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Abstract 

Populations experience a continual input of new mutations with fitness effects ranging 

from lethal to adaptive. While the distribution of fitness effects (DFE) of new mutations is not 

directly observable, many mutations likely have either no effect on organismal fitness or are dele-

terious. Historically, it has been hypothesized that a population may carry many mildly deleteri-

ous variants as segregating variation, which reduces the mean absolute fitness of the population. 

Recent advances in sequencing technology and sequence conservation-based metrics for predict-

ing the functional effect of a variant permit examination of the persistence of deleterious variants 

in populations. The issue of segregating deleterious variation is particularly important for crop 

improvement, because the demographic history of domestication and breeding allows deleterious 

variants to persist and reach moderate frequency, potentially reducing crop productivity. In this 

study, we use exome resequencing of thirteen cultivated barley lines and genome resequencing of 

seven cultivated soybean lines to investigate the prevalence and genomic distribution of deleteri-

ous SNPs in the protein-coding regions of the genomes of two crops. We find that putatively del-

eterious SNPs are best identified with multiple prediction approaches, and that SNPs that cause 

protein truncation make up a minority of all putatively deleterious SNPs. We also report the im-

plementation of a SNP annotation tool (BAD_Mutations) that makes use of a likelihood ratio test 

based on alignment of all currently publicly available Angiosperm genomes. 
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Introduction 

Mutation produces a constant influx of new variants into populations. Each mutation has a 

fitness effect that varies from lethal to neutral to advantageous. While the distribution of fitness 

effects of new mutations is not directly observable (Eyre-Walker and Keightley 2007), most mu-

tations with fitness impacts are deleterious (Keightley and Lynch 2003). Deleterious mutations 

are typically identified as changes at phylogenetically-conserved sites (Doniger et al. 2008), or 

loss of protein function (Yampolsky et al. 2005). Strongly deleterious variants (particularly those 

with dominant effects) are quickly purged from populations by purifying selection. Likewise, 

strongly advantageous variants increase in frequency, and ultimately fix due to positive selection 

(Robertson 1960; Smith and Haigh 1974). Weakly deleterious variants have the potential to per-

sist in populations and cumulatively contribute significantly to reductions in fitness (Fay et al. 

2001; Eyre-Walker et al. 2006; Doniger et al. 2008). 

Considering a single variant in a population, three parameters affect its segregation: the 

effective population size (Ne), the selective coefficient against homozygous individuals (s), and 

the dominance coefficient (h). The effects of Ne and s are relatively simple; variants are primarily 

subject to genetic drift rather than selection if Nes < 1 (Kimura et al. 1963). The effect of h is not 

as straightforward, as it depends on the frequency of outcrossing. In populations with a high de-

gree of inbreeding, many individuals will be homozygous, which reduces the importance of h in 

determining the efficacy of selection against the variant. In populations that are outcrossing, an 

individual deleterious variant will occur primarily in the heterozygous state, and h will determine 

how “visible” the variant is to selection, with higher values of h increasing the strength of selec-

tion (Charlesworth and Charlesworth 1999). A completely recessive deleterious variant may re-

main effectively neutral as long as the frequency of the variant is low enough that substantial 

numbers of homozygous individuals are not produced. Conversely, a completely dominant delete-

rious variant will be quickly purged from the population (Lande and Schemske 1985). On aver-

age, deleterious variants segregating in a population are predicted to be partially recessive (Sim-

mons and Crow 1977), allowing them to remain “hidden” from the action of purifying selection, 
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and reach moderate frequencies.  Indeed data from a gene knockout library in yeast (Shoemaker 

et al. 1996) indicate that protein loss-of-function variants have an average dominance coefficient 

of 0.2 (Agrawal and Whitlock 2012).  

Effective rates of recombination also have important impacts on the number and distribu-

tion of deleterious mutations in the genome. Low recombination regions are prone to the irre-

versible accumulation of deleterious variants. This phenomenon is known as the “ratchet effect” 

(Muller 1964). In finite populations with low recombination, the continual input of deleterious 

mutations and stochastic variation in reproduction causes the loss of individuals with the fewest 

deleterious variants. Lack of recombination precludes the selective elimination of chromosomal 

segments carrying deleterious variants, and thus they can increase in an inexorable fashion (Mul-

ler 1964). Nordborg (2000) demonstrates that under high levels of inbreeding, effective recombi-

nation can be decreased by almost 20-fold relative to an outbreeding population. While inbreed-

ing populations are especially susceptible to ratchet effects on a genome-wide scale, even out-

breeding species have genomic regions with limited effective recombination (Arnheim et al. 

2003; McMullen et al. 2009). Both simulation studies (Felsenstein 1974) and empirical investiga-

tions in Drosophila melanogaster (Campos et al. 2012, 2014) indicate that deleterious variants 

accumulate in regions of limited recombination. 

Efforts to identify individual deleterious variants and quantify them in individuals have 

led to a new branch of genomics research. In humans, examination of the contribution of rare del-

eterious variants to heritable disease has contributed to the emergence of personalized genomics 

as a field of study (reviewed in Abecasis et al. 2010; Cooper et al. 2010; Marth et al. 2011). Cur-

rent estimates suggest that an average human may carry ~300 loss-of-function variants (Abecasis 

et al. 2010; Agrawal and Whitlock 2012). Individual humans carry approximately three lethal 

equivalents (mutations that would be lethal in the homozygous state) (Gao et al. 2015; Henn et al. 

2015), and up to tens of thousands of weakly deleterious variants in coding and functional 

noncoding regions of the genome (Arbiza et al. 2013). These variants are enriched for mutations 

that are causative for diseases (Kryukov et al. 2007; Marth et al. 2011). As such they are expected 
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to have appreciable negative selection coefficients (Nes) and be kept at low frequencies due to the 

action of purifying selection. 

Humans are not unique in harboring substantial numbers of deleterious variants. It is es-

timated that almost 40% of nonsynonymous variants in Saccahromyces cerevisiae have deleteri-

ous effects (Doniger et al. 2008) and 20% of nonsynonymous variants in rice (Lu et al. 2006), 

Arabidopsis thaliana (Günther and Schmid 2010), and maize (Mezmouk and Ross-Ibarra 2014) 

are deleterious. In dogs, Cruz et al. (2008) identified an excess of nonsynonymous SNPs segre-

gating in domesticated dogs with respect to grey wolves. A similar pattern has been found in 

horses (Schubert et al. 2014), suggesting that an increased prevalence of deleterious variants may 

be a “cost of domestication.” 

Genetic bottlenecks associated with domestication (Eyre-Walker et al. 1998) may allow 

deleterious variants to drift to higher frequency (Robertson 1960). The selective sweeps associat-

ed with domestication and improvement (Wright et al. 2005) would decrease nucleotide diversity 

in affected genomic regions (Smith and Haigh 1974; Kaplan et al. 1989), and subsequently re-

duce the effective recombination rate. The selective and demographic processes of domestication 

and improvement lead to three basic hypotheses about the distribution of deleterious variants in 

crop plants: i) the relative proportion of deleterious variants will be higher in domesticates than 

wild relatives; ii) deleterious variants will be enriched near loci of agronomic importance subject-

ed to strong selection during domestication and improvement; iii) the relative proportion of dele-

terious variants will be lower in elite cultivars than landraces due to strong selection for yield 

(Gaut et al. 2015). 

Approaches to identify deleterious mutations take one of two forms. Quantitative genetic 

methods have been proposed that make use of  phenotypic measurements to investigate the ag-

gregate impact of potentially deleterious alleles (Kelly 1999). These approaches require pheno-

typic measurements of pedigreed individuals to estimate the net effect of potentially deleterious 

alleles on trait variation. While quantitative genetic approaches allow researchers to estimate the 

contribution of deleterious alleles to additive genetic variance to a particular trait, they do not 
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yield information about any individual genetic variant. Bioinformatic approaches, on the other 

hand, make use of measures of sequence conservation to identify variants with the greatest prob-

ability of being deleterious. When combined with genome-scale resequencing, they permit the 

identification of large numbers of putatively deleterious variants. Commonly applied approaches 

include SIFT (Sorting Intolerant From Tolerated) (Ng 2003), PolyPhen2 (Polymorphism 

Phenotyping) (Adzhubei et al. 2010), and a likelihood ratio test (LRT) (Chun and Fay 2009). 

These sequence conservation approaches operate in the absence of phenotypic data, but allow as-

sessment of individual sequence variants. Recent advances in resequencing and sequence conser-

vation methods have led to the suggestion that removal of deleterious variants from breeding 

populations presents a novel path for crop improvement (Morrell et al. 2011). 

In this study, we investigate the distribution of deleterious variants in thirteen elite barley 

(Hordeum vulgare ssp. vulgare) and seven elite soybean (Glycine max) cultivars using exome and 

whole genome resequencing. We seek to answer four questions about the presence of deleterious 

variants: i) How many deleterious variants do individual cultivars harbor, and what proportion of 

these are nonsense (early stop codons) versus nonsynonymous (missense) variants? ii) What pro-

portion of nonsynonymous variation is inferred to be deleterious? iii) How many known pheno-

type-altering SNPs are inferred to be deleterious? iv) How does the relative frequency of deleteri-

ous variants vary with recombination rate? We identify an average of ~1,000 deleterious variants 

per accession in our barley sample and ~700 deleterious variants per accession in our soybean 

sample. Approximately 40% of the deleterious variants are private to one individual in both spe-

cies, suggesting the potential for selection for individuals with a reduced number of deleterious 

variants. Approximately 3-6% of nonsynonymous variants are inferred to be deleterious by all 

three approaches, and known causative SNPs annotate as deleterious at a much higher proportion 

than the genomic average.  In soybean, where appropriate recombination rates are available, the 

proportion of deleterious variants is negatively correlated with recombination rate.  

Results 
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Variant Calling and Identification of Deleterious SNPs 

Resequencing and read mapping followed by read de-duplication resulted in an average 

coverage of ~39X exome coverage for our barley samples and ~38X genome coverage in soy-

bean. Average heterozygosity was 2.5% in our barley sample, and 0% in our soybean sample, re-

flecting the inbreeding of our accessions. Heterozygous variant calls in soybean were all in reads 

with low mapping score, possibly due to the highly duplicated nature of the soybean genome 

(Schmutz et al. 2010). After realignment and variant recalibration, we identified 652,797 SNPs in 

thirteen cultivated and two wild barley lines. The majority of these SNPs were noncoding, with 

522,863 occurring outside of CDS annotations. Of the coding SNPs, 70,069 were synonymous, 

and 59,865 were nonsynonymous. The list of differences from reference carried by each barley 

sample is summarized in Table 1, and a per-approach summary of deleterious variants is given in 

Table 2. SIFT identified 13,626 SNPs as deleterious, PolyPhen2 identified 13,534 SNPs to be 

deleterious, and the LRT called 17,865 deleterious. The intersection of all three methods gives a 

much smaller set of deleterious variants, with a total of 4,872 nonsynonymous SNPs identified as 

deleterious. While individual methods identified ~18% of nonsynonymous variants as deleteri-

ous, the intersect of methods identifies 5.7%. A derived site frequency spectrum (SFS) of synon-

ymous, nonsynonymous, and putatively deleterious SNPs in our barley sample  is shown in Fig-

ure 1A.  

In soybean, we called 586,102 SNPs in gene regions. Of these, 542,558 occur in the flank-

ing regions of a gene model.  We identify 73,577 SNPs with a synonymous consequence, and 

99,685 with a nonsynonymous consequence (Table 3). SNPs in the various classes sum to greater 

than the total number of SNPs as a single SNP in multiple transcripts can have multiple function-

al annotations. For instance, a SNP may be intronic in one transcript, but be in an exon of a dif-

ferent one.  SIFT identified 7,694 of the nonsynonymous SNPs as deleterious, PolyPhen2 identi-

fied 14,933 as deleterious, and the LRT identified 11,223 as deleterious. Similarly to the barley 

sample, the proportion of putatively variants was similar across prediction approaches, with the 

exception of SIFT, which failed to find alignments for many genes. The overlap of prediction ap-
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proaches identified 3,041 (2.6%) of nonsynonymous variants to be deleterious (Table 4).Derived 

allele frequency distributions are shown in Figure 1B. Variants inferred to be deleterious are gen-

erally at lower derived allele frequency than other classes of variation, implying that these vari-

ants are truly deleterious. 

Nonsense variants made up a relatively small proportion of putatively deleterious variants. 

In our barley sample, we identify a total of 711 nonsense variants, 14.5% of our putatively delete-

rious variants. In soybean, we identify 1,081 nonsense variants, which make up 15.7% of puta-

tively deleterious variants.  Nonsense variants have a higher heterozygosity than tolerated, silent, 

or deleterious missense variants (Figure S2). While the absolute differences in heterozygosity 

were small due to the inbred nature of our samples, the pattern suggests that nonsense variants are 

more strongly deleterious than just missense variants. 

Deleterious Mutations and Causative Variants 

 Bioinformatic approaches to identifying deleterious variants rely on sequence constraint 

to estimate protein functional impact. An example of a deleterious variant showing a derived base 

substitution that alters a phylogenetically conserved codon is shown in Figure 2. The variants 

identified in these approaches should be enriched for variants that cause large phenotypic chang-

es. To explore how frequently known causative SNPs annotate as deleterious, we compiled a list 

of 23 nonsynonymous variants inferred to contribute to known phenotypic variation in barley and 

11 in soybean and tested the effect of these variants in our prediction pipeline. Because they 

mostly alter agronomically important phenotypes, they are likely to be truly deleterious in natural 

populations. Of 23 putative causative mutations in barley, 6 (25%) of them were inferred to be 

deleterious (Table S5). Of the 11 soybean putatively causative mutations, 5 (45%) of them were 

inferred to be deleterious. This contrasts with the genome-wide average of ~3-6%, showing that 

variants that annotate as deleterious are more likely to impact phenotypes. 

Deleterious Mutations and Genetic Map Distance 
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The purging of deleterious variants from populations is greatly affected by the effective 

recombination rate, which is related to the ratio of genetic distance to physical distance. To exam-

ine the relationship between the number of deleterious variants and recombination rate, we used a 

high-density genetic map from a soybean recombinant inbred line family (Lee et al. 2015). The 

soybean map was based on a subset of the SoySNP50K genotyping platform (Song et al. 2013). 

There was a weak but significant correlation between recombination rate and the proportion of 

nonsynonymous SNPs inferred to be deleterious (r2 = 0.007, p < 0.001, Figures 3, S3). We did 

not examine this relationship in barley because the barley reference genome assembly (Mayer et 

al. 2012) contains limited physical distance information. 

Discussion 

Questions regarding the prevalence of deleterious variants date back over half a century 

(Fisher 1930; Muller 1950). In finite populations, the segregation of deleterious variants can have 

a substantial impact on population mean fitness (Kimura et al. 1963). While it has been argued 

that the concept of a reduction of fitness relative to a hypothetical optimal genotype is irrelevant 

(Wallace 1970), mutation accumulation studies have shown that the accumulation of deleterious 

mutations has a significant effect on absolute fitness (Schultz et al. 1999; Shaw et al. 2002). 

Our results demonstrate that a large number of putatively deleterious variants persist in 

individual cultivars in both barley and soybeans. The approaches used in this study predict the 

probability that a given amino acid or nucleotide substitution disrupts protein function. Mutations 

that alter phenotypes may be especially likely to annotate as deleterious, and we show that a high 

proportion of inferred causative mutations annotate as deleterious. It should be noted that variants 

identified as deleterious may affect a phenotype that is adaptive in only part of the species range 

or has a transient selective advantage – i.e., locally or temporally adaptive phenotypes.  If the por-

tion of the range in which the phenotype is adaptive is small or the selective advantage is transi-

ent, such variants will be kept at low frequencies and also be identified as deleterious. Just as few 

variants are expected to be globally advantageous, a portion of deleterious variants are likely to 
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not be globally disadvantageous. Such variants could be either locally or temporally advanta-

geous, with a fitness advantageous under some circumstances contributing to their maintenance in 

populations (Tiffin and Ross-Ibarra 2014).  

At the molecular level, variants occurring in minor transcripts of genes may exhibit condi-

tional neutrality (Tiffin and Ross-Ibarra 2014), and Nes will be too low for purifying selection to 

act. Gan et al. (2011) identified many isoforms of genes among a diverse panel of Arabidopsis 

thaliana accessions, as well as compensatory mutations for a majority of frameshift mutations. 

Genetic variants that annotated as nonsynonymous or nonsense using the A. thaliana reference 

are frequently spliced out of the transcript such that the gene still produces a full-length and func-

tional product. In a similar vein, deleterious variants are often accompanied by multiple compen-

satory mutations that alleviate their fitness effects (Poon and Otto 2000; Poon and Chao 2005). 

The occurrence of the bulk of putatively deleterious variants in the rarest frequency classes (Fig 

1), and a higher level of observed heterozygosity for putatively deleterious variants (Figure S5) 

are both consistent with action of purifying selection on variants with negative impacts on fitness.  

Putatively disease-causing variants in human populations have also been observed to occur at low 

frequencies and to occur over a more  geographically restricted range (Marth et al. 2011). 

Comparison of Identification Methods 

Each of the methods used here to identify deleterious variants makes use of sequence con-

straint across a phylogenetic relationship. They differ in terms of the models used to assess the 

functional effect of a variant. SIFT uses a heuristic, which determines if a nonsynonymous vari-

ant alters a conserved site based on an alignment build from PSI-BLAST results (Ng 2003). 

Polyphen2 is similar but, additionally identifies potential disruptions in secondary or tertiary 

structure of the encoded protein (when this information is available) (Adzhubei et al. 2010). Both 

of these approaches estimate codon conservation from a multiple sequence alignment, but do not 

use phylogenetic relationships in their predictions. PolyPhen2 identified the largest number of 

variants as deleterious. The reason for this may be that the data used to train the PolyPhen2 model 

is from human disease-causing and neutral variants. Nonhuman systems may differ fundamental-
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ly as to which amino acid substitutions tend to have strong functional impact, which would re-

duce prediction accuracy in other species (Adzhubei et al. 2010). The LRT explicitly calculates 

the local synonymous substitution rate, and uses that to test whether an individual codon is under 

selective constraint or evolving neutrally (Chun and Fay 2009). It is a hypothesis-driven ap-

proach, and compares the likelihood of two evolutionary scenarios. Variants in selectively con-

strained codons are considered to be deleterious.   

The SNPs predicted to be deleterious differ somewhat between prediction approaches. 

Even though SIFT and PolyPhen2 identify similar proportions of nonsynonymous SNPs as dele-

terious, they overlap at ~50% of sites (Table 2). SNPs identified through at least two approaches, 

seem more likely to be deleterious, based on lower average derived allele frequencies (Figure 

S4). Comparisons of the distribution of Grantham scores (Grantham 1974) show high similarity 

in the severity of amino acid replacements that are predicted to be deleterious by each approach 

(Figure S5). The effects of reference bias are apparent in SIFT and PolyPhen2. In barley and soy-

bean, the reference genotypes are 'Morex' and ‘Williams 82’ respectively. Even when polarizing 

by ancestral and derived alleles, these genotypes show considerably fewer inferred deleterious 

variants (Table 2; Table 4).  

Deleterious Variants in Crop Breeding 

Identification and elimination of deleterious variants has been proposed as a potential 

means of improving plant fitness and crop yield (Morrell et al. 2011). Current plant breeding 

strategies using genome-wide prediction rely on estimating genome-wide marker effects on quan-

titative traits of interest (Meuwissen et al. 2001). Genome-wide prediction has been shown to be 

effective in both animals (Schaeffer 2006) and plants (Heffner et al. 2011; Jacobson et al. 2014), 

but these approaches rely on estimating marker contributions to a quantitative trait (i.e., a meas-

ured phenotypic effect). The genetic architecture of these traits suggests that our ability to quanti-

fy the effects of individual loci will reach practical limits before we can identify loci contributing 

to their variance (Rockman 2012). Many traits of agronomic interest, particularly yield in grain 

crops, are quantitative and have a complex genetic basis. As such, they are under the influence of 
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environmental effects and many loci (Falconer and Mackay 1996). QTL mapping approaches to 

identifying favorable variants for agronomic traits will reach practical limits, even for variants of 

large effect (King et al. 2012). Current genome wide prediction and selection methodologies rely 

on estimating the combined effects of markers across the genome (Meuwissen et al. 2001), but is 

approach is limited by recombination rate and the ability to measure phenotypes of interest. The 

identification and purging of deleterious variants should provide a complementary approach to 

current breeding methodologies (Morrell et al. 2011). 

Rise of Deleterious Variants Into Populations 

The number of segregating deleterious variants in a species is very different from the 

number of de novo deleterious mutations in each generation, commonly identified as U. In hu-

mans, U is estimated at ~2 new deleterious variants per genome per generation (Agrawal and 

Whitlock 2012) and estimates from Arabidopsis suggest that U is approximately 0.1 (Schultz et 

al. 1999). U is the product of the per-base pair mutation rate, the genome size, and the fraction of 

the genome that is deleterious when mutated (Charlesworth 2012). Even though new mutations 

are constantly arising, the standing load of deleterious variation greatly exceeds the rate at which 

they arise (Charlesworth et al. 2004; Charlesworth 2012). However, our results show that ~40% 

of our inferred deleterious variants are private to individual cultivars, suggesting that they can be 

purged from breeding programs. 

In the current study, we restricted our analyses to protein coding regions, but additional 

recent evidence suggests that deleterious variants can accumulate in conserved noncoding se-

quences, such as transcription factor binding sites (Arbiza et al. 2013). As such, analysis of the 

protein-coding regions of genomes presents a lower-bound on the estimates of the number of del-

eterious variants segregating in populations. Efforts to identify deleterious variants in noncoding 

sequence are limited by scant knowledge of functional constraints on noncoding genomic regions, 

and difficulty in aligning noncoding regions from all but the most closely related taxa (Doniger et 

al. 2008). Annotation of noncoding sequence will uncover additional deleterious variants, but a 

majority of putatively deleterious variants will be in coding regions. The several thousand puta-
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tively deleterious variants we identify per individual cultivar should provide ample targets for se-

lection of recombinant progeny in a breeding program.  

Materials and Methods 

Plant Material and DNA Sequencing 

The exome resequencing data reported here includes thirteen cultivated barleys, and two 

wild barley accessions. Barley exome capture was based on a 60 Mb liquid-phase Nimblegen 

capture design (Mascher et al. 2013). For the soybean sample, we resequenced whole genomes of 

seven elite soybean cultivarsand used previously-generated whole genome sequence of Glycine 

soja (Kim et al. 2010). Each sample was prepared and sequenced with manufacturer protocols 

(Illumina, San Diego, CA) to at least 25x coverage of the target with 76bp, 100bp or 151bp 

paired-end reads. A summary of samples and sequencing statistics is given in Table S1.  

Read Mapping and SNP Calling 

DNA sequence handling followed the “Genome Analysis Tool Kit (GATK) Best Practic-

es” workflow from the Broad Institute (broadinstitute.org/gatk/guide/topic?name=best-practices). 

Our workflow for read mapping and SNP calling is depicted in Figure S1. First, reads were 

checked for proper length, Phred score distribution, and k-mer contamination with FastQC (bioin-

formatics.babraham.ac.uk/projects/fastqc/). Primer and adapter sequence contamination was then 

trimmed from barley reads using Scythe (github.com/vsbuffalo/scythe), using a prior on contami-

nation rate of 0.05. Low-quality bases were then removed with Sickle 

(github.com/najoshi/sickle), with a minimum average window Phred quality of 25, and window 

size of 10% of the read length. Soybean reads were trimmed using the fastqc-mcf tool in the ea-

utils package (code.google.com/p/ea-utils/). Post-alignment processing and SNP calling were per-

formed with the GATK v. 3.1 (McKenna et al. 2010; DePristo et al. 2011). 

Barley reads were aligned to the Morex draft genome sequence (Mayer et al. 2012) using 
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BWA-MEM (Li and Durbin 2009). We tuned the alignment reporting parameter and the gapping 

parameters to allow ~2% mismatch between the reads and reference sequence, which is roughly 

equivalent to the highest estimated nucleotide diversity observed at a locus in barley coding se-

quence (Morrell et al. 2003, 2006, 2014). The resulting SAM file was trimmed of unmapped 

reads with Samtools (Li et al. 2009), sorted, and trimmed of duplicate reads with Picard tools (pi-

card.sourceforge.net/). We then realigned around indels, using a set of 100 previously known 

indels from Sanger resequencing of 25 loci (Caldwell et al. 2006; Morrell and Clegg 2007; Mor-

rell et al. 2014). Sequence coverage was estimated with 'bedtools genomecov,’ using the regions 

included in the Nimblegen barley exome capture design 

(https://sftp.rch.cm/diagnostics/sequencing/nimblegen_annotations/ez_barley_exome/barley_exo

me.zip). Individual sample alignments were then merged into a multisample alignment for variant 

calling. A preliminary set of variants was called with the GATK HaplotypeCaller with a 

heterozygosity (average pairwise diversity) value of 0.008, based on average coding sequence 

diversity reported for cultivated barley (Morrell et al. 2014). This preliminary set of variants was 

filtered to sites with a genotype score of 40 or greater, heterozygous calls in at most two individ-

uals, and read depth of at least five reads. We then used the filtered variants, SNPs identified in 

the Sanger resequencing data set, and 9,605 SNPs from genotyping assays: 5,010 from the James 

Hutton Institute (Comadran et al. 2012), and 4,595 from Illumina GoldenGate assays (Close et al. 

2009) as input for the GATK VariantRecalibrator to obtain a final set of variant calls.  

Processing of soybean samples is as described above, but with the following modifica-

tions. Soy reads were aligned to the Williams 82 reference genome sequence (Schmutz et al. 

2010). Mismatch and reporting parameters for the cultivated samples were adjusted to allow for 

~1% mismatch between reads and reference, which is approximately the highest typical genic 

sequence diversity in soybean cultivars (Hyten et al. 2006). The alignments were trimmed and 

sorted as described above. Preliminary variants were called as in the barley sample, but with a 

heterozygosity value of 0.001, which is the nucleotide diversity reported by Hyten et al. (2006). 

Final variant calls were obtained in the same way as described for the barley sample, using SNPs 

on the SoySNP50K chip (Song et al. 2013) as known variants. 
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Read mapping scripts, variant calling scripts, and variant filtering scripts for both barley 

and soybean are available on GitHub at (github.com/MorrellLAB/Deleterious_Mutations).  

SNP Classification 

Barley SNPs were identified as coding or noncoding using the Generic Feature Format v3 

(GFF) file provided with the reference genome (Mayer et al. 2012). A custom Python script was 

then used to identify coding barley SNPs as synonymous or nonsynonymous. Soybean SNPs 

were assigned using primary transcripts using the Variant Effect Predictor (VEP) from Ensembl 

(ensembl.org/info/docs/tools/vep/index.html). Nonsynonymous SNPs were then assessed using 

SIFT (Ng 2003), PolyPhen2 (Adzhubei et al. 2010) using the ‘HumDiv’ model, and a likelihood 

ratio test comparing codon evolution under selective constraint to neutral evolution (Chun and 

Fay 2009). For the likelihood ratio test, we used the phylogenetic relationships between 37 Angi-

osperm species based on genic sequence from complete plant genome sequences available 

through Phytozome (phytozome.jgi.doe.gov/) and Ensembl Plants (plants.ensembl.org/). The 

LRT is implemented as a Python package we call ‘BAD_Mutations’ (BLAST Aligned-

Deleterious Mutations; github.com/MorrellLAB/BAD_Mutations). Coding sequences from each 

genome were downloaded and converted into BLAST databases. The coding sequence from the 

query species was used to identify the best match from each species using TBLASTX. The best 

match from each species was then aligned using PASTA (Mirab et al. 2014), a phylogeny-aware 

alignment tool. The resulting alignment was then used as input to the likelihood ratio test for the 

affected codon. The LRT was performed on codons with a minimum of 10 species represented in 

the alignment at the queried codon. Reference sequences were masked from the alignment to re-

duce the effect of reference bias (Simons et al. 2014). A SNP was identified as deleterious if the 

p-value for the test was less than 0.05, with a Bonferroni correction applied based on the number 

of tested codons, and if either the alternate or reference allele was not seen in any of the other 

species. A full list of species names and genome assembly and annotation versions used is availa-

ble in Table S4.  
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Inference of Ancestral State 

 

Prediction of deleterious mutations is complicated by reference bias (Chun and Fay 2009; 

Simons et al. 2014), which manifests in two ways. First, individuals that are closely related to the 

reference line used for the reference genome will appear to have fewer genetic variants, and thus 

fewer inferred nonsynonymous and deleterious variants. Second, when the reference strain carries 

a derived allele at a polymorphic site, that site is generally not predicted to be deleterious (Simons 

et al. 2014). To address the issue of reference bias, we polarized all coding variants by ancestral 

and derived state, rather than reference and non-reference state. Ancestral states were inferred for 

SNPs in gene regions by inferring the majority state in the most closely related clade from the 

consensus phylogenetic tree for the species included in the LRT. For barley, the ancestral states 

were inferred from gene alignments of Aegilops tauschii, Brachypodium distachyon, and Tritium 

urartu. For soybean, ancestral states were inferred using Medicago truncatula and Phaseolus vul-

garis. This approach precludes universal inference of ancestral state for noncoding variants. 

However, examination of alignments of intergenic sequence in Triticeae species and in Glycine 

species showed that alignments outside of protein coding sequence is not reliable for ancestral 

state inference (data not shown). 
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Figure 1

 

Figure 2 
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Figure 3 

 

Tables 

Table 1. Counts of variants in various classes for each barley sample. 

Sample Diff. From Morex Noncoding  Syn. Nonsyn. Nonsense 
Barke 162,954 130,832 17,800 14,322 86 

Bonus 135,540 108,762 15,184 11,594 65 

Borwina 139,222 111,613 15,699 11,910 62 

Bowman 130,335 105,575 13,645 11,115 77 
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Foma 156,846 126,608 16,746 13,492 84 

Gull 128,671 103,143 14,555 10,973 55 

Harrington 153,203 124,264 15,995 12,944 89 

Haruna Nijo 155,245 125,143 16,655 13,447 83 

Igri 161,224 130,100 17,275 13,849 98 

Kindred 86,932 69,996 9,458 7,478 34 

Morex 5,239 4,602 253 384 4 

Steptoe 148,785 120,245 15,839 12,701 91 

Vogelsanger Gold 146,303 117,557 16,168 12,578 70 

FT11 243,049 195,009 26,886 21,154 147 

OUH602 197,405 158,377 21,701 17,327 115 
Diff. From Morex = Differences from reference; Syn. = Synonymous; Nonsyn. = Nonsynonymous 

 
Table 2. Counts of variants that are predicted to be deleterious by three prediction methods in bar-

ley samples.  Numbers in parentheses are proportions of nonsynonymous variants in each sample. 
Sample SIFT PPH LRT Intersect 

Barke 3,609 (0.199) 3,507 (0.194) 3,339 (0.185) 1,070 (0.059) 

Bonus 3,066 (0.189) 2,911 (0.180) 2,941 (0.182) 882 (0.054) 

Borwina 3,083 (0.190) 2,932 (0.181) 2,977 (0.184) 894 (0.055) 

Bowman 3,335 (0.186) 3,219 (0.180) 3,248 (0.182) 998 (0.056) 

Foma 3,879 (0.200) 3,666 (0.189) 3,598 (0.186) 1,151 (0.059) 

Gull 3,076 (0.187) 2,946 (0.179) 2,998 (0.183) 885 (0.054) 

Harrington 3,599 (0.196) 3,536 (0.192) 3,335 (0.182) 1,063 (0.058) 

Haruna Nijo 3,576 (0.194) 3,507 (0.191) 3,354 (0.182) 1,078 (0.059) 

Igri 3,694 (0.199) 3,585 (0.193) 3,350 (0.181) 1,077 (0.058) 

Kindred 3,131 (0.175) 2,995 (0.168) 3,204 (0.180) 931 (0.052) 

Morex 2,492 (0.146) 2,298 (0.135) 3,034 (0.178) 700 (0.041) 

Steptoe 3,479 (0.195) 3,393 (0.190) 3,266 (0.183) 1,061 (0.06) 

Vogelsanger Gold 3,172 (0.193) 3,100 (0.188) 2,995 (0.182) 910 (0.055) 

FT11 3,948 (0.225) 3,937 (0.224) 3,290 (0.187) 1,220 (0.069) 

OUH602 3,864 (0.209) 3,886 (0.210) 3,391 (0.183) 1,174 (0.064) 
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Joint 13,626 (0.228) 13,534 (0.226) 11,574 (0.193) 4,275 (0.071) 

 
Table 3. Counts of variants in various classes for each soybean sample. 
  

Sample Diff. From Wm82 Noncoding  Syn. Nonsyn. Nonsense 

Archer 71,400 38,056 12,397 16,948 457 

IA3023 60,388 33,905 11,335 14,703 426 

M92-220 85,861 45,183 14,644 19,843 591 

Minsoy 151,622 77,466 23,614 31,430 927 

Noir1 128,689 65,508 20,292 27,309 828 

Williams 3,340 7,308 3,688 3,854 87 

Williams 82 9,497 6,267 3,248 3,359 70 

G. soja 163,365 83,940 24,120 32,114 930 

Archer 71,400 38,056 12,397 16,948 457 
Diff. From Wm82 = Differences from reference; Syn. = Synonymous; Nonsyn. = Nonsynonymous 

 

Table 4. Counts of variants that are predicted to be deleterious by three prediction methods in 

soybean samples. Numbers in parentheses are proportions of nonsynonymous variants in each 

sample. 

 

Sample SIFT PPH LRT Intersect 

Archer 1,987 (0.062) 3,847 (0.120) 3,166 (0.099) 773 (0.024) 

IA3023 1,994 (0.062) 3,837 (0.119) 3,178 (0.099) 792 (0.025) 

M92-220 2,142 (0.066) 4,269 (0.132) 3,397 (0.105) 860 (0.027) 

Minsoy 2,686 (0.081) 5,257 (0.158) 3,977 (0.119) 1,135 (0.034) 

Noir 1 2,417 (0.073) 4,951 (0.150) 3,865 (0.117) 1,035 (0.031) 

Williams 1,408 (0.048) 2,673 (0.090) 2,425 (0.082) 485 (0.016) 

Williams 82 1,394 (0.047) 2,631 (0.089) 2,393 (0.081) 478 (0.016) 

G. soja 1,751 (0.074) 3,583 (0.150) 2,675 (0.112) 716 (0.030) 

Joint 7,694 (0.076) 14,933 (0.147) 11,223 (0.110) 3,041 (0.030) 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 1, 2016. ; https://doi.org/10.1101/033175doi: bioRxiv preprint 

https://doi.org/10.1101/033175


Submitted to Molecular Biology and Evolution 
Article, Discoveries 

 

Figure Legends 

Figure 1: Unfolded site frequency spectrum for coding regions showing deleterious, tolerated, 

and synonymous SNPs for barley and soybean. Ancestral state was inferred by majority state in 

the LRT gene alignments. A) is based on thirteen domesticated barley accessions and two wild 

accessions while B) is based on seven cultivated soybean accessions and one wild accession.  

Figure 2: A sample alignment used to infer a Serine to Proline mutation as deleterious in Ppd-H1. 

The alignment is built from sequences used by SIFT, and the affected codon is highlighted in red. 

Figure 3: Comparison between the recombination rate and proportion of nonsynonymous SNPs 

inferred to be deleterious in soybean on chromosome 4. The cM/Mb values are calculated from a 

genetic map using the SoySNP6K (Lee et al. 2015). Red points are the proportion of 

nonsynonymous variants that are inferred to be deleterious, and black points are cM/Mb values 

between adjacent markers. 

Figure S1: A schematic for the read mapping and SNP calling workflow. Boxes with bold borders 

denote the start and end points of workflow. Rounded boxes with light grey borders are the tools 

that are used at each step in the pipeline. Boxes with dashed borders denote external datasets that 

are used in various steps of the pipeline. 

Figure S2: The distributions of per-SNP heterozygosity for tolerated nonsynonymous and silent 

SNPs, deleterious missense SNPs, and nonsense SNPs. Nonsense SNPs tend to be heterozygous 

more often than deleterious or tolerated SNPs.  

Figure S3: Correlation between recombination rate (cM/Mb) and proportion of nonsynonymous 

SNPs inferred to be deleterious genome-wide in our soybean sample. 

Figure S4: Unfolded site frequency spectrum for SNPs in A) barley and B) soybean predicted to 
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be deleterious by one, two, or three prediction approaches. SNPs predicted by only one approach 

are not as strongly skewed toward rare variants, suggesting that the intersection of multiple pre-

diction approaches gives the most reliable prediction of deleterious variants. 

Figure S5: Distribution of Grantham score for nonsynonymous variants predicted to be deleteri-

ous by each prediction approach. Each approach and the intersection of each approach gives a 

very similar distribution of Grantham scores. Vertical lines show the mean of the distribution. 
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Table 1: Counts of SNPs in various classes in thirteen barley samples. Numbers reported are 

comparisons against the reference genome, which makes it possible to include noncoding vari-

ants, where ancestral state cannot be estimated unambiguously. 

Table 2: Per-method and per-sample counts of deleterious variants for barley. Numbers reported 

are comparisons against ancestral state. The proportion of nonsynonymous variants that is in-

ferred to be deleterious by each prediction method in each accession is shown in parentheses. 

Table 3: Counts of SNPs in various classes in seven soybean samples. Numbers reported are 

comparisons against the reference genome, which makes it possible to include noncoding vari-

ants, where ancestral state cannot be estimated unambiguously. 

Table 4: Per-method and per-sample of counts of deleterious variants in soybean. Numbers re-

ported are comparisons against ancestral state. The proportion of nonsynonymous variants that is 

inferred to be deleterious by each prediction method in each accession is shown in parentheses. 

Table S1: Accessions used in this study. The final coverage reported is the average depth over the 

targeted region. 

Table S2: Origin information for the barley accessions used in this study. 

Table S3: Origin information for the soybean accessions used in this study. 
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for sequences used in the likelihood ratio test. 

Table S5: List of cloned genes with SNPs causing phenotypic differences, and predictions for 
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