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Abstract. In the context of a master level programming practical at
the computer science department of the Karlsruhe Institute of Technol-
ogy, we developed and make available two independent and highly opti-
mized open-source implementations for the pair-wise statistical align-
ment model, also known as TKF91, that was developed by Thorne,
Kishino, and Felsenstein in 1991. This paper has two parts. In the edu-
cational part, we cover teaching issues regarding the setup of the course
and the practical and summarize student and teacher experiences. In the
scientific part, the two student teams (Team I: Nikolai, Sebastian, Daniel;
Team II: Sarah, Pierre) present their solutions for implementing efficient
and numerically stable implementations of the TKF91 algorithm. The
two teams worked independently on implementing the same algorithm.
Hence, since the implementations yield identical results —with slight
numerical deviations— we are confident that the implementations are
correct. We describe the optimizations applied and make them available
as open-source codes in the hope that our findings and software will be
useful to the community as well as for similar programming practicals at
other universities.

1 Introduction

In [8], Thorne, Kishino, and Felsenstein presented a method for pair-wise align-
ment of DNA sequences using a maximum likelihood (ML) approach. They de-
veloped an explicit statistical model of evolution that uses statistical insertions,
deletions, and substitutions of nucleotides as basic operations for comparing two
DNA sequences. An evolutionary model, that is given as input, determines at
which rate these three evolutionary events occur. These rates are then used to
design a dynamic programming (DP) algorithm that computes the ML pair-wise
alignment between two DNA sequences.

As substitution model, we assume the standard F81 stochastic model of nu-
cleotide substitution [4]. The algorithm computes the optimal maximum likeli-
hood sequence alignment using three matrices, one for each evolutionary event


https://doi.org/10.1101/033191
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/033191; this version posted November 29, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

2 Authors Suppressed Due to Excessive Length

(i.e., substitution, deletion, and insertion). The algorithm is given by the follow-
ing dynamic programming recurrence:

N S . . . . . .
MO(Zm?) = ;ﬂ-aip()(t)ma’x{MOO - 1aj)aM1(Z - 17]>7M2(l - 17])}

o A _
Ml(lmj) = ;ﬂ—aima/x{Plli*?bj (t)pl(t)aﬂbjpl(t)}

max{M°(i — 1,5 —1),M' (i —1,5 — 1), M?*(i — 1,5 — 1)}
M?(i, j) = m, AB(tymaz{ M (i, j — 1), M*(i,j — 1)}

Where A and i denote the birth and death rate, 7 = (7, ¢, 7, 77) denotes the
equilibrium frequency of the four nucleotides, P,_,, the transition probability
from state x to y, and p,(¢t) (P, (t)) the probability that after time ¢ a so-called
mortal link has exactly n descendants and one of these is (resp. is not) the
original mortal link. As already mentioned, the values for ¢, A, u, and 7 are
given as input. Finally, 5(¢) is defined as:

1 — e(A—m)t

p(t) :

.:m, 0< A< p.

. Note that, the values p,, can be pre-computed in constant time. For more details,
please refer to the original paper [4] and the on-line task specification (see http:
//www.exelixis-lab.org/web/teaching/practicall5/description/tkf91.pdf).

To the best of our knowledge, there is a limited amount of related work on
optimizing the algorithm. In 2000 Hein et al.[5] presented several techniques for
optimizing the algorithm. However, their focus was slightly different. One main
goal of the work was to conduct a ML estimate of the model parameters. This
was achieved by implementing a banded DP that only fills DP cells within a
band along the diagonal of the DP matrix. Evidently, this can yield suboptimal
results, but was deemed sufficient to estimate the ML parameters. Once this
was done, the authors performed a full, unbanded DP computation with the
previously computed ML parameter estimates. Note that, optimizing ML model
parameters or using banded approaches was not part of the task specification
for the students. Finally, the authors propose similar simplifications of the re-
cursion as we do here, with the only difference that they use the term tabulation
instead of lookup table or memoization we use here. Also, the authors do ap-
parently not use a transformation into log space as we do here. Unfortunately,
it was not possible to obtain a copy of the code to conduct comparisons to our
implementations (pers. comm with J. Hein in August 2015).

In addition there also exists an R package that implements the TKF91 model
(see http://cran.us.r-project.org/web/packages/TKF/TKF.pdf), but only
for amino acid data. We did therefore not compare it to our implementations.

Finally, the Handle package [6] comprises a TKF91 implementation (see
https://github.com/ihh/dart/tree/master/src/tkf) that is used for con-
structing multiple sequence alignments in a Bayesian setting. Since the TKF91
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calculations are embedded into a MCMC (Markov Chain Monte Carlo) frame-
work, it was not feasible to compare the performance of this TKF91 imple-
mentation with our implementations. Form a visual code inspection, it seems
though, that the implementation of TKF91 is rather straight-forward, that is,
not particularly optimized.

In the rest of the paper we refer to the dynamic programming paradigm as
DP, and to dynamic programming matrices as DPM. The source codes developed
by teams I and II are available for download under the GNU GPL license (see
https://github.com/nbaudis/bioinf2015).

The remainder of this paper is organized as follows: In Section 2, we describe
the teaching setup and goals. The teams then present their implementations in
Sections 3 and 4, respectively. The corresponding experimental results by both
teams are presented in Section 5. In the following Section 6, we summarize our
teaching experiences. We conclude in Section 7.

2 Teaching Perspective, Goals and Course Outline

2.1 Teaching Setup & Goals

In the first semester of the Bioinformatics module that spans two semesters, we
teach a lecture called “Introduction to Bioinformatics for Computer Scientists”,
since KIT does not offer a stand-alone Bioinformatics degree. This lecture cov-
ers basic topics such as an introduction to molecular biology, classic pair-wise
sequence alignment, BLAST, de novo and by-reference sequence assembly, multi-
ple sequence alignment, phylogenetic inference, MCMC methods, and population
genetics.

In the second semester of the module, students can choose if they want to do
a seminar presentation or the programming practical whose results we describe
here. The goal of the practical is to carry out a self-contained project and write,
as well as release software, that will be useful to the evolutionary biology commu-
nity. Another key focus is on using tools (e.g., static analyzers, memory checkers)
that increase software quality. Note that, at a CS department, designing “clas-
sic” bioinformatics analysis pipelines using scripting languages is typically not
considered as “real programming” by the students. Hence, we needed to define
a project that required coding in C/C++ or Java. One should also strive to avoid
having the students extend existing software, since this is generally frustrating
and hinders creativity.

We thus decided to ask the students to implement efficient, sequential ver-
sions of the TKF91 algorithm that can also be used as library routines. Since
the DP algorithm as such, is relatively straight-forward to implement for a com-
puter science student, the main focus was on code optimization. The students
were thus asked to implement a highly efficient version of the code in C or C++ us-
ing all capabilities of a modern CPU (e.g., SSE3 and AVX intrinsics). The main
motivation for this, was to give the students enough time to experiment with low-
level optimization strategies on modern CPUs. Moreover, this project allowed
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the students to apply a broad range of skills acquired in the Bioinformatics and
other master-level modules at our department. Furthermore, the TKF91 model
required understanding and applying the discrete pair-wise sequence alignment
methods and likelihood-based models for sequence evolution introduced in the
lectures. To foster competition among the teams, an award (dinner payed by
A.S.) was announced for the team that would implement the fastest code. To
allow for a fair comparison of the codes and the CPU-specific optimizations we
provided the students access to a reference machine with 4 physical cores (Intel
i7-2600 running at 3.40GHz) and 16GB RAM.

In terms of project documentation, students are usually required to write
a report. However, in the present case, we jointly took the decision to write a
paper about the practical and upload it to biorxiv. This has the positive effect
that students also learn how to write scientific papers.

2.2 Code Quality Assessment

In order to continuously monitor and improve the quality of our source codes,
we used several tools and methods throughout our project. We deployed both,
static, as well as dynamic code analysis tools.

Static Analyses Static analyses help to identify programming errors such as
incorrect programming language syntax or typing errors. We compiled our codes
with the gcc compiler using all available and reasonable warning flags®. This
allowed us to identify potential programming errors at an early stage. Due to
its more pedantic nature (i.e., ability to detect more errors), we also used the
clang compiler with respective flags* periodically alongside of gcc to further
reduce the amount of potential programming errors. Note that, clang conducts
a static code analysis.

Dynamic Analyses These analyses cover runtime issues, mainly memory leaks.
We used valgrind and its sub-module memcheck for detecting memory-related
errors in our programs.

3 Implementation of Team I

Before describing our vectorized implementation, we will cover the necessary
prerequisites. In Section 3.1 we describe the DP algorithm in more detail as well
as the corresponding wave-front parallelism we exploited in our implementation.
In Section 3.2, we describe our memory layout concept, which is required to im-
prove the efficiency of the vectorization. Thereafter, in Section 3.3, we describe

3 _Wall -Wextra -Wredundant-decls -Wswitch-default -Wimport -Wno-int-to-pointer-
cast -Wbad-function-cast -Wmissing-declarations -Wmissing-prototypes -Wnested-
externs -Wstrict-prototypes -Wformat-nonliteral -Wundef

4 _Weverything -pedantic
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how we cache intermediate computations. Then, we explain our vectorization
approach in Section 3.4. Section 3.5 outlines our considerations regarding the
memory alignment of the data that constitutes an important part of the vector-
ized implementation.

3.1 Dynamic Programming and Wave-front Parallelism

DP is a widely-used technique to efficiently solve a class of, at first sight, appar-
ently hard computational problems by breaking them down into a collection of
simpler subproblems. The solutions to these subproblems are combined to reach
an overall solution. Pair-wise sequence alignment falls into this class. An advan-
tage of using DP to compute pair-wise sequence alignment is that it is compara-
tively straight-forward to parallelize computations along the anti-diagonals of the
DPM. This DPM parallelization approach is known as wave-front parallelism.
The underlying idea is that matrix entries along the same DP anti-diagonal d can
be computed independently from each other (and hence in parallel) if the pre-
ceding anti-diagonal d — 1 has been computed. Therefore, we can deploy vector
intrinsics to accelerate calculations along anti-diagonals.

3.2 Memory Layout

We first introduce our memory layout for the three DP matrices (M, M*, M?)
since it is performance-critical. Our vectorization needs to attain high data lo-
cality to efficiently use the CPU cache. To this end, we permuted the indexing
scheme of the DP matrix such that neighboring entries on an anti-diagonal are
stored contiguously in memory. Figure 1 depicts the memory mapping of the
matrix. It is layed out neither in a column-major nor row-major fashion, but
stored linearly by anti-diagonals.

my,; Im;, II; IOy
my My IMly; 1My
m; I My I,

my Iy, Iy Iy

mll ml? m?l m13 m22 m3l m14
— T~

Oth 1st 2nd anti-diagonal
Fig. 1. DPM memory layout
We index the matrices using a modified version of the Cantor pairing func-

tion, where a tuple is assigned to an offset. The original Cantor pairing function
7 assigns an integer to a pair of integers (e.g., 7 : (N,N) — N). Since the size
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of the DPM is given by the length of the input sequences and because it is
not infinite, we modified the pairing function to accept a tuple of two integers
from the interval [0..length(Sequence 1|2)] as input. As a consequence, the DPM
is divided into three parts: the opening, intermediate, and closing part. In the
opening part, the modified pairing function is identical to the original function;
in the intermediate and closing parts, the modified pairing function is calculated
by subtracting an offset from the original pairing function. We calculate the
offset via the original Cantor pairing function.

0 1 3 6-0  10-1 0 1 3
2 4 7-0  11-1 16-3-1| 2 4

5 8-0 12-1 17-3-1 23-6-3| 5

0 1 3 6

2 4 7

5 8

Fig. 2. Indexing scheme for anti-diagonals

In Figure 2, we show the index calculations for the anti-diagonals of a 5 x 3-
matrix. The blue frame denotes the actual boundaries of this 5 x 3 DP matrix,
the blue cells represent the opening part, the green cells inside the frame the
intermediate part, and the red cells inside the frame the closing part. Green and
red cells outside the matrix boundaries represent the offset calculation for the
intermediate and closing part. For the DP calculations, only indices that corre-
spond to DPM entries are required. Note that, the index function has constant
time and space complexity. This is essential for reducing the overhead when
accessing elements in the DPMs.

Given the anti-diagonal indexing scheme for a single matrix, we can now
devise the memory layout for the three DPMs (M, M, M?). This is because
calculating a DP value requires accessing values from all three matrices, which
are located in different memory regions. To improve data locality while, at the
same time, using efficient vector load and store operations, the data has to be
arranged accordingly. Since we are using double-precision floating-point num-
bers for all calculations, an SSE3 vector (128 bit) can hold 2 values, while an
AVX vector (256 bit) can hold 4 values. To this end, we evaluated the following
three alternative matrix layouts (see Figure 3), where n always is the number of
elements in one single DP matrix and m = n / v is the number of vectors per
matrix for a vector width of v.

Struct of Arrays (SoA) (struct { double mO[n], mi[nl, m2[n]; } data;) This
layout allows for simple vector load and store operations. However, the three
DPMs are located in separate memory regions, which decreases data locality
and hence cache efficiency.
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b) Array of Structs
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[
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¢) Array of Structs of Arrays

Fig. 3. Alternative data layouts for storing anti-diagonals

Array of Structs (AoS) (struct { double mO, mi, m2; } dataln];) This layout
exhibits improved data locality by grouping values closely together that are —
in most cases — accessed simultaneously. On the other hand, loading and stor-
ing vectors requires disentangling and interleaving them, which requires several,
potentially costly, vector shuffle operations.

[[l:: [[l? lllg H):, m: lll; H]E: H]:’ lllg [llb l[l: m; ]“% [ll‘f [[lg Hl(i m‘,‘ lllg
/ | \  load_pd y | \ load_pd
A v, v, Vo Vi Vs
0 0 0 1 1 1 2 2 2 3 3 3
m¢m¢ m¢m mlml my m{ m) my m} m; mj m;] m; mj mj mj permute (v, ,v, }
shuffle(v, ,v, ) permute(vh )
shuffle(v,,v,) 0272
022 permute (v, ,v,)
: shuffle(v,,v,)

0 0 2 2 0 1 2 3 1 1 3 3
m) mj m m] m)m) my m; mg; mj m, m; m; mg m; m, mj; m,

blend (v, ,v; )
i W ' blend(vo ’V2>
_— . _+ blend(v,,v,)

m) m} m? mj m{ m} m? m} m m) m? m}

a) SSE3 b) AVX

Fig. 4. Disentangling operations for a) SSE3 (128 bit) and b) AVX (256 bit) vectors.

Figure 4 illustrates these shuffle operations. For a particular position on an
anti-diagonal, we use m¥ to denote that element m of a DP matrix with index
x is stored in slot y of the SSE3/AVX vector. The first row of the Figure de-
picts the AoS data layout. Initially, we perform a vector load operation to load
the data into temporary vector registers. Thereafter, we shuffle the temporary
vectors such that (i) each vector only contains elements from one of the three
DP matrices and (ii) the individual elements are in the correct order with re-
spect to the anti-diagonal. For both, SSE3 as well as AVX instructions, we need


https://doi.org/10.1101/033191
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/033191; this version posted November 29, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

8 Authors Suppressed Due to Excessive Length

to perform three load operations and three shuffle/permute operations. For
AVX, three additional blend operations are required to correctly order the data
elements.

Array of Structs of Arrays (AoSoA) (struct { double mO[v]l, milvl, m2[v]l; }
datalm] ;) This layout stores vectors such that adjacent elements for each of the
three matrices can be directly loaded into an SSE3/AVX vector. While solving
both aforementioned problems (low data locality and costly vector operations),
this complicates DP cell accesses above the current anti-diagonal. The required
values above the current anti-diagonal are not stored contiguously and therefore
we either need to use shuffle/permute operations or conduct partial loads (i.e.,
load single elements into vectors).

All three layouts exhibit different performance characteristics with respect to
cache efficiency and complexity of the load, store, as well as shuffle operations.
We implemented prototypes for all three approaches to analyze their perfor-
mance and found that the AoS approach performs best. Note that, the compu-
tational cost of the shuffle operations outweighed the improved cache efficiency
in the AoS and AoSoA layouts (also see Table 5.1 in Section 5.2).

3.3 Memoization

The TKF91 [8] model has several parameters. Thus, it initially seemed inevitable
to carry out the non-trivial computations for filling DP cells from scratch for each
individual cell. However, after analyzing which expressions are constant and can
thus be pre-computed and reused (i.e., memoized), we reduced the operations
required for calculating a DP cell value to just three: indirection, summation,
maximum.

Obvious savings can be achieved for expressions that only depend on the time
parameter ¢, the birth rate A, and the death rate y. These values are constant and
given as input parameters. We also observed that the cell updates in the DP algo-
rithm only require a constant number of common sub-calculations/components:
When the nucleotide states at the current indices for the two sequences are avail-
able, the score (cell value) can be computed by only using the current nucleotide
pair and the neighboring values in the three DP matrices.

The memoization scheme (lookup table) for all possible configurations is
shown in Figure 5. The penalty functions C? take one or two nucleotide states
as parameters. Thus, these penalties can be stored in a memoization table of
4 and 16 entries, respectively. Using only 24 memoized values, we were able to
substantially simplify and accelerate the cell updates. In addition, this simpli-
fication now allows to apply the logarithm for preventing numerical underflow.
This was not possible before, since taking the logarithm of the original equa-
tion would have been too expensive computationally. In addition, vectorizing
the cell updates is simpler, since the remaining calculations are less complex.
Finally, this simplification reduces the number of possible memory layout and
vectorization options.
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C°(a) = gmmw

Q

(a,b) = %ﬂ'amax{Pa—m (t)p1(t), mpr(t)}

C*(b) = mAB(1)
M°(i,5) = C°(ai)ymaz{M°(i — 1,5), M" (i — 1,5), M*(i — 1,5)}
M'(i,5) = C"(as,bj)maz{M°(i — 1,5 —1),M" (i — 1,5 — 1), M*(i — 1,5 — 1)}
M (i, j) = C*(bjymaz{M" (i,j — 1), M*(i,j — 1)}

Fig.5. A re-formulation of the DP step using the memoized sub-problems (lookup
tables) C°.

At a later point of the project, it became evident that the indexed loads from
the memoized penalty matrices C°, C', C?, as shown in Figure 5 caused a per-
formance degradation. To address this problem, we tried to pre-compute a larger
lookup table of vector-sized elements, that we indexed by a specific nucleotide
permutation. Consider the following example for AVX vector intrinsics. We need
to calculate a bijective mapping for a set of four nucleotides to an integer repre-
senting one of the 4* = 256 possible permutations (e.g., a perfect hash) for C°
and C2, and one of the possible 424 = 65536 permutations for C! respectively.
The mapping is implemented as base conversion from the set of 4 nucleotides to
an unsigned integer via appropriate bit operations.

While this approach has exponential space requirements as a function of the
vector width, using a lookup table of 65536 - 32 bytes = 2 MB for C* for the
AVX version of our code was still feasible. However, the performance evaluation
revealed that too much time is spent to populate the table. Thus, we abandoned
this approach.

3.4 Vectorization

We implemented a vectorized version for computing M°, M*', and M? using
add, max, load, and store operations for both SSE3 and AVX instructions.
With these operations, we can process n matrix elements in parallel. Depending
on the location of the vector on the anti-diagonal that is being processed, there
will be 0 < n < V valid elements to operate on per vector (with vector size
V :=4 for AVX and V := 2 for SSE3).

Usually, data that has to be loaded into vectors needs to be aligned, that is,
the starting address of the vector data needs to be a multiple of 16 or 32 bytes.
This memory alignment allows to use the aligned versions of the vector load
and store operations, which are faster than the respective unaligned operations.
Although we ensured memory-aligned accesses to the majority of the data (as
will be explained in Section 3.5), we consistently used unaligned vector load
and store operations (loadu_pd and storeu_pd) in the SSE3 and AVX versions
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of our code. We did not observe a significant performance degradation when
applying unaligned load intrinsics on aligned data.

To prevent our store operations from overwriting data at the boundaries of
the matrices, we ensured that for vectors with size n < V' (i.e., not completely
filled /padded vectors) only n elements are written back into the matrices. For the
SSE3 version, this can be achieved by only writing the lower part of the vector
if its size is 1. For AVX, however, we covered all cases where n < V holds using
the maskstore_pd intrinsic and an appropriate mask for all possibles values of
n (ie., 3,2, and 1).

3.5 Data Alignment

If we want to vectorize along the anti-diagonals, accessing the memory in the
DPMs when they are stored in row-, or column-major order decreases efficiency.
This is because such a DP storage scheme does not allow to deploy efficient
vector operations for loading the values from the matrices into vector registers.
For such a matrix layout, the performance of the inner DP loop becomes heavily
memory-bound. Therefore, we used the aforementioned layout by consecutive
anti-diagonals together with the struct of arrays approach (see section 3.2), such
that unaligned load and store operations for moving data directly to/from the
anti-diagonal into vector registers can be utilized.

0 8 16 24 32 40 48
—~ N T —m
Oth 1st 2nd anti-diagonal

Fig. 6. Shift of the byte offset of the anti-diagonals

Figure 6 shows why a 16/32 byte alignment for the starting addresses of
the anti-diagonals can not be achieved when just storing anti-diagonals linearly.
To solve this problem, we used padding, that is, we allocate some dummy en-
tries such that each anti-diagonal starts at a 16/32 byte-aligned address. As
a consequence we also had to modify the indexing function from Section 3.2
accordingly. The main idea is to store each anti-diagonal starting at a 16/32
byte-aligned address.

We implemented a scheme where the row with index 1 is memory-aligned,
because the row with index 0 is initialized prior to entering the DP loop. As a
consequence, each anti-diagonal is aligned to an “odd” address (a — 8, where a is
the desired byte alignment, for instance, 32 — 8 = 24 bytes for AVX intrinsics).

In Figure 7, we show a snapshot of the required values for computing the anti-
diagonal elements with AVX intrinsics (vector length: 4 double precision values).
In the current step we want to calculate the red elements. For calculating a single
element, we require three elements from the two previous anti-diagonals. We
need to access the element directly above (yellow) and left (blue) to the current
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matrix entries
to be computed
upper left

upper
left

Fig. 7. Outline of the data accesses required for calculating an anti-diagonal.

element as well as the diagonal element above and to the left (green). The Figure
illustrates that —omitting the asymptotically irrelevant boundary cases— one
of the following four conditions holds:

. red and blue start on an aligned address, yellow and green do not
. red and yellow start on an aligned address, blue and green do not
. yellow and green start on an aligned address, red and blue do not
. red and green start on an aligned address, yellow and blue do not

=W N

For the computation, we need to perform three load operations in total for
the blue, yellow, and green elements as well as one store operation for the red
elements. Since, based on empirical observations, unaligned store operations
require more time than unaligned load operations, we ensured that either con-
dition 1 or 2 above is always met. Thus, we implemented our code such that,
the first condition is met for the opening and intermediate part and the second
condition holds true for the closing part of the DP matrices.

4 Implementation of Team II

In the following, we first describe how we transformed the algorithm into log-
space to prevent numerical underflow. This also allowed us to simplify the formu-
las. Thereafter, we report how we improved data locality by storing the matrix
entries in a dedicated data structure. While we experimented with different vec-
torization techniques, it turned out that the fastest code did not rely on vector-
ization. We conclude, that we managed to simplify the sequential code to a point,
where the vectorization overhead (see Section 4.3) exceeds the performance gains
that can be achieved.

4.1 Mathematical Optimization - Basic Version

Numerical Underflow Prevention As the TKF91 algorithm performs suc-
cessive multiplications of floating point numbers, preventing numerical underflow
1s a major issue. Underflow can occur, even for short input sequences with less
than 100 nucleotides each. To address this issue we transformed all computations
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into log-space, to add logarithms of probabilities instead of multiplying proba-
bilities. While it is still possible to experience numerical underflow, even after
this transformation, we expect that this is highly unlikely to occur for prac-
tical (empirical) input data. We did not observe any numerical underflow for
the range of input parameter values and sequence lengths (up to and including
10, 000 nucleotides) we tested.

Simplifying the Formulas We were able to omit redundant computations by
re-using already computed values from previous matrix entries. For example, we
observed that

MO(i+1,0) = M°(i, 0)+log(vi+1) +log(Git1) +log(B(1)) +1og(ma,., ) +log(po(t))-

After replacing 5(t), po(t),v:, and ¢; by their respective formulas, we noted that
some terms appear multiple times. Operating in log-space allowed us to further
simplify the formulas. Especially the logarithmic rules log(axb) = log(a)+log(b)
and log(a/b) = log(a) —log(b) allowed us to replace multiplications and divisions
with additions and subtractions.

In the following formulas, 1 < ¢ <n and 1 < j < m, if not stated otherwise.

Matriz Initialization

MP°(i,0) = M°(i — 1,0) 4 2 x log(\) + 2 * log(B) + log(7a, ), > 2
M (i,0) = —o0

M?(i,0) = —o00

MP(0,7) = —o0

M*Y(0,j) = —o

M?(0,1) = log(v0) + log(¢2) + log(me, )

= log(1 — %) +log(1 — A x 8) + log(A) + log(B) + log(ms, )

M?(0,5) = M?(0,j — 1) + log(A) + log(B) + log(ms, ), 5 > 2
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Further Initialization

M°(i, j) = log(X) +log(B) + log(m,)

M (i, §) = log(\) — log(u) + log(ma,) + log(max{ Py, 5, * p1,7p; * P1})

= log(A) — log(p) + log(mq,) + log(1 — A * 8)+
X{log( wisby) — L,
log(my,) +log(1 — e™#" — px )

M?(i,7) = log()\) + log(B) + log (s, )
Dynamic Programming Step
MO, 5) = M°(i, 7) + max{M°(i — 1,5), M' (i — 1,5), M*(i — 1,5)}
M*(i,§) = M*(i,7) + max{M°(i — 1,j — 1), M' (i — 1,5 — 1), M*(i — 1,5 — 1)}
M?(i,j) = M?(i, j) + max{M" (i,j — 1), M*(i,j — 1)}

Pre-computing the Logarithms In general, replacing a multiplication by two
logarithms and an addition is more costly. However, we managed to circumvent
the additional computational cost of log space. This is because our formulas
above contain only 25 different logarithm invocations that only depend on given,
constant input parameters. Hence, all these logarithms can be pre-computed.

A major disadvantage of logarithmic transformations is that errors in the
logarithm computation accumulate over a sequence of operations. To further
investigate this, we used the high precision mathematical library of the boost-
framework [1]. It offers datatypes that dynamically adapt their floating point
precision to avoid numerical errors as well as under-/overflow. Our initial idea
was to use this library only for pre-computing the logarithms, and thereby reduce
the induced runtime overhead. However, because we converted these arbitrary
precision datatypes back into standard double precision floating point values
(using convert_to<double>()) for increasing the speed of the actual DP cal-
culations, we did not observe increased precision. Therefore, we abandoned this
path.

In the rest of the manuscript we refer to the code obtained by applying the
above techniques and transformations as the basic version.

4.2 Matrix Storage Schemes - Improved Version

Matrix as Array In the first, naive implementation, we stored each matrix
(M, M*, M?) in a separate array, using row-major order. The matrix entry at
position (i, j) is stored at index position i* (m+1)+j in the array (see Figure 8).

To illustrate the shortcomings of this approach, consider the following exam-
ple: assume that six matrix rows fit into one cache line. Then, performing one
iteration of the inner DP loop requires loading three cache lines, one per DPM.
This is depicted in part a) of Figure 9. If we further assume a cache capacity
of only two cache lines, every iteration would then force one of the lines to be
swapped out and decrease memory efficiency.
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0(1(2|34
516|789
10(11|12(13|14
15(16{17{18|19

Fig. 8. Row-major indexing

MO M1 M2

[ J [ J [ J
[ J [ J [ J

Fig. 9. Relation of cache lines and matrices, using the method of allocating each matrix
separately(a) and the Array-of-Structs method (b). Each color represents a distinct
cache line.

Array-of-Structs Data Structure The dynamic programming step (see Al-
gorithm 1) accesses the matrices M, M and M? at the same index position to
determine the maximum entry.

Thus, we improved data locality by storing the entries from the three ma-
trices located at identical index positions contiguously in memory. For this, we
implemented a data structure called MatrixEntry that consists of three double
values: mg, m; and mgy. Then, we store the matrices linearly (see Section 4.2). In
contrast to the initial approach, we only store one array and each array element
now is a MatrixEntry struct instead of a simple double value (see Figure 10
and SoA as defined by team I in Section 3.2).

Let us now consider the example in Figure 9 again. With six matrix lines
filling one cache line, a cache line now contains data from all three matrices.
Consequently, all operations for a single DP cell update will access at most two
cache lines. If we assume a cache capacity of two cache lines again, cache misses
will now only occur when traversing row boundaries.

By using the perf stat tool, we found that using the MatrixEntry data
structure indeed reduced the number of page faults which we use as a proxy for
cache efficiency. The number of page faults was a sufficient proxy for predict-
ing cache-related performance. Thus, we did not deploy more elaborate cache
simulators such as cachegrind.
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Algorithm 1: The dynamic programming step, row-major version, where
CO(i,j) maps the DP coordinates ¢ and j to the linear index in the array
of structs data structure.

...// some initializations, see Appendix 4.1

fori=1,...,ndo

for j=1,...,m do

...// some initializations, see Appendix 4.1

coord < CO(i, j);

up + CO(i,j — 1);

diag <+ CO(i — 1,5 — 1);

left < CO>i—1,7);

m|coord].mo < m[coord].mo+max{m/[left].mo, m[left].mi, m[left].ma2};
m[coord].my <

m[coord].m1 + max{m[diag].mo, m[diag].m1, m[diag].m2};

11 m|coord].ma < m[coord].ma + max{m[up|.m1, mup].ms2};

12 end

13 end

© 00N O A W N

[y
o

one MatrixEntry struct

| M°0,0) | M1(0,0) | M2(0,0) | M°0,1) | M 0,1) | M2 (0, 1) |
0x00 0x08 0x10 0x18 0x20 0x28

Fig. 10. Array-of-Structs data structure for storing the three matrices in memory.
Each MatrixEntry element stores the entries of a single index for all three matrices.
The structs are stored contiguously in row-major order.

Alternative Storage Schemes Since each DP cell update needs to access
the top, left, and upper-diagonal elements of the matrices, storing the matrix
anti-diagonals linearly (see Figure 11 and considerations by Team I) will mini-
mize cache misses. Finding an inexpensive-to-compute closed formula that maps
the index position (¢, 7) representing the row and column of a matrix to wave-
front-coordinates turned out to be challenging (see also discussion by Team I
in Section 3.2). The index of the diagonal is i + j, the sum of the row index
and the column index. Determining the number of elements on the anti-diagonal
and especially the correct position along the anti-diagonal proved more difficult
though. The indexing formulas we tested were too computationally expensive
and required more computations than the actual cell updates. As an alternative,
we tried storing pre-computed index mappings in an additional matrix. However,
this slowed down the program as computing the mapped indices required more
arithmetic operations than the actual TKF91 algorithm. Figure 12 illustrates the
main problem which has to be solved for efficiently indexing-diagonals: Given
an wave-front index k, how do we obtain the indices for the upper, upper-left-
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diagonal, and left element of the matrix? While the required offsets are constant
for a single anti-diagonal, they change for successive anti-diagonals.

Ol N O

Fig. 11. Wave-front indexing

Fig. 12. Offsets in wave-front/anti-diagonal indexing

We denote the code obtained by applying the above storage scheme, the
improved version.

4.3 Vectorization Attempts

During code development we conducted a partial vectorization for two of our
implementations: the basic log-space implementation (Section 4.1) and the im-
proved log-space implementation, using a more cache-efficient data structure to
store the matrices (Section 4.2).

In both cases we mainly focused on vectorizing the code that initializes the
three matrices. This is because our analyses with Valgrind callgrind revealed,
that this part of the code required 75 — 80% of overall runtime. Additionally, as
the initializations are completely independent of each other, this part should be
straight-forward to vectorize.
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Several code transformations were necessary to vectorize the code. First, we
had to ensure that vector load and store operations are performed on correctly
aligned memory addresses (see discussion by Team I). Secondly, we needed to
devise a strategy for iterating over matrices and handling matrix sizes that are
not multiples of the vector width. Finally, we needed to store calculation terms
(e.g., log(m)’s or Py, p,’s), in appropriate vector types and had to replace all
basic arithmetic operations by their vectorized counterparts.

Log-space implementation For the vectorization of our basic version (see
Section 4.1), we implemented an appropriate memory alignment by using the
__attribute__(aligned(size)) attribute for stack allocations, and the respec-
tive posix memalign function for heap allocations.

We also changed the iterations through the matrices to start at entry 0 of
each row, as starting iterations at position 1 would result in memory accesses
at incorrectly aligned addresses. Furthermore, as we store the matrix rows con-
tiguously in memory, we had to pad the rows to ensure a correct alignment of
the first entry in each row.

The strategy we chose to deal with row dimensions that are not multiples
of the vector width is straight-forward. For each row, we compute as much as
possible via vector intrinsics and the remainder sequentially.

Version using Array of Structs data structure While the strategy for
dealing with row dimensions that do not fit vector widths remained the same
in the improved version (introduced in Section 4.2) of our program, we had to
apply several modifications to be able to use vector intrinsics in conjunction with
this more cache-efficient data structure.

As Figure 10 shows, using the Array-of-Structs scheme results in a non-
contiguous storage of row entries. As a consequence, loading and storing vector
registers is not straight-forward. To this end, we implemented load and store
operations that fit our data structure. These operations rely on vector functions
that load and store single double precision floating point values. An advantage of
this is that we do not need to enforce correct data alignment any more. However,
a single _mm_load_pd on contiguous memory is substantially faster than a series of
_mm_loadl_pd and -mm_loadh_pd operations on non-contiguous memory locations
using SSE3 intrinsics.

Thoughts on wave-front vectorization Our two log-space versions of TKF91
reduce the DP cell update calculations that determine the largest of two or three
values. In turn, this means that the relative amount of time spent for DP cell
updates is almost negligible. Nevertheless, we invested time to explore potential
vectorized wave-front versions of the program.

Initially, as Team I, we investigated appropriate DP cell storage and access
schemes, to store the data contiguously with respect to the wave-front paral-
lelization data access pattern. We found that, indexing a cell required 20-30
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arithmetic operations as opposed to only 2-3 for the actual cell update. Thus,
merely indexing a cell, using the standard row and column coordinates, requires
an excessive amount of computations. Our preliminary benchmarks yielded ab-
solutely no performance improvement for the vectorized versions of the basic as
well as the improved versions of our code. Therefore, we abandoned the vector-
ized wave-front approach.

5 Evaluation and Testing

We initially describe the benchmark data we used (Section 5.1) as well as the
experimental setup. Then we present the runtime results for teams I and II. We
conclude with a thorough analysis of the impact of the logarithm implementation
used in Section 5.3.

5.1 Test Data and Experimental Setup

For testing and performance assessment, we used empirical benchmark datasets.
We download multiple sequence alignments (MSAs) from http://goo.gl/nl1D4nb
that were used in [2]. From each of the six MSAs, we selected ten sequences
(e.g., for an MSA with 60 sequences we extracted the sequences with indices
0,6,12,...,54), and initially dis-aligned the sequences (removed all MSA gaps).
Then, we computed all 45 possible pairwise TKF91 alignments between these
ten sequences. As input parameter values, we used A := 1.0,p := 2.0,7 :=
0.1,7 := (0.27,0.24,0.26,0.23). We empirically determined that using median
of five samples, where each sample corresponds to the average runtime for ten
TKF91 executions (i.e., a total of 5% 1045 = 2250 pair-wise TKF91 alignments
per dataset) yielded stable runtime estimates.

As test platform we used the aforementioned reference hardware (see Sec-
tion 2.1).

In Sections 5.2 and 5.3 the two student teams present results of specific
performance and accuracy issues they investigated in detail. In Section 5.4 we
compare the runtimes of the implementations developed by teams I and II.

ms per iteration

(compared to best) SoA AoS AoSoA

BDNF 83.1 (1.01)  82.2 (1.00) 85.1 (1.04)
cytb 262.9 (1.00) 290.7 (1.11) 296.5 (1.13)
RAG1 209.1 (1.02) 205.6 (1.00) 209.4 (1.02)
RAG2 246.1 (1.00) 250.9 (1.02) 258.3 (1.05)
RBP3 346.9 (1.00) 363.5 (1.05) 376.2 (1.08)
vWF 439.6 (1.00) 441.0 (1.00) 462.7 (1.05)

Table 1. Team I benchmark results for the SoA, AoS, and AoSoA storage schemes.
The fastest execution time is shown in bold font.
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5.2 Results of Team I

As mentioned in Section 3.5, we performed various performance tests using this
benchmark suite. We tested different vector load/store schemes and measured
the run times of the SoA, AoS, and AoSoA storage schemes. We show the results
of the SoA versus AoS versus AoSoA runtime experiments in Table 5.1. As
already mentioned in Section 3.5, the SoA approach performs best.

5.3 Results of Team II

We first assess the performance and impact on the output of distinct logarithm
implementations (Section 5.3). Thereafter, we measure the runtime of our code
in Section 5.3.

Different Logarithm Libraries In addition to the standard log function
(from C++ <math.h>), we also used the crlibm library by Daramy et al. [3]. Tt
includes versions of the logarithm function, which allow to explicitly specify the
rounding strategy, (e.g., rounding up, rounding down, towards zero, or towards
the nearest integer), to be used.

To assess the numerical stability of our alignments, we computed the edit
distances between alignments calculated using distinct logarithm implementa-
tions to a reference alignment using the Boost.Multiprecision library. The
edit distance quantifies the difference between two strings. It calculates the min-
imum cost sequence of string edit operations required (insertions, deletions, and
substitutions; note that these are string edit operations not related with the
TKF91 model), to transform one string into the other. We assigned a cost of
1 to insertions, deletions, and substitutions of single letters. For our tests, we
aligned all possible pairs of sequences from the BDNF MSA in the aforemen-
tioned benchmark data (see Section 5.1).

For the alignments, we used A := 1, := 2,7 := (0.27,0.24,0.26,0.23) and
7:=0.1.

In particular the log_ru function from the crlibm library, which explicitly
rounds up, produces a different alignment than the Boost.Multiprecision ver-
sion (see Table 2). However, the computed likelihood scores were highly similar
and edit distance between the alignments was minimal between the crlibm and
Boost.Multiprecision versions (see Figure 13). We finally decided to use the
log_ru function from the crlibm library because, in most cases, it yielded the
same results as the sample solution provided by our instructors (http://www.
exelixis-lab.org/web/teaching/practicall5/scaledCode/tkf91_scaling.tar.gz).

Runtime Measurements For measuring runtimes during code development,
we used four pairs of randomly generated sequences consisting of 10, 100, 1000,
and 10000 nucleotides, respectively.

We measured the execution times around the kernel of the program, that
is, excluding any I/O required to load parameters and input sequences, or the
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Logarithm Function|Average Edit Distance to Reference Alignment
log from <math.h> 2.15

log_ru from crlibm 33.15

Table 2. Team II: average edit distances from the Boost.Multiprecision reference
alignment for different logarithm implementations.

Alignment using standard C++ header <math.h>
ACGACTAGTCA-GC-TACG-AT-CGA-CT-C-ATTCAACTGACTGACA-TCGACTTA
A-GAG-AGTAATGCATACGCATGC-ATCTGCTATT---CTG-CTG-CAGTGG--T-A

Alignment using Boost.Multiprecision
ACGACTAGTCA-GC-TACG-AT-CGA-CT-C-ATTCAACTGACTGACA-TCGACTTA
A-GAG-AGTAATGCATACGCATGC-ATCTGCTATT---CTG-CTG-CAGTGG--T-A

Alignment using log._ru
ACGACTAGTCA-GC-TACG-AT-CGA-CT-C-ATTCAACTGACTGACA-TCGACTTA
A-GAG-AGTAATGCATACGCATGC-ATCTGCTATTC-—--TG-CTG-CAGTGG—-T-A

Alignment from reference implementation
ACGACTAGTCA-GC-TACG-AT-CGA-CT-C-ATTCAACTGACTGACA-TCGACTTA
A-GAG-AGTAATGCATACGCATGC-ATCTGCTATTC---TG-CTG-CAGTGG--T-A

Fig.13. Team II: Numerical alignment differences for input parameters w :=
(0.25,0.25,0.25,0.25), A := 1, u := 2,7 := 0.1

output of the program. The allocation and initialization of the three DPMs
form part of the kernel and were therefore included in our measurements. We
executed the kernel multiple times for each dataset and subsequently averaged
the runtimes. To balance accuracy and overall benchmark time (see Table 3) we
used distinct numbers of kernel invocations, depending on the dataset size.

The results of these runs are summarized in Figure 14 for 7 distinct version
of our code using different logarithm implementations, SSE3 and AVX intrinsics
for initializing the DPMs, and using the more cache-efficient array of structs
storage scheme (denoted by _caching).

Length of Sequences|Number of Runs
10 10000
100 1000
1000 100
10000 10

Table 3. Team II: number of runs per sequence length


https://doi.org/10.1101/033191
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/033191; this version posted November 29, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Efficient Open Source TKF91 Implementations 21

Run time comparison
1000

100 -
£ 10 -
Q
£ )
s !
= .
(=)

o
% 0.1 .
0.01 -
0001 Il
Y/ Z V/ 7,
(4 Q () (2)
(4 00 000
Sequence size (nucleotides)
100 log_caching_round_up s
log_sse3 mummm log_caching_round_up_sse3 mmmm
log_avx psss log_caching_round_up_avX m——x

log_caching s

Fig. 14. Team II: comparison of average runtimes of different implementations. sse3
and avx post-fixes denote the vectorized versions of the programs (see Section 4.3).
With log we denote the log-space transformed versions of TKF91 (Section 4.1). Ver-
sions using an arrays of structs to store matrices (Section 4.2) are denoted by caching;
round_up denotes versions relying on the crlibm library logarithm function log_ru
(Section 5.3).

5.4 Performance: Team I versus Team II

To test performance we deployed the Celero benchmark suite that can directly
measure the run-time (see https://github.com/DigitalInBlue/Celero) of a
single function call. We used the Celero suite to compare the performance of
the codes developed by teams I and II on the aforementioned benchmark data
set (see Section 5.1). In Table 5.4 we depict the runtimes for a single kernel
invocation in milliseconds as well as the runtime ratio with respect to the fastest
implementation. Note that, the run times correspond to the accumulated execu-
tion time over all 45 possible pair-wise alignments between the 10 sequences we
selected from each dataset. The performance comparison was set up jointly by
the two teams to guarantee a fair comparison.
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ms per iteration

(compared to best) Team I Team I1

BDNF 83.1 (1.50) 55.4 (1.00)

cytb 262.9 (1.25) 209.9 (1.00)
RAG1 209.1 (1.42) 147.3 (1.00)
RAG2 246.1 (1.28) 192.0 (1.00)
RBP3 346.9 (1.25) 277.6 (1.00)
vWF 439.6 (1.25) 352.2 (1.00)

Table 4. Performance comparison of TKF91 implementations by teams I & II.

6 Teaching Results

6.1 What did Team I learn?

While the assigned task was straightforward and very manageable in princi-
ple, the implementation details were tricky. Preventing floating point underflow
while, at the same time, optimizing performance was challenging. This is because,
such technical problems are frequently ignored in other programming practicals
at KIT that focus on functionality. Furthermore, vectorizing with SIMD intrin-
sics required some rethinking and re-engineering because we needed to identify
a suitable memory layout, optimize data alignment, and deal with boundary
conditions (padding). While it was satisfying to address and solve problems pro-
gressively, there were always additional ideas to further improve the code (w.r.t.
performance and design), which made prioritizing tasks important. We enjoyed
the satisfaction of gaining yet another percent of execution time in combination
with working with SIMD instructions that were not familiar to us.

The basic problem was clearly outlined. There was enough freedom and time
left to work on improving our solution. The scheduled project milestones turned
procrastination and last minute work into a non-issue. Most surprisingly, we
were always on schedule.

6.2 What did Team II learn?

For this assignment we had to tackle two major problems: preventing numerical
underflow and pursuing the elusive “most efficient” implementation. In the early
stages, we came up with the idea of transforming the algorithm into log-space
to solve the numerical issues. This did not only prove to represent an efficient
solution, but also allowed us to further simplify the formulas and to pre-compute
the vast majority of terms. In this context we also discovered deviations in the
output alignments that depend on the specific implementation of the logarithm
function being used. We therefore used the crlibm library of mathematical func-
tions, that allowed us to assess the impact of logarithm functions with distinct
rounding strategies on the final result.

To optimize the code we also used SSE3 and AVX intrinsics to vectorize
the most work-intensive portions of the code. While we were unable to produce


https://doi.org/10.1101/033191
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/033191; this version posted November 29, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Efficient Open Source TKF91 Implementations 23

a faster vectorized code, we did learn how to use vector intrinsics and how to
deal with the associated pitfalls. The largest performance gain was attained via
a more cache-efficient data structure. For this, we used profiling tools such as
perf and clang for the first time. Finally, we concluded that C++ is appropriate
for HPC projects, provided that, the problem and data-structures at hand are
well understood.

7 Conclusion

We have implemented and made available two independent, highly optimized
open-source implementations of the TKF91 algorithm for statistical pair-wise
sequence alignment. We thoroughly assessed their performance and investigated
aspects such as differing alignment results because of slight numerical devia-
tions in logarithm implementations. The implementations by teams I and II are
substantially different in the approach they take for optimizing program perfor-
mance on standard x86 architectures. We proposed several methods for storing
and addressing the three dynamic programming matrices. In addition, we show
how the original equations can be simplified to (i) avoid numerical underflow
issues and (ii) save a substantial amount of computations.

We make the source code available in the hope that, it will be useful to the
community. In particular, some of the wave-front vectorization approaches might
be applied to the more complex statistical alignment kernels used in programs
such as BaliPhy [7].

Finally, the task and code at hand can be used to design similar bioinfor-
matics programming practicals. For instance, one might ask students to try and
come up with a faster implementation or use the existing implementations as
library functions in some larger and more complex programming project.
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