correlation.

[1l. METHODS
1. Bayesian network with logit link function

The Bayesian network is one way to model the causal
relationships among a set of random variables (nodes) via a
directed acyclic graph ([5]). In genera, the joint likelihood
of nodes X3, X5, ..., X, can be expressed as follows:

p
P(Xy, Xy, X)) = np(mnf), )
i=1

where Hig stands for the parental nodes of node i in the
graph. The proposed logistic BN model ([3]) incorporates

both continuous and discrete variables (require discretization
of the continuous variables). For simplicity, we illustrate the
model under binomial case:

T
1_ni=ﬁi0+2ﬂijxj! 2)
j#i
where X; takes value 0 or 1 with respective probabilities
{1 —m;, m;}. Here we transform the network structure to the
coefficient matrix {g;;}, where g;; = 0 means X; - X; (no
causal effect form node j to i) and otherwise X; - X; (with
causal effect). The details of the model fitting can be found
in Zhang et a [3].

log

2. Sepwise correlation-based feature selector

One important and necessary step before BN learning is
feature selection. The prevailing method is based on
independent test, which can falsely selects many irrelevant
features as some features could be causal to other features
while having no direct association with the cancer
phenotypes. With the SCBS procedure, we start with
detection of features significantly correlated with the cancer
and then progressively select subsequent features that
correlate with the selected features. Suppose we aim to
select p variables (out of Scandidates, S > p) as the nodes
in BN based on N random samples. SCBS can be
implemented as follows:

Step 1: Calculate the correlation coefficients between the
current node X; and all the other nodes. Keep k most
correlated nodes with X; for further filtering.

Step 2: Calculate the p-value of correlation coefficient for
each of the k nodes from step 1, Select the node if the p-
value is significant under Benjamini-Hochberg procedure
with FDR < 0.05.

Step 3: Repeat step 1 and 2 until p nodes are selected.

For the choice of k, we suggest k=4, 5 or 6 in practice since
smaller k tends to miss weakly connected nodes and larger k
tends to catch more false positives. See a simulation study in
[3] for detail.
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