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Abstract

Populations	experience	a	continual	input	of	new	mutations	with	Kitness	effects	rang-

ing	lethal	to	adaptive.	While	the	distribution	of	Kitness	effects	(DFE)	of	new	mutations	is	not	

directly	observable,	many	mutations	likely	have	either	no	effect	on	organismal	Kitness	or	are	

deleterious.	Historically,	it	has	been	hypothesized	that	populations	carry	many	mildly	dele-

terious	variants	as	segregating	variation,	which	may	decrease	the	mean	absolute	Kitness	of	

the	population.	Recent	advances	in	sequencing	technology	and	sequence	conservation-

based	metrics	for	predicting	the	functional	effect	of	a	variant	permit	examination	of	the	per-

sistence	of	deleterious	variants	in	populations.	The	issue	of	segregating	deleterious	varia-

tion	is	particularly	important	for	crop	improvement,	because	the	demographic	history	of	

domestication	and	breeding	allows	deleterious	variants	to	persist	and	reach	moderate	fre-

quency,	potentially	reducing	crop	productivity.	In	this	study,	we	use	exome	resequencing	of	

thirteen	cultivated	barley	lines	and	genome	resequencing	of	seven	cultivated	soybean	lines	

to	investigate	the	prevalence	and	genomic	distribution	of	deleterious	SNPs	in	the	protein-

coding	regions	of	the	genomes	of	two	crops.	We	Kind	that	putatively	deleterious	SNPs	are	

best	identiKied	with	multiple	prediction	approaches,	and	that	SNPs	that	cause	protein	trun-

cation	make	up	a	minority	of	all	putatively	deleterious	SNPs.	We	also	report	the	implemen-

tation	of	a	SNP	annotation	tool	(BAD_Mutations)	that	makes	use	of	a	likelihood	ratio	test	

based	on	alignment	of	all	currently	publicly	available	Angiosperm	genomes.	
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Introduction

Mutation	produces	a	constant	inKlux	of	new	variants	into	populations.	Each	mutation	

has	a	Kitness	effect	that	varies	from	lethal	to	neutral	to	advantageous.	While	the	distribution	

of	Kitness	effects	of	new	mutations	is	not	directly	observable	(Eyre-Walker	and	Keightley	

2007),	most	mutations	with	Kitness	impacts	are	deleterious	(Keightley	and	Lynch	2003).	

Deleterious	mutations	are	typically	identiKied	as	changes	at	phylogenetically-conserved	sites	

(Doniger	et	al.	2008),	or	loss	of	protein	function	(Yampolsky	et	al.	2005).	Strongly	deleteri-

ous	variants	(particularly	those	with	dominant	effects)	are	quickly	purged	from	populations	

by	purifying	selection.	Likewise,	strongly	advantageous	variants	increase	in	frequency,	and	

ultimately	Kix	due	to	positive	selection	(Robertson	1960;	Smith	and	Haigh	1974).	Weakly	

deleterious	variants	have	the	potential	to	persist	in	populations	and	cumulatively	contribute	

signiKicantly	to	reductions	in	Kitness	(Fay	et	al.	2001;	Eyre-Walker	et	al.	2006;	Doniger	et	al.	

2008).	

Considering	a	single	variant	in	a	population,	three	parameters	affect	its	segregation:	

the	effective	population	size	(Ne),	the	selective	coefKicient	against	homozygous	individuals	

(s),	and	the	dominance	coefKicient	(h).	The	effects	of	Ne	and	s	are	relatively	simple;	variants	

are	primarily	subject	to	genetic	drift	rather	than	selection	if	Nes	<	1	(Kimura	et	al.	1963).	

The	effect	of	h	is	not	as	straightforward,	as	it	depends	on	the	frequency	of	outcrossing.	In	

populations	with	a	high	degree	of	inbreeding,	many	individuals	will	be	homozygous,	which	
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reduces	the	importance	of	h	in	determining	the	efKicacy	of	selection	against	the	variant.	In	

populations	that	are	outcrossing,	an	individual	deleterious	variant	will	occur	primarily	in	

the	heterozygous	state,	and	h	will	determine	how	“visible”	the	variant	is	to	selection,	with	

higher	values	of	h	increasing	the	strength	of	selection	(Charlesworth	and	Charlesworth	

1999).	A	completely	recessive	deleterious	variant	may	remain	effectively	neutral	as	long	as	

the	frequency	of	the	variant	is	low	enough	that	substantial	numbers	of	homozygous	indi-

viduals	are	not	produced.	Conversely,	a	completely	dominant	deleterious	variant	will	be	

quickly	purged	from	the	population	(Lande	and	Schemske	1985).	On	average,	deleterious	

variants	segregating	in	a	population	are	predicted	to	be	partially	recessive	(Simmons	and	

Crow	1977),	allowing	them	to	remain	“hidden”	from	the	action	of	purifying	selection,	and	

reach	moderate	frequencies.		Indeed	data	from	a	gene	knockout	library	in	yeast	(Shoemaker	

et	al.	1996)	indicate	that	protein	loss-of-function	variants	have	an	average	dominance	coef-

Kicient	of	0.2	(Agrawal	and	Whitlock	2012).		

Effective	rates	of	recombination	also	have	important	impacts	on	the	number	and	dis-

tribution	of	deleterious	mutations	in	the	genome.	Low	recombination	regions	are	prone	to	

the	irreversible	accumulation	of	deleterious	variants.	This	phenomenon	is	known	as	the	

“ratchet	effect”	(Muller	1964).	In	Kinite	populations	with	low	recombination,	the	continual	

input	of	deleterious	mutations	and	stochastic	variation	in	reproduction	causes	the	loss	of	

individuals	with	the	fewest	deleterious	variants.	Lack	of	recombination	precludes	the	selec-

tive	elimination	of	chromosomal	segments	carrying	deleterious	variants,	and	thus	they	can	

increase	in	an	inexorable	fashion	(Muller	1964).	(Nordborg	2000)	demonstrates	that	under	
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high	levels	of	inbreeding,	effective	recombination	can	be	decreased	by	almost	20-fold	rela-

tive	to	an	outbreeding	population.	While	inbreeding	populations	are	especially	susceptible	

to	ratchet	effects	on	a	genome-wide	scale,	even	outbreeding	species	have	genomic	regions	

with	limited	effective	recombination	(Arnheim	et	al.	2003;	McMullen	et	al.	2009).	Both	sim-

ulation	studies	(Felsenstein	1974)	and	empirical	investigations	in	Drosophila	melanogaster	

(Campos	et	al.	2012,	2014)	indicate	that	deleterious	variants	accumulate	in	regions	of	limit-

ed	recombination.

Efforts	to	identify	individual	deleterious	variants	and	quantify	them	in	individuals	

have	led	to	a	new	branch	of	genomics	research.	In	humans,	examination	of	the	contribution	

of	rare	deleterious	variants	to	heritable	disease	has	contributed	to	the	emergence	of	per-

sonalized	genomics	(Abecasis	et	al.	2010;	Cooper	et	al.	2010;	Marth	et	al.	2011).	Current	es-

timates	suggest	that	an	average	human	may	carry	~300	loss-of-function	variants	(Abecasis	

et	al.	2010;	Agrawal	and	Whitlock	2012).	Individual	humans	carry	approximately	three	

lethal	equivalents	(mutations	that	would	be	lethal	in	the	homozygous	state)	(Gao	et	al.	

2015;	Henn	et	al.	2015),	and	up	to	tens	of	thousands	of	weakly	deleterious	variants	in	cod-

ing	and	functional	noncoding	regions	of	the	genome	(Arbiza	et	al.	2013).	These	variants	are	

enriched	for	mutations	that	are	causative	for	diseases	(Kryukov	et	al.	2007;	Marth	et	al.	

2011).	As	such	they	are	expected	to	have	appreciable	negative	selection	coefKicients	(Nes)	

and	be	kept	at	low	frequencies	due	to	the	action	of	purifying	selection.	

Humans	are	not	unique	in	harboring	substantial	numbers	of	deleterious	variants.	It	
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is	estimated	that	almost	40%	of	nonsynonymous	variants	in	Saccahromyces	cerevisiae	have	

deleterious	effects	(Doniger	et	al.	2008)	and	20%	of	nonsynonymous	variants	in	rice	(Lu	et	

al.	2006),	Arabidopsis	thaliana	(Günther	and	Schmid	2010),	and	maize	(Mezmouk	and	Ross-

Ibarra	2014)	are	deleterious.	In	dogs,	(Cruz	et	al.	2008)	identiKied	an	excess	of	nonsynony-

mous	SNPs	segregating	in	domesticated	dogs	with	respect	to	grey	wolves.	A	similar	pattern	

has	been	found	in	horses	(Schubert	et	al.	2014),	suggesting	that	an	increased	prevalence	of	

deleterious	variants	may	be	a	“cost	of	domestication.”	

Genetic	bottlenecks	associated	with	domestication	(Eyre-Walker	et	al.	1998)	may	al-

low	deleterious	variants	to	drift	to	higher	frequency	(Robertson	1960).	The	selective	

sweeps	associated	with	domestication	and	improvement	(Wright	et	al.	2005)	would	de-

crease	nucleotide	diversity	in	affected	genomic	regions	(Smith	and	Haigh	1974;	Kaplan	et	al.	

1989),	and	subsequently	reduce	the	effective	recombination	rate.	The	selective	and	demo-

graphic	processes	of	domestication	and	improvement	lead	to	three	basic	hypotheses	about	

the	distribution	of	deleterious	variants	in	crop	plants:	i)	the	relative	proportion	of	deleteri-

ous	variants	will	be	higher	in	domesticates	than	wild	relatives;	ii)	deleterious	variants	will	

be	enriched	near	loci	of	agronomic	importance	subjected	to	strong	selection	during	domes-

tication	and	improvement;	iii)	the	relative	proportion	of	deleterious	variants	will	be	lower	

in	elite	cultivars	than	landraces	due	to	strong	selection	for	yield	(Gaut	et	al.	In	Review).

Approaches	to	identify	deleterious	mutations	take	one	of	two	forms.	Quantitative	ge-

netic	methods	have	been	proposed	that	make	use	of		phenotypic	measurements	to	investi-
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gate	the	aggregate	impact	of	potentially	deleterious	alleles	(Kelly	1999).	These	approaches	

require	phenotypic	measurements	of	pedigreed	individuals	to	estimate	the	net	effect	of	po-

tentially	deleterious	alleles	on	trait	variation.	While	quantitative	genetic	approaches	allow	

researchers	to	estimate	the	contribution	of	deleterious	alleles	to	additive	genetic	variance	to	

a	particular	trait,	they	do	not	yield	information	about	any	individual	genetic	variant.	Bioin-

formatic	approaches,	on	the	other	hand,	make	use	of	measures	of	sequence	conservation	to	

identify	variants	with	the	greatest	probability	of	being	deleterious.	When	combined	with	

genome-scale	resequencing,	they	permit	the	identiKication	of	large	numbers	of	putatively	

deleterious	variants.	Commonly	applied	approaches	include	SIFT	(Sorting	Intolerant	From	

Tolerated)	(Ng	2003),	PolyPhen2	(Polymorphism	Phenotyping)	(Adzhubei	et	al.	2010),	and	

a	likelihood	ratio	test	(LRT)	(Chun	and	Fay	2009).	These	sequence	conservation	approaches	

operate	in	the	absence	of	phenotypic	data,	but	allow	assessment	of	individual	sequence	

variants.	Recent	advances	in	resequencing	and	sequence	conservation	methods	have	led	to	

the	suggestion	that	removal	of	deleterious	variants	from	breeding	populations	presents	a	

novel	path	for	crop	improvement	(Morrell	et	al.	2011).	

In	this	study,	we	investigate	the	distribution	of	deleterious	variants	in	thirteen	elite	

barley	(Hordeum	vulgare	ssp.	vulgare)	and	seven	elite	soybean	(Glycine	max)	cultivars	using	

exome	and	whole	genome	resequencing.	We	seek	to	answer	four	questions	about	the	pres-

ence	of	deleterious	variants:	i)	How	many	deleterious	variants	do	individual	cultivars	har-

bor,	and	what	proportion	of	these	are	nonsense	(early	stop	codons)	versus	nonsynonymous	

(missense)	variants?	ii)	What	proportion	of	nonsynonymous	variation	is	inferred	to	be	dele-
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terious?	iii)	How	many	known	phenotype-altering	SNPs	are	inferred	to	be	deleterious?	iv)	

How	does	the	relative	frequency	of	deleterious	variants	vary	with	recombination	rate?	We	

identify	an	average	of	~1,000	deleterious	variants	per	accession	in	our	barley	sample	and	

~700	deleterious	variants	per	accession	in	our	soybean	sample.	Approximately	40%	of	the	

deleterious	variants	are	private	to	one	individual	in	both	species,	suggesting	the	potential	

for	selection	for	individuals	with	a	reduced	number	of	deleterious	variants.	Approximately	

3-6%	of	nonsynonymous	variants	are	inferred	to	be	deleterious	by	all	three	approaches,	and	

known	causative	SNPs	annotate	as	deleterious	at	a	much	higher	proportion	than	the	genom-

ic	average.		In	soybean,	where	appropriate	recombination	rates	are	available,	the	proportion	

of	deleterious	variants	is	negatively	correlated	with	recombination	rate.	

Materials and Methods

Plant Material and DNA Sequencing

The	exome	resequencing	data	reported	here	includes	thirteen	cultivated	barleys,	and	

two	wild	barley	accessions.	Barley	exome	capture	was	based	on	a	60	Mb	liquid-phase	Nim-

blegen	capture	design	(Mascher	et	al.	2013).	For	the	soybean	sample,	we	resequenced	

whole	genomes	of	seven	elite	soybean	cultivarsand	used	previously-generated	whole	

genome	sequence	of	Glycine	soja	(Kim	et	al.	2010).	Each	sample	was	prepared	and	se-

quenced	with	manufacturer	protocols	(Illumina,	San	Diego,	CA)	to	at	least	25x	coverage	of	

the	target	with	76bp,	100bp	or	151bp	paired-end	reads.	A	summary	of	samples	and	se-
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quencing	statistics	is	given	in	Table	S1.		

Read Mapping and SNP Calling

DNA	sequence	handling	followed	the	“Genome	Analysis	Tool	Kit	(GATK)	Best	Prac-

tices”	workKlow	from	the	Broad	Institute	(broadinstitute.org/gatk/guide/topic?name=best-

practices).	Our	workKlow	for	read	mapping	and	SNP	calling	is	depicted	in	Figure	S1.	First,	

reads	were	checked	for	proper	length,	Phred	score	distribution,	and	k-mer	contamination	

with	FastQC	(bioinformatics.babraham.ac.uk/projects/fastqc/).	Primer	and	adapter	se-

quence	contamination	was	then	trimmed	from	barley	reads	using	Scythe	(github.com/vsbuf-

falo/scythe),	using	a	prior	on	contamination	rate	of	0.05.	Low-quality	bases	were	then	re-

moved	with	Sickle	(github.com/najoshi/sickle),	with	a	minimum	average	window	Phred	

quality	of	25,	and	window	size	of	10%	of	the	read	length.	Soybean	reads	were	trimmed	us-

ing	the	fastqc-mcf	tool	in	the	ea-utils	package	(code.google.com/p/ea-utils/).	Post-align-

ment	processing	and	SNP	calling	were	performed	with	the	GATK	v.	3.1	(McKenna	et	al.	2010;	

DePristo	et	al.	2011).	

Barley	reads	were	aligned	to	the	Morex	draft	genome	sequence	(Mayer	et	al.	2012)	

using	BWA-MEM	(Li	and	Durbin	2009).	We	tuned	the	alignment	reporting	parameter	and	

the	gapping	parameters	to	allow	~2%	mismatch	between	the	reads	and	reference	sequence,	

which	is	roughly	equivalent	to	the	highest	estimated	nucleotide	diversity	observed	at	a	locus	

in	barley	coding	sequence	(Morrell	et	al.	2003,	2006,	2014).	The	resulting	SAM	Kile	was	

trimmed	of	unmapped	reads	with	Samtools	(Li	et	al.	2009),	sorted,	and	trimmed	of	dupli-
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cate	reads	with	Picard	tools	(picard.sourceforge.net/).	We	then	realigned	around	indels,	us-

ing	a	set	of	100	previously	known	indels	from	Sanger	resequencing	of	25	loci	(Caldwell	et	al.	

2006;	Morrell	and	Clegg	2007;	Morrell	et	al.	2014).	Sequence	coverage	was	estimated	with	

'bedtools	genomecov,’	using	the	regions	included	in	the	Nimblegen	barley	exome	capture	

design	(https://sftp.rch.cm/diagnostics/sequencing/nimblegen_annotations/ez_barley_ex-

ome/barley_exome.zip).	Individual	sample	alignments	were	then	merged	into	a	multisam-

ple	alignment	for	variant	calling.	A	preliminary	set	of	variants	was	called	with	the	GATK	

HaplotypeCaller	with	a	heterozygosity	(average	pairwise	diversity)	value	of	0.008,	based	on	

average	coding	sequence	diversity	reported	for	cultivated	barley	(Morrell	et	al.	2014).	This	

preliminary	set	of	variants	was	Kiltered	to	sites	with	a	genotype	score	of	40	or	greater,	het-

erozygous	calls	in	at	most	two	individuals,	and	read	depth	of	at	least	Kive	reads.	We	then	

used	the	Kiltered	variants,	SNPs	identiKied	in	the	Sanger	resequencing	data	set,	and	9,605	

SNPs	from	genotyping	assays:	5,010	from	the	James	Hutton	Institute	(Comadran	et	al.	

2012),	and	4,595	from	Illumina	GoldenGate	assays	(Close	et	al.	2009)	as	input	for	the	GATK	

VariantRecalibrator	to	obtain	a	Kinal	set	of	variant	calls.		

Processing	of	soybean	samples	is	as	described	above,	but	with	the	following	modiKi-

cations.	Soy	reads	were	aligned	to	the	Williams	82	reference	genome	sequence	(Schmutz	et	

al.	2010).	Mismatch	and	reporting	parameters	for	the	cultivated	samples	were	adjusted	to	

allow	for	~1%	mismatch	between	reads	and	reference,	which	is	approximately	the	highest	

typical	genic	sequence	diversity	in	soybean	cultivars	(Hyten	et	al.	2006).	The	alignments	

were	trimmed	and	sorted	as	described	above.	Preliminary	variants	were	called	as	in	the	
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barley	sample,	but	with	a	heterozygosity	value	of	0.001,	which	is	the	nucleotide	diversity	

reported	by	Hyten	et	al.	(2006).	Final	variant	calls	were	obtained	in	the	same	way	as	de-

scribed	for	the	barley	sample,	using	SNPs	on	the	SoySNP50K	chip	(Song	et	al.	2013)	as	

known	variants.	

Read	mapping	scripts,	variant	calling	scripts,	and	variant	Kiltering	scripts	for	both	

barley	and	soybean	are	available	on	GitHub	at	(github.com/MorrellLAB/Deleterious_Muta-

tions).		

SNP Classification

Barley	SNPs	were	identiKied	as	coding	or	noncoding	using	the	Generic	Feature	For-

mat	v3	(GFF)	Kile	provided	with	the	reference	genome	(Mayer	et	al.	2012).	A	custom	Python	

script	was	then	used	to	identify	coding	barley	SNPs	as	synonymous	or	nonsynonymous.	

Soybean	SNPs	were	assigned	using	primary	transcripts	using	the	Variant	Effect	Predictor	

(VEP)	from	Ensembl	(ensembl.org/info/docs/tools/vep/index.html).	Nonsynonymous	SNPs	

were	then	assessed	using	SIFT	(Ng	2003),	PolyPhen2	(Adzhubei	et	al.	2010)	using	the	

‘HumDiv’	model,	and	a	likelihood	ratio	test	comparing	codon	evolution	under	selective	con-

straint	to	neutral	evolution	(Chun	and	Fay	2009).	For	the	likelihood	ratio	test,	we	used	the	

phylogenetic	relationships	between	37	Angiosperm	species	based	on	genic	sequence	from	

complete	plant	genome	sequences	available	through	Phytozome	(phytozome.jgi.doe.gov/)	

and	Ensembl	Plants	(plants.ensembl.org/).	The	LRT	is	implemented	as	a	Python	package	we	

call	‘BAD_Mutations’	(BLAST	Aligned-Deleterious	Mutations;	github.com/MorrellLAB/
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BAD_Mutations).	Coding	sequences	from	each	genome	were	downloaded	and	converted	into	

BLAST	databases.	The	coding	sequence	from	the	query	species	was	used	to	identify	the	best	

match	from	each	species	using	TBLASTX.	The	best	match	from	each	species	was	then	

aligned	using	PASTA	(Mirab	et	al.	2014),	a	phylogeny-aware	alignment	tool.	The	resulting	

alignment	was	then	used	as	input	to	the	likelihood	ratio	test	for	the	affected	codon.	The	LRT	

was	performed	on	codons	with	a	minimum	of	10	species	represented	in	the	alignment	at	the	

queried	codon.	Reference	sequences	were	masked	from	the	alignment	to	reduce	the	effect	of	

reference	bias	(Simons	et	al.	2014).	A	SNP	was	identiKied	as	deleterious	if	the	p-value	for	the	

test	was	less	than	0.05,	with	a	Bonferroni	correction	applied	based	on	the	number	of	tested	

codons,	and	if	either	the	alternate	or	reference	allele	was	not	seen	in	any	of	the	other	

species.	A	full	list	of	species	names	and	genome	assembly	and	annotation	versions	used	is	

available	in	Table	S4.		

Inference of Ancestral State

Prediction	of	deleterious	mutations	is	complicated	by	reference	bias	(Chun	and	Fay	

2009;	Simons	et	al.	2014),	which	manifests	in	two	ways.	First,	individuals	that	are	closely	

related	to	the	reference	line	used	for	the	reference	genome	will	appear	to	have	fewer	genetic	

variants,	and	thus	fewer	inferred	nonsynonymous	and	deleterious	variants.	Second,	when	

the	reference	strain	carries	a	derived	allele	at	a	polymorphic	site,	that	site	is	generally	not	

predicted	to	be	deleterious	(Simons	et	al.	2014).	To	address	the	issue	of	reference	bias,	we	

polarized	all	coding	variants	by	ancestral	and	derived	state,	rather	than	reference	and	non-
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reference	state.	Ancestral	states	were	inferred	for	SNPs	in	gene	regions	by	inferring	the	ma-

jority	state	in	the	most	closely	related	clade	from	the	consensus	phylogenetic	tree	for	the	

species	included	in	the	LRT.	For	barley,	the	ancestral	states	were	inferred	from	gene	align-

ments	of	Aegilops	tauschii,	Brachypodium	distachyon,	and	Tritium	urartu.	For	soybean,	an-

cestral	states	were	inferred	using	Medicago	truncatula	and	Phaseolus	vulgaris.	This	ap-

proach	precludes	universal	inference	of	ancestral	state	for	noncoding	variants.	However,	ex-

amination	of	alignments	of	intergenic	sequence	in	Triticeae	species	and	in	Glycine	species	

showed	that	alignments	outside	of	protein	coding	sequence	is	not	reliable	for	ancestral	state	

inference	(data	not	shown).	

Results

Identification of Deleterious SNPs

Resequencing	and	read	mapping	followed	by	read	de-duplication	resulted	in	an	aver-

age	coverage	of	~39X	exome	coverage	for	our	barley	samples	and	~38X	genome	coverage	in	

soybean.	After	realignment	and	variant	recalibration,	we	identiKied	652,797	SNPs	in	thirteen	

cultivated	and	two	wild	barley	lines.	The	majority	of	these	SNPs	were	noncoding,	with	

522,863	occurring	outside	of	CDS	annotations.	Of	the	coding	SNPs,	70,069	were	synony-

mous,	and	59,865	were	nonsynonymous.	The	list	of	differences	from	reference	carried	by	

each	barley	sample	is	summarized	in	Table	1,	and	a	per-approach	summary	of	deleterious	

variants	is	given	in	Table	2.	SIFT	identiKied	13,626	SNPs	as	deleterious,	PolyPhen2	identiKied	
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13,534	SNPs	to	be	deleterious,	and	the	LRT	called	17,865	deleterious.	The	intersection	of	all	

three	methods	gives	a	much	smaller	set	of	deleterious	variants,	with	a	total	of	4,872	non-

synonymous	SNPs	identiKied	as	deleterious.	While	individual	methods	identiKied	~18%	of	

nonsynonymous	variants	as	deleterious,	the	intersect	of	methods	identiKies	5.7%.	A	derived	

site	frequency	spectrum	(SFS)	of	our	barley	sample		is	shown	in	Figure	1A.		

In	soybean,	we	called	586,102	SNPs	in	gene	regions.	Of	these,	542,558	occur	in	the	

Klanking	regions	of	a	gene	model.		We	identify	73,577	SNPs	with	a	synonymous	conse-

quence,	and	99,685	with	a	nonsynonymous	consequence	(Table	3).	SNPs	in	the	various	

classes	sum	to	greater	than	the	total	as	a	single	SNP	in	multiple	transcripts	can	have	multi-

ple	functional	classes.	For	instance,	a	SNP	may	be	intronic	in	one	transcript,	but	be	in	an	

exon	of	a	different	one.		SIFT	identiKied	7,694	of	the	nonsynonymous	SNPs	as	deleterious,	

PolyPhen2	identiKied	14,933	as	deleterious,	and	the	LRT	identiKied	11,223	as	deleterious.	

Similarly	to	the	barley	sample,	the	proportion	of	putatively	variants	was	similar	across	pre-

diction	approaches,	with	the	exception	of	SIFT,	which	failed	to	Kind	alignments	for	many	

genes.	The	overlap	of	prediction	approaches	identiKied	3,041	(2.6%)	of	nonsynonymous	

variants	to	be	deleterious	(Table	4).Derived	allele	frequency	distributions	are	shown	in	Fig-

ure	1B.	Variants	inferred	to	be	deleterious	are	generally	at	lower	derived	allele	frequency	

than	other	classes	of	variation,	implying	that	these	variants	are	truly	deleterious.	

Nonsense	variants	made	up	a	relatively	small	proportion	of	putatively	deleterious	

variants.	In	our	barley	sample,	we	identify	a	total	of	711	nonsense	variants,	14.5%	of	our	
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putatively	deleterious	variants.	In	soybean,	we	identify	1,081	nonsense	variants,	which	

make	up	15.7%	of	putatively	deleterious	variants.		Nonsense	variants	have	a	higher	het-

erozygosity	than	tolerated,	silent,	or	deleterious	missense	variants	(Figure	S2).	While	the	

absolute	differences	in	heterozygosity	were	small	due	to	the	inbred	nature	of	our	samples,	

the	pattern	suggests	that	nonsense	variants	are	more	strongly	deleterious	than	just	mis-

sense	variants.	

Deleterious Mutations and Causative Variants

	Bioinformatic	approaches	to	identifying	deleterious	variants	rely	on	sequence	con-

straint	to	estimate	protein	functional	impact.	An	example	of	a	deleterious	variant	showing	a	

derived	base	substitution	that	alters	a	phylogenetically	conserved	codon	is	shown	in	Figure	

2.	The	variants	identiKied	in	these	approaches	should	be	enriched	for	variants	that	cause	

large	phenotypic	changes.	We	identiKied	23	nonsynonymous	variants	inferred	to	contribute	

to	known	phenotypic	variation	in	barley	and	11	in	soybean	and	tested	the	effect	of	these	

variants	in		our	prediction	pipeline.	Of	23	putative	causative	mutations	in	barley,	6	(25%)	of	

them	were	inferred	to	be	deleterious	(Table	S5).	Of	the	11	soybean	putatively	causative	mu-

tations,	5	(45%)	of	them	were	inferred	to	be	deleterious.	This	contrasts	with	the	genome-

wide	average	of	~3-6%,	showing	that	variants	that	annotate	as	deleterious	are	more	likely	

to	impact	phenotypes.	

Deleterious Mutations and Genetic Map Distance
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The	purging	of	deleterious	variants	from	populations	is	greatly	affected	by	the	effec-

tive	recombination	rate,	which	is	related	to	the	ratio	of	genetic	distance	to	physical	distance.	

To	examine	the	relationship	between	the	number	of	deleterious	variants	and	recombination	

rate,	we	used	a	high-density	genetic	map	from	a	soybean	recombinant	inbred	line	family	

(Lee	et	al.	2015).	The	soybean	map	was	based	on	a	subset	of	the	SoySNP50K	genotyping	

platform	(Song	et	al.	2013).	There	was	a	weak	but	signiKicant	correlation	between	recombi-

nation	rate	and	the	proportion	of	nonsynonymous	SNPs	inferred	to	be	deleterious	(r2	=	

0.007,	p	<	0.001,	Figures	3,	S3).	We	did	not	examine	this	relationship	in	barley	because	the	

barley	reference	genome	assembly	(Mayer	et	al.	2012)	contains	limited	physical	distance	

information.	

Discussion

Questions	regarding	the	prevalence	of	deleterious	variants	date	back	over	half	a	cen-

tury	(Fisher	1930;	Muller	1950).	In	Kinite	populations,	the	segregation	of	deleterious	muta-

tions	can	have	a	substantial	impact	on	population	mean	Kitness	(Kimura	et	al.	1963).	While	

it	has	been	argued	that	the	concept	of	a	reduction	of	Kitness	relative	to	a	hypothetical	opti-

mal	genotype	is	irrelevant	(Wallace	1970),	mutation	accumulation	studies	have	shown	that	

the	accumulation	of	deleterious	mutations	has	a	signiKicant	effect	on	absolute	Kitness	

(Schultz	et	al.	1999;	Shaw	et	al.	2002).

Our	results	demonstrate	that	a	large	number	of	putatively	deleterious	variants	per-
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sist	in	individual	cultivars	in	both	barley	and	soybeans.	The	approaches	used	in	this	study	

predict	the	probability	that	a	given	amino	acid	or	nucleotide	substitution	disrupts	protein	

function.	Mutations	that	alter	phenotypes	may	be	especially	likely	to	annotate	as	deleteri-

ous,	and	we	show	that	a	high	proportion	of	inferred	causative	mutations	annotate	as	delete-

rious.	It	should	be	noted	that	variants	identiKied	as	deleterious	may	affect	a	phenotype	that	

is	adaptive	in	only	part	of	the	species	range	or	has	a	transient	selective	advantage	–	i.e.,	lo-

cally	or	temporally	adaptive	phenotypes.		If	the	portion	of	the	range	in	which	the	phenotype	

is	adaptive	is	small	or	the	selective	advantage	is	transient,	such	variants	will	be	kept	an	low	

frequencies	and	be	identiKied	as	deleterious.	Just	as	few	variants	are	expected	to	be	globally	

advantageous,	a	portion	of	deleterious	variants	are	likely	to	not	be	globally	disadvantageous.	

Such	variants	could	be	either	locally	or	temporally	advantageous,	with	a	Kitness	advanta-

geous	under	some	circumstances	contributing	to	their	maintenance	in	populations	(TifKin	

and	Ross-Ibarra	2014).		

At	the	molecular	level,	variants	occurring	in	minor	transcripts	of	genes	may	exhibit	

conditional	neutrality	(TifKin	and	Ross-Ibarra	2014),	and	Nes	will	be	too	low	for	purifying	

selection	to	act.	(Gan	et	al.	2011)	identiKied	many	isoforms	of	genes	among	a	diverse	panel	

of	Arabidopsis	thaliana	accessions,	as	well	as	compensatory	mutations	for	a	majority	of	

frameshift	mutations.	Genetic	variants	that	annotated	as	nonsynonymous	or	nonsense	using	

the	A.	thaliana	reference	are	frequently	spliced	out	of	the	transcript	such	that	the	gene	still	

produces	a	full-length	and	functional	product.	In	a	similar	vein,	deleterious	variants	are	of-

ten	accompanied	by	multiple	compensatory	mutations	that	alleviate	their	Kitness	effects	
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(Poon	and	Otto	2000;	Poon	and	Chao	2005).	The	occurrence	of	the	preponderance	of	puta-

tively	deleterious	variants	in	the	rarest	frequency	classes	(Fig	1),	and	a	higher	level	of	ob-

served	heterozygosity	for	putatively	deleterious	variants	(Figure	S5)	are	both	consistent	

with	action	of	purifying	selection	on	variants	with	negative	impacts	on	Kitness.		Putatively	

disease-causing	variants	in	human	populations	have	also	been	observed	to	occur	at	low	fre-

quencies	and	to	occur	over	a	more		geographically	restricted	range	(Marth	et	al.	2011).	

Comparison of Identification Methods

Each	of	the	methods	used	here	to	identify	deleterious	variants	makes	use	of	se-

quence	constraint	across	a	phylogenetic	relationship.	They	differ	in	terms	of	the	models	

used	to	assess	the	functional	effect	of	a	variant.	SIFT	uses	a	heuristic,	which	determines	if	a	

nonsynonymous	variant	alters	a	conserved	site	based	on	an	alignment	build	from	PSI-

BLAST	results	(Ng	2003).	Polyphen2	is	similar	but,	additionally	identiKies	potential	disrup-

tions	in	secondary	or	tertiary	structure	of	the	encoded	protein	(when	this	information	is	

available)	(Adzhubei	et	al.	2010).	Both	of	these	approaches	estimate	codon	conservation	

from	a	multiple	sequence	alignment,	but	do	not	use	phylogenetic	relationships	in	their	pre-

dictions.	PolyPhen2	identiKied	the	largest	number	of	variants	as	deleterious.	The	reason	for	

this	may	be	that	the	data	used	to	train	the	PolyPhen2	model	is	from	human	disease-causing	

and	neutral	variants.	Nonhuman	systems	may	differ	fundamentally	as	to	which	amino	acid	

substitutions	tend	to	have	strong	functional	impact,	which	would	reduce	prediction	accura-

cy	in	other	species	(Adzhubei	et	al.	2010).	The	LRT	explicitly	calculates	the	local	synony-
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mous	substitution	rate,	and	uses	that	to	test	whether	an	individual	codon	is	under	selective	

constraint	or	evolving	neutrally	(Chun	and	Fay	2009).	It	is	a	hypothesis-driven	approach,	

and	compares	the	likelihood	of	two	evolutionary	scenarios.	Variants	in	selectively	con-

strained	codons	are	considered	to	be	deleterious.			

The	SNPs	predicted	to	be	deleterious	differ	somewhat	between	prediction	approach-

es.	Even	though	SIFT	and	PolyPhen2	identify	similar	proportions	of	nonsynonymous	SNPs	

as	deleterious,	they	overlap	at	~50%	of	sites	(Table	2).	SNPs	identiKied	through	at	least	two	

approaches,	seem	more	likely	to	be	deleterious,	based	on	lower	average	derived	allele	fre-

quencies	(Figure	S4).	Comparisons	of	the	distribution	of	Grantham	scores	(Grantham	1974)	

show	high	similarity	in	the	severity	of	amino	acid	replacements	that	are	predicted	to	be	

deleterious	by	each	approach	(Figure	S5).	The	effects	of	reference	bias	are	apparent	in	SIFT	

and	PolyPhen2.	In	barley	and	soybean,	the	reference	genotypes	are	'Morex'	and	‘Williams	

82’	respectively.	Even	when	polarizing	by	ancestral	and	derived	alleles,	these	genotypes	

show	considerably	fewer	inferred	deleterious	variants	(Table	2;	Table	4).		

Deleterious Variants in Crop Breeding	

IdentiKication	and	elimination	of	deleterious	variants	has	been	proposed	as	a	poten-

tial	means	of	improving	plant	Kitness	and	crop	yield	(Morrell	et	al.	2011).	Current	plant	

breeding	strategies	using	genome-wide	prediction	rely	on	estimating	genome-wide	marker	

effects	on	quantitative	traits	of	interest	(Meuwissen	et	al.	2001).	Genome-wide	prediction	

has	been	shown	to	be	effective	in	both	animals	(Schaeffer	2006)	and	plants	(Heffner	et	al.	
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2011;	Jacobson	et	al.	2014),	but	these	approaches	rely	on	estimating	marker	contributions	

to	a	quantitative	trait	(i.e.,	a	measured	phenotypic	effect).	The	genetic	architecture	of	quan-

titative	traits	suggests	that	our	ability	to	quantify	the	effects	of	individual	loci	will	reach	

practical	limits	before	we	can	identify	loci	contributing	to	the	variance	of	many	agronomic	

traits	(Rockman	2012).	Many	traits	of	agronomic	interest,	particularly	yield	in	grain	crops,	

are	quantitative	and	have	a	complex	genetic	basis	.	As	such,	they	are	under	the	inKluence	of	

environmental	effects	and	many	loci	(Falconer	and	Mackay	1996).	QTL	mapping	approaches	

to	identifying	favorable	variants	for	agronomic	traits	will	reach	practical	limits,	even	for	

variants	of	large	effect	(King	et	al.	2012).	Current	genome	wide	prediction	and	selection	

methodologies	rely	on	estimating	the	combined	effects	of	markers	across	the	genome	

(Meuwissen	et	al.	2001),	but	is	approach	is	limited	by	recombination	rate	and	the	ability	to	

measure	phenotypes	of	interest.	The	identiKication	and	purging	of	deleterious	variants	

should	provide	a	complementary	approach	to	current	breeding	methodologies	(Morrell	et	

al.	2011).	

Rise of Deleterious Variants Into Populations

The	number	of	segregating	deleterious	variants	in	a	species	is	very	different	from	the	

number	of	de	novo	deleterious	mutations	in	each	generation,	commonly	identiKied	as	U.	In	

humans,	U	is	estimated	at	~2	new	deleterious	variants	per	genome	per	generation	(Agrawal	

and	Whitlock	2012)	and	estimates	from	Arabidopsis	suggest	that	U	is	approximately	0.1	

(Schultz	et	al.	1999).	U	is	the	product	of	the	per-base	pair	mutation	rate,	the	genome	size,	
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and	the	fraction	of	the	genome	that	is	deleterious	when	mutated	(Charlesworth	2012).	Even	

though	new	mutations	are	constantly	arising,	the	standing	load	of	deleterious	variation	

greatly	exceeds	the	rate	at	which	they	arise	(Charlesworth	et	al.	2004;	Charlesworth	2012).	

However,	our	results	show	that	~40%	of	our	inferred	deleterious	variants	are	private	to	in-

dividual	cultivars,	suggesting	that	they	can	be	purged	from	breeding	programs.	

In	the	current	study,	we	restricted	our	analyses	to	protein	coding	regions,	but	addi-

tional	recent	evidence	suggests	that	deleterious	variants	can	accumulate	in	conserved	non-

coding	sequences,	such	as	transcription	factor	binding	sites	(Arbiza	et	al.	2013).	As	such,	

analysis	of	the	protein-coding	regions	of	genomes	presents	a	lower-bound	on	the	estimates	

of	the	number	of	deleterious	variants	segregating	in	populations.	Efforts	to	identify	delete-

rious	variants	in	noncoding	sequence	are	limited	by	scant	knowledge	of	functional	con-

straints	on	noncoding	genomic	regions,	and	difKiculty	in	aligning	noncoding	regions	from	all	

but	the	most	closely	related	taxa	(Doniger	et	al.	2008).	Annotation	of	noncoding	sequence	

will	uncover	additional	deleterious	variants,	but	a	majority	of	putatively	deleterious	vari-

ants	will	be	in	coding	regions.	The	several	thousand	putatively	deleterious	variants	we	iden-

tify	per	individual	cultivar	should	provide	ample	targets	for	selection	of	recombinant	prog-

eny	in	a	breeding	program.	
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Figure Captions

Figure	1:	Unfolded	site	frequency	spectrum	for	coding	regions	showing	deleterious,	tolerat-

ed,	and	synonymous	SNPs	for	barley	and	soybean.	Ancestral	state	was	inferred	by	majority	

state	in	the	LRT	gene	alignments.	A)	is	based	on	thirteen	domesticated	barley	accessions	

and	two	wild	accessions	while	B)	is	based	on	seven	cultivated	soybean	accessions	and	one	

wild	accession.		

Figure	2:	A	sample	alignment	used	to	infer	a	Serine	to	Proline	mutation	as	deleterious	in	

Ppd-H1.	The	alignment	is	built	from	sequences	used	by	SIFT,	and	the	affected	codon	is	high-

lighted	in	red.	
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Figure	3:	Comparison	between	the	recombination	rate	and	proportion	of	nonsynonymous	

SNPs	inferred	to	be	deleterious	in	soybean	on	chromosome	4.	The	cM/Mb	values	are	calcu-

lated	from	a	genetic	map	using	the	SoySNP6K	(Lee	et	al.	2015).	Red	points	are	the	propor-

tion	of	nonsynonymous	variants	that	are	inferred	to	be	deleterious,	and	black	points	are	

cM/Mb	values	between	adjacent	markers.

Figure	S1:	A	schematic	for	the	read	mapping	and	SNP	calling	workKlow.	Boxes	with	bold	

borders	denote	the	start	and	end	points	of	workKlow.	Rounded	boxes	with	light	grey	borders	

are	the	tools	that	are	used	at	each	step	in	the	pipeline.	Boxes	with	dashed	borders	denote	

external	datasets	that	are	used	in	various	steps	of	the	pipeline.	

Figure	S2:	The	distributions	of	per-SNP	heterozygosity	for	tolerated	nonsynonymous	and	

silent	SNPs,	deleterious	missense	SNPs,	and	nonsense	SNPs.	Nonsense	SNPs	tend	to	be	het-

erozygous	more	often	than	deleterious	or	tolerated	SNPs.		

Figure	S3:	Correlation	between	recombination	rate	(cM/Mb)	and	proportion	of	nonsyn-

onymous	SNPs	inferred	to	be	deleterious	genome-wide	in	our	soybean	sample.	

Figure	S4:	Unfolded	site	frequency	spectrum	for	SNPs	in	A)	barley	and	B)	soybean	predicted	

to	be	deleterious	by	one,	two,	or	three	prediction	approaches.	SNPs	predicted	by	only	one	

approach	are	not	as	strongly	skewed	toward	rare	variants,	suggesting	that	the	intersection	

of	multiple	prediction	approaches	gives	the	most	reliable	prediction	of	deleterious	variants.	

Figure	S5:	Distribution	of	Grantham	score	for	nonsynonymous	variants	predicted	to	be	dele-
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terious	by	each	prediction	approach.	Each	approach	and	the	intersection	of	each	approach	

gives	a	very	similar	distribution	of	Grantham	scores.	Vertical	lines	show	the	mean	of	the	dis-

tribution.	

Table Captions

Table	1:	Counts	of	SNPs	in	various	classes	in	thirteen	barley	samples.	Numbers	reported	are	

comparisons	against	the	reference	genome,	which	makes	it	possible	to	include	noncoding	

variants,	where	ancestral	state	cannot	be	estimated	unambiguously.	

Table	2:	Per-method	and	per-sample	counts	of	deleterious	variants	for	barley.	Numbers	re-

ported	are	comparisons	against	ancestral	state.	The	proportion	of	nonsynonymous	variants	

that	is	inferred	to	be	deleterious	by	each	prediction	method	in	each	accession	is	shown	in	

parentheses.	

Table	3:	Counts	of	SNPs	in	various	classes	in	seven	soybean	samples.	Numbers	reported	are	

comparisons	against	the	reference	genome,	which	makes	it	possible	to	include	noncoding	

variants,	where	ancestral	state	cannot	be	estimated	unambiguously.	

Table	4:	Per-method	and	per-sample	of	counts	of	deleterious	variants	in	soybean.	Numbers	

reported	are	comparisons	against	ancestral	state.	The	proportion	of	nonsynonymous	vari-

ants	that	is	inferred	to	be	deleterious	by	each	prediction	method	in	each	accession	is	shown	

in	parentheses.	
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Table	S1:	Accessions	used	in	this	study.	The	Kinal	coverage	reported	is	the	average	depth	

over	the	targeted	region.	

Table	S2:	Origin	information	for	the	barley	accessions	used	in	this	study.	

Table	S3:	Origin	information	for	the	soybean	accessions	used	in	this	study.	

Table	S4:	List	of	all	species	and	genome	assembly	versions,	annotation	versions,	and	data	

sources	for	sequences	used	in	the	likelihood	ratio	test.	

Table	S5:	List	of	cloned	genes	with	SNPs	causing	phenotypic	differences,	and	predictions	for	

each	SNP.	Causative	SNPs	annotate	as	deleterious	with	a	higher	frequency	than	the	genomic	

average. 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Tables

Table 1

Sample Differences	
From	Morex Noncoding	 Synonymous Non-

synonymous Non-sense

Barke 162,954 130,832 17,800 14,322 86

Bonus 135,540 108,762 15,184 11,594 65

Borwina 139,222 111,613 15,699 11,910 62

Bowman 130,335 105,575 13,645 11,115 77

Foma 156,846 126,608 16,746 13,492 84

Gull 128,671 103,143 14,555 10,973 55

Harrington 153,203 124,264 15,995 12,944 89

Haruna	Nijo 155,245 125,143 16,655 13,447 83

Igri 161,224 130,100 17,275 13,849 98

Kindred 86,932 69,996 9,458 7,478 34

Morex 5,239 4,602 253 384 4

Steptoe 148,785 120,245 15,839 12,701 91

Vogelsanger	
Gold 146,303 117,557 16,168 12,578 70

FT11 243,049 195,009 26,886 21,154 147

OUH602 197,405 158,377 21,701 17,327 115
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Table 2

Sample SIFT PPH LRT Intersect

Barke 3609	(0.199) 3507	(0.194) 3339	(0.185) 1070	(0.059)

Bonus 3066	(0.189) 2911	(0.18) 2941	(0.182) 882	(0.054)

Borwina 3083	(0.19) 2932	(0.181) 2977	(0.184) 894	(0.055)

Bowman 3335	(0.186) 3219	(0.18) 3248	(0.182) 998	(0.056)

Foma 3879	(0.2) 3666	(0.189) 3598	(0.186) 1151	(0.059)

Gull 3076	(0.187) 2946	(0.179) 2998	(0.183) 885	(0.054)

Harrington 3599	(0.196) 3536	(0.192) 3335	(0.182) 1063	(0.058)

Haruna	Nijo 3576	(0.194) 3507	(0.191) 3354	(0.182) 1078	(0.059)

Igri 3694	(0.199) 3585	(0.193) 3350	(0.181) 1077	(0.058)

Kindred 3131	(0.175) 2995	(0.168) 3204	(0.18) 931	(0.052)

Morex 2492	(0.146) 2298	(0.135) 3034	(0.178) 700	(0.041)

Steptoe 3479	(0.195) 3393	(0.19) 3266	(0.183) 1061	(0.06)

Vogelsanger	Gold 3172	(0.193) 3100	(0.188) 2995	(0.182) 910	(0.055)

FT11 3948	(0.225) 3937	(0.224) 3290	(0.187) 1220	(0.069)

OUH602 3864	(0.209) 3886	(0.21) 3391	(0.183) 1174	(0.064)

Joint 13626	(0.228) 13534	(0.226) 11574	(0.193) 4275	(0.071)

Table 3

Sample Differences	From	Wm82 Noncoding	 Synonymous Nonsynonymous Non-sense

Archer 71,400 38,056 12,397 16,948 457

IA3023 60,388 33,905 11,335 14,703 426

M92-220 85,861 45,183 14,644 19,843 591

Minsoy 151,622 77,466 23,614 31,430 927

Noir1 128,689 65,508 20,292 27,309 828

Williams 3,340 7,308 3,688 3,854 87

Williams	82 9,497 6,267 3,248 3,359 70

G.	soja 163,365 83,940 24,120 32,114 930

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 28, 2015. ; https://doi.org/10.1101/033175doi: bioRxiv preprint 

https://doi.org/10.1101/033175


Table 4

Sample SIFT PPH LRT Intersect

Archer 1987	(0.062) 3847	(0.12) 3166	(0.099) 773	(0.024)

IA3023 1994	(0.062) 3837	(0.119) 3178	(0.099) 792	(0.025)

M92-220 2142	(0.066) 4269	(0.132) 3397	(0.105) 860	(0.027)

Minsoy 2686	(0.081) 5257	(0.158) 3977	(0.119) 1135	(0.034)

Noir	1 2417	(0.073) 4951	(0.15) 3865	(0.117) 1035	(0.031)

Williams 1408	(0.048) 2673	(0.09) 2425	(0.082) 485	(0.016)

Williams	82 1394	(0.047) 2631	(0.089) 2393	(0.081) 478	(0.016)

G.	soja 1751	(0.074) 3583	(0.15) 2675	(0.112) 716	(0.03)

Joint 7694	(0.076) 14933	(0.147) 11223	(0.11) 3041	(0.03)
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