
Efficient coalescent simulation and genealogical

analysis for large sample sizes

Jerome Kelleher Alison M. Etheridge Gilean McVean

November 30, 2015

Abstract

A central challenge in the analysis of genetic variation is to provide
realistic genome simulation across millions of samples. Present day coa-
lescent simulations do not scale well, or use approximations that fail to
capture important long-range linkage properties. Analysing the results of
simulations also presents a substantial challenge, as current methods to
store genealogies consume a great deal of space, are slow to parse and
do not take advantage of shared structure in correlated trees. We solve
these problems by introducing sparse trees and coalescence records as the
key units of genealogical analysis. Using these tools, exact simulation of
the coalescent with recombination for chromosome-sized regions over hun-
dreds of thousands of samples is possible, and substantially faster than
present-day approximate methods. We can also analyse the results orders
of magnitude more quickly than with existing methods.

1 Introduction

The coalescent process (Kingman, 1982; Hudson, 1983a) underlies much of mod-
ern population genetics and is fundamental to our understanding of molecular
evolution. The coalescent describes the ancestry of a sample of n genes in the
absence of recombination, selection, population structure and other complicat-
ing factors. The model has proved to be highly extensible, and these and many
other complexities required to model real populations have successfully been
incorporated (Wakeley, 2008). Simulation has played a key role in coalescent
theory since its beginnings (Hudson, 1983a), partly due to the ease with which
it can be simulated: for a sample of n genes, we require only O(n) time and
space to simulate a genealogy (Hudson, 1990).

Soon after the single locus coalescent was derived, Hudson defined an algo-
rithm to simulate the coalescent with recombination (Hudson, 1983b). However,
after some early successes in characterising this process (Hudson and Kaplan,
1985; Kaplan and Hudson, 1985) little progress was made because of the com-
plex distribution of blocks of ancestral material among ancestors. Some years
after Hudson’s pioneering work, the study of recombination in the coalescent

1

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

was recast in the framework of the Ancestral Recombination Graph (Griffiths,
1991; Griffiths and Marjoram, 1997). In the ARG, nodes are events (either
recombination or common ancestor) and the edges are ancestral chromosomes.
A recombination event results in a single ancestral chromosome splitting into
two chromosomes, and a common ancestor event results in two chromosomes
merging into a common ancestor. Analytically, the ARG is a considerable sim-
plification of Hudson’s earlier work as it models all recombination events that
occurred in the history of a sample and not just those that can potentially affect
the genealogies. Many important results have been derived using this frame-
work, one of which is particularly significant for our purposes here. Ethier and
Griffiths (1990) proved that the expected number of recombination events back
to the Grand MRCA of a sample of n individuals grows like eρ as ρ → ∞,
where ρ is the population scaled recombination rate. In this paper we consider
a diploid model in which we have a sequence of m discrete sites that are in-
dexed from zero. Recombination occurs between adjacent sites at rate r per
generation, and therefore ρ = 4Ner(m− 1). The Ethier and Griffiths result im-
plies that the time required to simulate an ARG grows exponentially with the
sequence length, and we can only ever hope to simulate ARGs for the shortest
of sequences.

This result, coupled with the observed poor scaling of coalescent simulators
such as the seminal ms program (Hudson, 2002) seems to imply that simulat-
ing the coalescent with recombination over chromosome scales is hopeless, and
researchers have therefore sought alternatives. The sequentially Markov coa-
lescent (SMC) approximation (McVean and Cardin, 2005; Marjoram and Wall,
2006) underlies the majority of present day genome scale simulation (Chen et al.,
2009; Excoffier and Foll, 2011; Staab et al., 2014) and inference methods (Li and
Durbin, 2011; Schiffels and Durbin, 2014; Rasmussen et al., 2014). The SMC
simplifies the process of simulating genealogies by assuming that each marginal
tree depends only on its immediate predecessor as we move from left-to-right
across the sequence. As a consequence, the time required to simulate genealo-
gies scales linearly with increasing sequence length. In practice, SMC based
simulators such as MaCS and scrm are many times faster than ms.

The SMC has disadvantages, however. Firstly, the SMC discards all long
range linkage information and therefore can be a poor approximation when
modelling features such as the length of admixture blocks (Liang and Nielsen,
2014). Improving the accuracy of the SMC is also difficult and error prone. For
example, the MaCS simulator (Chen et al., 2009) has a parameter to increase
the number of previous trees on which a marginal tree can depend. Paradox-
ically, this gives a worse approximation to the coalescent with recombination
if we increase it beyond a certain limit (Staab et al., 2014). Incorporating
complexities such as population structure (Eriksson et al., 2009), intra-codon
recombination (Arenas and Posada, 2010) and inversions (Peischl et al., 2013)
is non-trivial and can be substantially more complex than the corresponding
modification to the exact coalescent model. Also, while SMC based methods
scale well in terms of increasing sequence length, currently available simulators
do not scale well in terms of sample size.

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

We solve these problems by introducing sparse trees and coalescence records
as the fundamental units of genealogical analysis. By creating a concrete for-
malisation of the genealogies generated by the coalescent process in terms of an
integer vector, we greatly increase the efficiency of simulating the exact coales-
cent with recombination. In Section 2 we discuss how Hudson’s classical simula-
tion algorithm can be defined in terms of these sparse trees, and why this leads
to substantial gains in terms of the simulation speed and memory usage. We
show that our implementation of the exact coalescent, msprime, is competitive
with approximate simulators for small sample sizes, and is faster than all other
simulators for large sample sizes. This is possible because Hudson’s algorithm
does not traverse the entire ARG, but rather a small and poorly understood
subset of it. We show some preliminary results indicating that the number of
nodes in this graph may be a quadratic function of the scaled recombination
rate ρ rather than an exponential.

Generating simulated data is of little use if the results cannot be processed
in an efficient and convenient manner. Currently available methods for storing
and processing genealogies perform very poorly on trees with hundreds of thou-
sands of nodes. In Section 3 we show how the encoding of the correlated trees
output by the simulation in Section 2 leads to an extremely compact method of
storing these genealogies. For large simulations, the representation can be thou-
sands of times smaller than the most compact tree serialisation format currently
available. Our encoding also leads to very efficient tree processing algorithms;
for example, sequential access to trees is several orders of magnitude faster than
existing methods.

The advantages of faster and more accurate simulation over huge sample
sizes, and the ability to quickly process very large result sets may enable appli-
cations that were not previously feasible. In Section 4 we conclude by discussing
some of these applications and other uses of our novel encoding of genealogies.
The methods developed in this paper allow us to simulate the coalescent for
very large sample sizes, where the underlying assumptions of the model may be
violated (Wakeley and Takahashi, 2003; Bhaskar et al., 2014). Addressing these
issues is beyond the scope of this work, but we note that the majority of our
results can be applied to simulations of any retrospective population model.

2 Efficient coalescent simulation

In this section we define our encoding of coalescent genealogies, and show how
this leads to very efficient simulations. There are many different simulation
packages, and so we begin with a brief review of the state-of-the-art before
defining our encoding in Section 2.1 and analysing its performance in Section 2.2.

Two basic approaches exist to simulate the coalescent with recombination.
The first approach was defined by Hudson (1983b), and works by applying the
effects of recombination and common ancestor events to the ancestors of the
sample as we go backwards in time. Events occur at a rate that depends only
on the state of the extant ancestors, and so we can generate the waiting times

3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

to these events efficiently without considering the intervening generations. This
contrasts with time-reversed generation-by-generation methods (Excoffier et al.,
2000; Laval and Excoffier, 2004; Anderson et al., 2005; Liang et al., 2007) which
are more flexible but also considerably less efficient. The first simulation pro-
gram published based on Hudson’s algorithm was ms (Hudson, 2002). After
this, many programs were published to simulate various evolutionary complex-
ities not handled by ms, such as selection (Spencer and Coop, 2004; Teshima
and Innan, 2009; Ewing and Hermisson, 2010; Shlyakhter et al., 2014), recom-
bination hotspots (Hellenthal and Stephens, 2007), codon models (Arenas and
Posada, 2007), intra-codon recombination (Arenas and Posada, 2010) and mod-
els of species with a skewed offspring distribution (Zhu et al., 2015). Oth-
ers developed user interfaces to facilitate easier analysis (Mailund et al., 2005;
Ramos-Onsins and Mitchell-Olds, 2007).

The second fundamental method of simulating the coalescent with recombi-
nation is due to Wiuf and Hein (1999a). In Wiuf and Hein’s algorithm we begin
by generating a coalescent tree for the left-most locus and then move across the
sequence, updating the genealogy to account for recombination events. This
process is considerably more complex than Hudson’s algorithm because the re-
lationship between trees as we move across the genome is non-Markovian: each
tree depends on all previously generated trees. Because of this complexity, ex-
act simulators based on Wiuf and Hein’s algorithm are significantly less efficient
than ms (Staab et al., 2014; Wang et al., 2014). However, Wiuf and Hein’s algo-
rithm has provided the basis for the SMC approximation (McVean and Cardin,
2005; Marjoram and Wall, 2006), and programs based on this approach (Chen
et al., 2009; Excoffier and Foll, 2011; Staab et al., 2014) can simulate long se-
quences far more efficiently than exact methods such as ms. Very roughly, we
can think of Wiuf and Hein’s algorithm performing a depth-first traversal of
the ARG, and Hudson’s algorithm a breadth-first traversal. Neither explore
the full ARG, but instead traverse the subset required to contruct all marginal
genealogies.

Recently, Hudson’s algorithm has been utilised in cosi2 (Shlyakhter et al.,
2014), which takes a novel approach to simulating sequences under the coales-
cent. The majority of simulators first generate genealogies and then throw down
mutations in a separate process. In cosi2 these two processes are merged, so
that mutations are generated during traversal of the ARG. Instead of associ-
ating a partial genealogy with each ancestral segment, cosi2 maps ancestral
segments directly to the set of sampled individuals at the leaves of this tree.
When a coalescence between two overlapping segments occurs, we then have
sufficient information to generate mutations and map them to the affected sam-
ples. This strategy, coupled with the use of sophisticated data structures, makes
cosi2 many times faster than competing simulators such as msms. The disad-
vantage of combining the mutation process with ARG traversal, however, is that
the underlying genealogies are not available, and cosi2 cannot directly output
coalescent trees.

Many reviews are available to compare the various coalescent simulators in
terms of their features (Carvajal-Rodŕıguez, 2008; Liu et al., 2008; Arenas, 2012;

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

Yuan et al., 2012; Hoban et al., 2012; Yang et al., 2014). Little information is
available, however, about their relative efficiencies. Hudson’s ms is widely re-
garded as the most efficient implementation of the exact coalescent and is the
benchmark against which other programs are measured (Marjoram and Wall,
2006; Chen et al., 2009; Excoffier and Foll, 2011; Staab et al., 2014; Yang et al.,
2014; Wang et al., 2014). However, for larger sample sizes and long sequence
lengths, msms (Ewing and Hermisson, 2010) is much faster than ms. Also, for
these larger sequence lengths and sample sizes, ms is unreliable and crashes (Ex-
coffier and Foll, 2011; Yang et al., 2014). Thus, msms is a much more suitable
baseline against which to judge performance. The scrm simulator is the most
efficient SMC based method currently available (Staab et al., 2014).

2.1 Hudson’s algorithm with sparse trees

An oriented tree (Knuth, 2011, p. 461) is a sequence of integers π1π2 . . . , such
that πu is the parent of node u and u is a root if πu = 0. For example, the trees

1 2 3

4
5

1 2 3

4

1 2 3

4
5

are defined by the sequences 〈4, 4, 5, 5, 0〉, 〈4, 4, 4, 0〉 and 〈5, 4, 4, 5, 0〉, respec-
tively. Oriented trees provide a concise and efficient method of representing ge-
nealogies, and have been used in coalescent simulations of a spatial continuum
model (Kelleher et al., 2013a, 2014). These simulations adopted the conven-
tion that the individuals in the sample (leaf nodes) are mapped to the integers
1, . . . , n. For every internal node u we have n < u < 2n and (for a binary tree)
the root is 2n− 1. We refer to such trees as dense because the 2n− 2 non-zero
entries of the (binary) tree π occur at u = 1, . . . , 2n− 2. A sparse oriented tree
(or more concisely, sparse tree) is an oriented tree π in which the leaf nodes are
1, . . . , n as before, but internal nodes can be any integer > n.

Each ancestor in the history of the sample in which at least one marginal
coalescence occurred corresponds to exactly one node. Ancestral nodes are
numbered sequentially from n + 1. Note that we make a distinction between
common ancestor events and coalescence events throughout. A common ances-
tor event occurs when two ancestors merge to form a common ancestor. If these
ancestors have overlapping ancestral material, then there will also be at least
one coalescence event, which is defined as a single contiguous block of sequence
coalescing within a common ancestor. In Hudson’s algorithm there are many
common ancestor events that do not result in coalescence, and it is important
to distinguish between them.

Let the tuple (`, r, u) define a segment carrying ancestral material. This
segment represents the mapping of the half-closed genomic interval [`, r) to the
tree node u. Each ancestor a is defined by a set of non-overlapping segments.
Initially we have n ancestors, each consisting of a single segment (0,m, u) for
1 ≤ u ≤ n. The only other state required by the algorithm is the time t, and
the next node w; initially, t = 0 and w = n+ 1.

5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

Let P be the set of ancestors at a given time t. Recombination events happen
at rate ρL/(m− 1) where

L =
∑
a∈P

(
max

(`,r,u)∈a
r − min

(`,r,u)∈a
`− 1

)
is the number of available ‘links’ that may be broken. (We use a fixed recom-
bination rate here for simplicity, but an arbitrary recombination map can be
incorporated without difficulty.) We choose one of the available breakpoints
uniformly, and split the ancestry of the individual at that point into two recom-
binant ancestors. If this breakpoint is at k, we assign all segments with r ≤ k
to one ancestor and all segments with ` ≥ k to the other. If there is a segment
(`, r, u) such that ` < k < r, then k falls within this segment and it is split such
that the segment (`, k, u) is assigned to one ancestor and (k, r, u) is assigned to
the other.

Common ancestor events occur at rate |P |(|P | − 1). Two ancestors a and b
are chosen and their ancestry merged to form their common ancestor. If their
segments do not overlap, the set of ancestral segments of the common ancestor is
the union of those of a and b. If segments do overlap, we have coalescence events
which must be recorded. We define a coalescence event as the merging of two
segments over the interval [`, r) into a single ancestral segment. In general the
coordinates of overlapping segments x and y will not exactly coincide, in which
case we create an equivalent set of segments by subdividing into the intersections
and ‘overhangs’. Suppose then that we have two segments (`, r, u) and (`, r, v)
from a and b respectively; over the interval [`, r) the nodes u and v coalesce
into a common ancestor, which we associate with the next available node w.
We record this information by storing the coalescence record (`, r, w, (u, v), t).
As we see in Section 3.2, these records provide sufficient information to later
recover all marginal trees. After recording this coalescence, we then check if
there are any other segments in P that intersect with [`, r). If there are, the
simulation of this region is not yet complete and we insert the segment (`, r, w)
into the ancestor of a and b. On the other hand, if there is some subset of
[`, r) which intersects with no other segments in P , we know that the marginal
tree covering this interval is complete and therefore we do not need to trace its
history any further. If any other intervals overlap in a and b, we perform the
same operations, and finally update the next available node by incrementing
w. In this way, all coalescing intervals within the same ancestor map to the
same node w, even if they are disjoint. Conversely, if two disjoint marginal
trees contain the same node, we know that this is because multiple segments
coalesced simultaneously within the same ancestor.

The algorithm continues generating recombination and common ancestor
events at the appropriate rates until P is empty, and all marginal trees are
complete. This interpretation of Hudson’s algorithm differs from the standard
formulations (Hudson, 1983b, 1990; McVean and Cardin, 2005) by concretely
defining the representation of ancestry and by introducing the idea of coales-
cence records. We have omitted many important details here in the interest of

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

brevity; see Appendix A for a detailed listing of our implementation of Hudson’s
algorithm, and Appendix B for an illustration of a complete invocation of the
algorithm.

There are several advantages to our sparse tree representation of ancestry.
Firstly, we do not need to store partially built trees in memory, and the only state
we need to maintain is the set of ancestral segments. This leads to substantial
time and memory savings, since we no longer have to copy partially built trees at
recombination events or update them during coalescences. We can also actively
defragment the segments in memory. For example, suppose that as a result
of a common ancestor event we have two segments (`, k, u) and (k, r, u) in an
ancestor. We can replace these segments with the equivalent segment (`, r, u).
Such defragmentation yields significant time and memory savings.

We have developed an implementation of Hudson’s algorithm called msprime

based on these ideas. This package (written in C and Python) provides an ms

compatible command line interface along with a Python API, and is freely avail-
able under the terms of the GNU GPL at https://pypi.python.org/pypi/

msprime. The implementation uses a simple linked-list based representation
of ancestral segments, and uses a binary indexed tree (Fenwick, 1994, 1995)
to ensure the choice of ancestral segment involved in a recombination event
can be done in logarithmic time. The implementation of msprime is based on
the listings for Hudson’s algorithm given in Appendix A, which should provide
sufficient detail to make implementation in a variety of languages routine.

2.2 Performance analysis

Surprisingly little is known about the complexity of Hudson’s algorithm. We do
not know, for example, what the expected maximum number of extant ancestors
is, nor the distribution of ancestral material among them. The most important
unknown value in terms of quantifying the complexity of the algorithm is the
expected number of events that must be generated. It is sufficient to consider
the recombination events as the number of common ancestor and recombination
events is approximately equal (Wiuf and Hein, 1999a). Hudson’s algorithm
traverses a subset of the ARG as it generates the marginal genealogies in which
we are interested, and so we know that the expected number of recombination
events we encounter is less than eρ (Ethier and Griffiths, 1990). This subset of
the ARG is sometimes known as the ‘little’ ARG, but the relationship between
the ‘big’ and little ARGs has not been well characterised.

Figure 1 plots the average number of recombination events generated by
Hudson’s algorithm for varying sequence lengths and sample sizes. In this plot
we also show the results of fitting a quadratic function to the number of re-
combination events as we increase the scaled recombination rate ρ. The fit is
excellent, suggesting that the current upper bound of eρ is far too pessimistic.
Wiuf and Hein (1999a) previously noted that the observed number of events
in Hudson’s algorithm was ‘subexponential’ but did not suggest a quadratic
bound. Another point to note is that the rate at which the number of events
grows as we increase the sample size is extremely slow, suggesting that Hudson’s

7

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

0 20 40 60 80 100
Megabases

0

5

10

15

Re
co

m
bi

na
tio

n
ev

en
ts

 ×
10

6

101 102 103 104 105

Sample size

0 10 20 30 40
ρ× 103

sample size = 1000 sequence length = 50Mb

Figure 1: The mean number of recombination events in Hudson’s algorithm over
100 replicates for varying sequence length and sample size. In the left panel we
fix n = 1000 and vary the sequence length. Shown in dots is a quadratic fitted
to these data, which has a leading coefficient of 8.4 × 10−3. In the right panel
we fix the sequence length at 50 megabases and vary the sample size.

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

0 20 40 60 80 100
Megabases

0

50

100

150

200

250

CP
U

Ti
m

e
(s

ec
on

ds
)

MaCS
msms
msprime (Newick)
msprime (HDF5)
scrm

0 20 40 60 80 100
Sample size×103

0 10 20 30 40
ρ× 103

sample size = 1000 sequence length = 50Mb

Figure 2: Comparison of the average running time over 100 replicates for various
coalescent simulators with varying sequence length and sample size. msms (Ew-
ing and Hermisson, 2010) is the most efficient published simulator based on
Hudson’s algorithm that can output genealogies. MaCS (Chen et al., 2009) is
a popular SMC based simulator, and scrm (Staab et al., 2014) is the most ef-
ficient sequential simulator currently available. Both MaCS and scrm were run
in the most approximate SMC′ mode. Two results are shown for msprime; one
outputting Newick trees and another outputting the native HDF5 based format.

algorithm should scale well for large sample sizes.
These expectations are borne out well in observations of our implementation

of Hudson’s algorithm in msprime. Figure 2 compares the time required to sim-
ulate coalescent trees using a number of simulation packages. As we increase the
sequence length in the left-hand panel, the running time of msprime increases
faster than linearly, but at quite a slow rate. msprime is faster than the SMC
approximations (MaCS and scrm) until ρ is roughly 20000, and the difference is
minor for sequence lengths greater than this. msprime is far faster than msms,
the only other exact simulator in the comparison (we did not include ms in these
comparisons as it was too slow and is unreliable for large sample sizes). As we
increase the sample size in the right-hand panel, we can see that msprime is
far faster than any other simulator. Two versions of msprime are shown in
these plots: one outputting Newick trees (to ensure that the comparison with
other simulators is fair), and another that outputs directly in msprime’s native
format. Conversion to Newick is an expensive process, particularly for larger
sample sizes. When we eliminate this bottleneck, simulation time grows at quite
a slow, approximately linear rate. The memory usage of msprime is also modest,
with the simulations in Figure 2 requiring less than a gigabyte of RAM. Supple-

9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

mentary Figure 8 shows that the mean number of recombination breakpoints
(i.e., the number of recombination events within ancestral material) output by
all these simulators is identical, and matches Hudson and Kaplan’s (1985) pre-
diction very well, giving us some confidence in the correctness of the results. The
cosi2 (Shlyakhter et al., 2014) simulator was not included in this comparison
as it does not support outputting trees directly.

We are often interested in the haplotypes that result from imposing a muta-
tion process onto genealogies as well as the genealogies themselves. Supplemen-
tary Figure 6 compares the time required to generate haplotypes using scrm,
msprime and cosi2. Simulation times are similar in all three for a fixed sam-
ple size of 1000 and increasing sequence length. For increasing sample sizes,
both cosi2 and msprime are substantially faster than scrm. However, msprime
is significantly faster than cosi2 (and uses less memory; see Supplementary
Figure 7), particularly when we remove the large overhead of outputting the
haplotypes in text form.

Performance statistics were measured on Intel Xeon E5-2680 processors run-
ning Debian 8.2. All code required to run comparisons and generate plots is
available at https://github.com/jeromekelleher/msprime-paper.

3 Efficient genealogical analysis

There has been much recent interest in the problem of representing large scale
genetic data in formats that facilitate efficient access and calculation of statis-
tics (Durbin, 2014; Layer et al., 2015; Li, 2015). The use of ‘succinct’ data
structures, which are highly compressed but also allow for efficient queries is
becoming essential: the scale of the data available to researchers is so large that
naive methods simply no longer work.

Although genealogies are fundamental to biology, there has been little at-
tention to the problem of encoding trees in a form that facilitates efficient com-
putation. The majority of research has focused on the accurate interchange
of tree structures and associated metadata. The most common format for ex-
changing tree data is the Newick format (Felsenstein, 1989), which although
ill-defined (Vos et al., 2012) has become the de-facto standard. Newick is
based on the correspondence of tree structures with nested parentheses, and
is a concise method of expressing tree topologies. Because of this recursive
structure, specific extensions to the syntax are required to associate informa-
tion with tree nodes (Maddison et al., 1997; Zmasek and Eddy, 2001). XML
based formats (Han and Zmasek, 2009; Vos et al., 2012) are much more flexible,
but tend to require substantially more storage space than Newick (Vos et al.,
2012). Various extensions to Newick have been proposed to incorporate more
general graph structures (Morin and Moret, 2006; Buendia and Narasimhan,
2006; Cardona et al., 2008; Than et al., 2008), as well as a GraphML extension
to encode ARGs directly (McGill et al., 2013). Because Newick stores branch
lengths rather than node times, numerical precision issues also arise when sum-
ming over many short branches (McGill et al., 2013).

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

0 5 10

π = 769607900

1 23 4

6

7

9

π = 765567000

1 2 3 4

5

6

7

π = 865568000

1 2 3 4

5

6

8

0.071
(3, 4) → 5

0.090
(2, 4) → 6 (2, 5) → 6

0.170
(1, 6) → 7

0.202
(1, 6) → 8

0.253
(3, 7) → 9

Figure 3: Coalescence records and corresponding marginal trees. The x-axis
represents genomic coordinates, and y-axis represents time (with the present
at the top). Each line segment in the top section of the figure represents a
coalescence record; e.g., the first segment corresponds to the coalescence record
(2, 10, 5, (3, 4), 0.071). The lower section of the figure shows the corresponding
trees in pictorial and sparse tree form. We have omitted commas and brackets
from this sequence representation for compactness.

General purpose Bioinformatics toolkits such as BioPerl (Stajich et al., 2002)
and BioPython (Cock et al., 2009) provide basic tools to import trees in the
various formats. More specific tree processing libraries such as DendroPy (Suku-
maran and Holder, 2010), ETE (Huerta-Cepas et al., 2010), and APE (Paradis
et al., 2004) provide more sophisticated tools such as visualisation and tree
comparison algorithms. None of these libraries are designed to handle large col-
lections of correlated trees, and cannot make use of the shared structure within
a sequence of correlated genealogies. The methods employed rarely scale well
to trees containing hundreds of thousands of nodes.

In this section we introduce a new representation of the correlated trees
output by a coalescent simulation using coalescence records. In Section 3.1 we
discuss this tree sequence structure and show how it compares in practice to
existing approaches in terms of storage size. Section 3.2 presents an algorithm
to sequentially generate the marginal genealogies from a tree sequence, which
we compare with existing Newick-based methods. Finally, in Section 3.3 we
show how the algorithm to sequentially visit trees can be extended to efficiently
maintain the counts of leaves from a specific subset, and show how this can be
applied in a calculation commonly used in genome wide association studies.

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

3.1 Tree Sequences

The output of Hudson’s algorithm as described in Section 2.1 is a list of co-
alescence records. Each coalescence record is a tuple (`, r, u, c, t) describing
the coalescence of a list of child nodes c into the parent u at time t over the
half-closed genomic interval [`, r). (Because only binary trees are possible in
the standard coalescent, we assume the child node list c is a 2-tuple (c1, c2)
throughout. However, arbitrary numbers of children can be accommodated
without difficulty to support common ancestor events in which more than two
lineages merge (Donnelly and Kurtz, 1999; Pitman, 1999; Sagitov, 1999).) We
refer to this set of records as a tree sequence, as it is a compact encoding of
the set of correlated trees representing the genealogies of a sample. Figure 3
shows an illustration of the tree sequence output by an example simulation (a
full trace of this simulation is shown in Supplementary Figure 5).

The tree sequence provides a concise method of representing the correlated
genealogies generated by coalescent simulations because it stores node assign-
ments shared across adjacent trees exactly once. Consider node 7 in Figure 3.
This node is shared in the first two marginal trees, and in both cases it has
two children, 1 and 6. Even though the node spans two marginal trees, the
node assignment is represented in one coalescence record (0, 7, 7, (1, 6), 0.170).
Importantly, this holds true even though the subtree beneath 6 is different in
these trees. Thus, any assignment of a pair of children to a given parent that
is shared across adjacent trees will be represented by exactly one coalescence
record.

Coalescence records provide a full history of the coalescence events that oc-
curred in our simulation. (Recall that we distinguish between common ancestor
events, which may or may not result in marginal coalescences, and coalescence
events which are defined as a single contiguous block of genome merging within
a common ancestor.) The effects of recombination events are also stored indi-
rectly in this representation in the form of the left and right coordinate of each
record. For every distinct coordinate between 0 and m, there must have been at
least one recombination event that occurred at that breakpoint. However, there
is no direct information about the times of these recombination events, and
many recombinations will happen that leave no trace in the set of coalescence
records. For example, if we have a recombination event that splits the ancestry
of a given lineage, and this is immediately followed by a common ancestor event
involving these two lineages, there will be no record of this pair of events.

On the other hand, if we consider the records in order of their left and right
coordinates we can also see them as defining the way in which we transform the
marginal genealogies as we move across a chromosome. Because many adjacent
sites may share the same genealogy, we need only consider the coordinates of our
records in order to recover the distinct genealogies and the coordinate ranges
over which they are defined. To obtain the marginal tree covering the interval
[0, 2), for example, we simply find all records with left coordinate equal to 0
and apply these to the empty sparse tree π. To subsequently obtain the tree
corresponding to the interval [2, 7) we first remove the records that do not apply

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

z

x y

a b c d e
α

(i)

z

x y

a b c d e

(ii)

z

x y

a bc d e
β

(iii)

Figure 4: A prune and regraft not involving the root requires three records.
(i) We begin with two subtrees rooted at x and y, and we wish to prune the
subtree rooted at b and graft it in the branch joining e to y. (ii) We remove
the assignments (a, b)→ α, (α, c)→ x and (d, e)→ y. After this operation, the
subtrees a, . . . , e are disconnected from the main tree. The main trunk the tree
rooted at z is unaffected, as are the subtrees below a, . . . , e. (iii) We add the
records (a, c)→ x, (b, e)→ β and (d, β)→ y, completing the transition.

over this interval, which must have right coordinate equal to 2. In the example,
this corresponds to removing the assignments (2, 4)→ 6 and (3, 7)→ 9. Having
removed the ‘stale’ records that do not cover the current interval, we must now
apply the new records that have left coordinate 2. In this case, we have two
node assignments (3, 4) → 5 and (2, 5) → 6, and applying these changes to
the current tree completes the transformation of the first marginal tree into the
second.

There is an important point here. As we moved from left-to-right across
the simulated chromosome we transitioned from one marginal tree to the next
by removing and applying only two records. Crucially, modifying the nodes
that were affected by this transition did not result in a relabelling of any nodes
that were not affected. As Wiuf and Hein (1999a,b) showed, the effect of a
recombination at a given point in the sequence is to cut the branch above some
node in the tree to the left of this point, and reattach it within another branch.
This process is known as a subtree-prune-and-regraft (Song, 2003, 2006) and
requires a maximum of three records to express in our tree sequence formulation.

Prune-and-regraft operations that do not affect the root require three records,
as illustrated in Figure 4. Two other possibilities exist for how the current tree
can be edited as we move along the sequence. The first case is when we have
a prune and regraft that involves a change in root node; this requires only two
records and is illustrated in the first transition in Figure 3. The other case that
can arise from a single recombination event is a simple root change in which
the only difference between the adjacent trees is the time of the MRCA. This
requires one record, and is illustrated in the second transition in Figure 3. These
three possibilities are closely related to the three classes of subtree-prune-and-
regraft identified by Song (2003, 2006).

Knowing the maximum number of records arising from a single recombina-
tion event provides us with a useful bound on the expected number of records in
a tree sequence. Because the expected number of recombination events within

13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

ancestral material is approximately ρ log n (Hudson and Kaplan, 1985; Wiuf
and Hein, 1999a) we know that the expected number of tree transitions is
ρ log n. The number of records we require for these tree transitions is then
clearly ≤ 3ρ log n. We also require n− 1 records to describe the first tree in the
sequence, and so the total number of records is ≤ n+ 3ρ log n− 1.

Storing a tree sequence as a set of coalescence records therefore requires
O(n+ρ log n) space, whereas any representation that stores each tree separately
(such as Newick) must require O(nρ log n) space. This difference is substantial
in practice. As an example of a practical simulation of the sort currently being
undertaken, we repeated the simulation run by Layer et al. (2015), in which we
simulate a 100 megabase region with a recombination rate of 10−3 per base per
4Ne generations for a sample of 100,000 individuals. This simulation required
approximately 6 minutes and 850MB of RAM to run using msprime; the original
simulation reportedly required over 4 weeks using MaCS on similar hardware.

Outputting the results as coalescence records in a simple tab-delimited text
format resulted in a 173MB file (52MB when gzip compressed). In contrast,
writing the trees out in Newick form required around 3.5TB of space. Because
plain text is a poor format for storing structured numerical data (Kelleher et al.,
2013b), msprime provides a tree sequence storage file format based of the HDF5
standard (The HDF Group, 1997-2015). Using this storage format, the file size
is reduced to 88MB (41MB using the transparent zlib compression provided by
the HDF5 library).

To compare the efficiency of storing correlated trees as coalescence records
with the TreeZip compression algorithm (Matthews et al., 2010) we output the
first 1000 trees in Newick format, resulting in a 3.2GB text file (1.1GB gzip
compressed). The TreeZip compression algorithm required 10 hours to run and
resulted in an 882MB file (83MB gzip compressed). Unfortunately, it was not
feasible to run TreeZip on all 3.5TB of the Newick data, but we can see that with
only around 0.1% of the input data, the compressed representation is already
larger than the simple text output of the entire tree sequence when expressed
as coalescence records.

Associating mutation information with a tree sequence is straightforward.
For example, to represent a mutation that occurs on the branch that joins node
7 to node 9 at site 1 in Figure 3, we simply record the tuple (7, 1). (Infinite
sites mutations can be readily accommodated by assuming that the coordinate
space is continuous rather than discrete.) Because only the associated node
and position of each mutation needs to be stored, this results in a very concise
representation of the full genealogical history and mutational state of a sample.
Repeating the simulation above with with a scaled mutation rate of 10−3 per
unit of sequence length per 4Ne generations resulted in 1.2 million infinite sites
mutations. The total size of the HDF5 representation of the tree sequence and
mutations was 102MB (49MB using HDF5’s zlib compression). In contrast,
the text-based haplotype strings consumed 113GB (9.7GB gzip compressed).
Converting to text haplotypes required roughly 9 minutes and 14GB of RAM.

The PBWT (Durbin, 2014) represents binary haplotype data in a format
that is both highly compressed and enables efficient pattern matching algo-

14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

rithms. We converted the mutation data above into PBWT form, which re-
quired 22MB of storage. Thus, the PBWT is a more compact representation
of a set of haplotypes than the tree sequence. However, the PBWT does not
contain any genealogical data, and therefore contains less information than the
tree sequence.

3.2 Generating trees

Coalescence records provide a very compact means of encoding correlated ge-
nealogies. Compressed representations of data usually come at the cost of in-
creased decompression effort when we wish to access the information. In con-
trast, we can recover the marginal trees from a set of coalescence records orders
of magnitude more quickly than is possible using existing methods. In this
section we define the basic algorithm required to sequentially generate these
marginal genealogies.

For algorithms involving tree sequences it is useful to regard the set of co-
alescence records as a table and to index the columns independently (see Sup-
plementary Table 1 for the table corresponding to Figure 3). Therefore define a
tree sequence T as a tuple of vectors T = (l, r,u, c, t), such that for each index
1 ≤ j ≤ M , (lj , rj ,uj , cj , tj) corresponds to one coalescence record output by
Hudson’s algorithm, and there are M records in total. It is also useful to impose
an ordering among the children at a node, and so we assert that cj,1 < cj,2 for
all 1 ≤ j ≤M .

If we wish to obtain the tree for a given site x we simply find the n−1 records
that intersect with this point and build the tree by applying these records. We
begin by setting πj ← 0 for 1 ≤ j ≤ max(u), and then set πcj,1

← uj and
πcj,2

← uj for all j such that lj ≤ x < rj . Spatial indexing structures such as
the segment tree (Samet, 1989) allow us to find all k segments out of a set of
N that intersect with a given point in O(k + logN) time. Therefore, since the
expected number of records is O(n+ρ log n) as shown in Section 3.1, the overall
complexity of generating a single tree is O(n+ log(n+ ρ log n)).

A common requirement is to sequentially visit all trees in a tree sequence
in left-to-right order. One possible way to do this would be to find all of the
distinct left coordinates in the l vector and apply the process outlined above.
However, adjacent trees are highly correlated and share much of their structure,
and so this approach would be quite wasteful. A more efficient approach is given
in Algorithm T below. For this algorithm we require two ‘index vectors’ I and
O which give the indexes of the records in the order in which they are inserted
and removed, respectively. Records are applied in order of nondecreasing left
coordinate and increasing time, and records are removed in nondecreasing order
of right coordinate and decreasing time. That is, for every pair of indexes j and
k such that 1 ≤ j < k ≤M we have lIj ≤ lIk and tIj < tIk , and also rOj ≤ rOk

and tOj
> tOk

. We assume that these index vectors have been pre-calculated
below.

15

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

Algorithm T. (Generate trees). Sequentially visit the sparse trees π in a tree
sequence T = (l, r,u, c, t) with M records.

T1. [Initialisation.] Set πj ← 0 for 1 ≤ j ≤ max(u). Then set j ← 1, k ← 1
and x← 0.

T2. [Insert record.] Set h← Ij , πch,1
← πch,2

← uh, and j ← j + 1. If j ≤M
and lIj = x, go to T2.

T3. [Visit tree.] Visit the sparse tree π starting at site x. If j > M terminate
the algorithm. Otherwise, set x← lIj .

T4. [Remove record.] Set h← Ok, πch,1
← πch,2

← 0 and k ← k + 1. Then, if
rOk

= x go to T4; otherwise, go to T2.

Algorithm T sequentially generates all marginal trees in a tree sequence by
first applying records to the sparse tree π in step T2 for a given left coordinate.
Once this is complete, the tree is made available to client code by ‘visiting’
it (Knuth, 2011, p.281) in T3. After the user has finished processing the cur-
rent tree, we prepare to move to the next tree by removing all stale records in
T4, and then return to T2. The algorithm is very efficient. Because each record
is considered exactly once in step T2 and at most once in step T4 the total
time required by the algorithm is O(n+ρ log n). To illustrate this efficiency, we
consider the time required to iterate over the trees produced by the large exam-
ple simulation used throughout this section. Reading in the full tree sequence
in msprime’s native HDF5 based format and iterating over all 1.1 million trees
using the Python API required approximately 3 seconds. In contrast, using
the BioPython (Cock et al., 2009) version 1.64 Newick parser required around
3 seconds per tree, leading to an estimated 38 days to iterate over all trees.
Similarly, ETE (Huerta-Cepas et al., 2010) version 2.3.9 required 4.5 seconds
per tree, and DendroPy (Sukumaran and Holder, 2010) version 4.0.2 required
around 14 seconds per tree. Comparing Python Newick parsers to msprime may
be somewhat misleading, since the majority of msprime’s tree processing code
is written in C. However, APE (Paradis et al., 2004) version 3.1, which uses
a Newick parser written in C, also required around 7 seconds per tree. Thus,
using msprime’s API we can iterate over this set of trees more than a million
times faster than any of these alternatives.

Algorithm T generates only the sparse tree π mapping each node to its
parent. It is easy to extend this algorithm to include information about the
node times, children, start and end coordinates and other information. We have
also assumed binary trees here, but it is trivial to extend the algorithm to work
with more general trees. When computing statistics across the tree sequence it
is often useful to know the specific differences between adjacent trees, as this
often allows us to avoid examining the entire tree. This information is directly
available in Algorithm T. The tree iteration code in msprime’s Python API
makes all of this information available, facilitating easy tree traversal in both
top-down and bottom-up fashion.

16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

3.3 Counting leaves

Section 3.2 provides an algorithm to efficiently visit all marginal genealogies in a
tree sequence. This algorithm can be easily augmented to maintain summaries of
tree properties as we sweep across the sequence. As an example of this, we show
how to augment Algorithm T to maintain the counts of the number of leaves
from a specific set that are below each internal node. More precisely, given some
subset S of our sample, we maintain a vector β such that for any node u, βu is the
number of leaves from the set S below u. This allows us to quickly calculate allele
frequencies: since each mutation is associated with a particular node u, βu/|S|
is the frequency of the mutation within S. Calculating allele frequencies within
specific subsets of the sample has many applications, for example calculating
summary statistics such as FST (Charlesworth and Charlesworth, 2010), and
association tests in genome wide association studies (Spencer et al., 2009).

Suppose we have a tree sequence T and we wish to generate the sparse trees
π as before. We now also wish to generate the vector β, such that βu gives the
number of leaf nodes in the subtree rooted at u that are in the set S ⊆ {1, . . . , n}.
We assume that the index vectors I and O have been precomputed, as before.

Algorithm L. (Count leaves). Generate the sparse trees π and leaf counts β
for a tree sequence T = (l, r,u, c, t) with M records and set of leaves S.

L1. [Initialisation.] Set πj ← βj ← 0 for 1 ≤ j ≤ max(u). Set βj ← 1 for each
j ∈ S. Then set j ← 1, k ← 1 and x← 0.

L2. [Insert record.] Set h ← Ij , πch,1
← πch,2

← uh, b ← βch,1
+ βch,2

and
j ← j + 1.

L3. [Increment leaf counts.] Set v ← uh. Then, while v 6= 0, set βv ← βv + b
and v ← πv. Afterwards, if j ≤M and lIj = x, go to L2.

L4. [Visit tree.] Visit (π, β). If j > M terminate the algorithm; otherwise, set
x← lIj .

L5. [Remove record.] Set h ← Ok, πch,1
← πch,2

← 0, b ← βch,1
+ βch,2

and
k ← k + 1.

L6. [Decrement leaf counts.] Set v ← uh. Then, while v 6= 0, set βv ← βv − b
and v ← πv. Afterwards, if rOk

= x, go to L5; otherwise, go to L2.

Algorithm L works in the same manner as Algorithm T: for each tree tran-
sition, we remove the stale records that no longer apply to the genomic interval
currently under consideration, and apply all new records that begin at location
x. We update the sparse tree π by applying a record in step L2, and then update
the leaf count β to account for this new node assignment. In step L3 we propa-
gate the corresponding leaf count gain up to the root, before returning to L2 if
necessary. Once we have applied all of the inbound records we then visit the tree
by making π and β available to the user in L4. Then, if any more trees remain,
we move on by removing the outbound records in steps L5 and L6, updating
β to account for the corresponding loss in leaf counts. The correctness of the
algorithm depends on the ordering of the index vectors I and O. Records are

17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

always inserted in increasing order of time, and always removed in decreasing
order of time within a tree transition. Therefore, for any record in which sub-
trees rooted at c1 and c2 become the children of u, we are guaranteed that these
subtrees are complete and that βc1 and βc2 are correct. Removing outbound
records in reverse order of time similarly guarantees that the leaf counts within
the disconnected subtrees that we create are maintained correctly.

Algorithm L clearly examines each record at most once in steps L2 and L5.
Steps L3 and L6 contain loops to propagate leaf counts up the tree, and are
therefore not constant time operations. Since coalescent genealogies are asymp-
totically balanced (Li and Wiehe, 2013), the expected height of a tree (in terms
of the number of nodes) is log2 n. Therefore, the cost of steps L3 and L6 is
O(log2 n) per record, leading to a log2 n extra cost over Algorithm T. In prac-
tical terms, this extra cost is negligible. For example, msprime automatically
maintains counts for all leaves (and optionally can maintain counts for spe-
cific subsets) when doing all tree transitions. The 3 second time quoted above
required to iterate over all 1.1 million trees in the large simulation example in-
cludes the cost of maintaining counts for all 105 leaves at all internal nodes. To
demonstrate this efficiency, we ran a simple genome wide association test, where
we split the sample into 50,000 cases and controls. One of the most powerful
and popular applications for running such association tests is plink (Purcell
et al., 2007). After converting the simulated data to a 29G BED file, the stable
version of plink (1.07) required 176 minutes to run a simple association test.
The development version of plink (1.9) required 54 seconds. Using msprime’s
Python API, the same odds-ratio test required around 10 seconds.

4 Discussion

The primary contribution of this paper is to introduce a new encoding for the
correlated trees resulting from simulations of the coalescent with recombination.
This encoding follows on from previous work in which trees are encoded as inte-
ger vectors (Kelleher et al., 2013a, 2014), but makes the crucial change that tree
vectors are sparse. Using this encoding, the effects of each coalescence event are
stored as simple fixed-size records that provide sufficient information to recover
all marginal genealogies after the simulation has completed. This approach leads
to very large gains in simulation performance over classical simulators such as
ms, so that the exact simulation of genealogies for the coalescent with recombi-
nation over chromosome scales is feasible for the first time. We have presented
an implementation based on the sparse tree encoding called msprime, which is
faster than all other simulators for large sample sizes. Currently, we support
all demographic events that can be simulated using ms in a single population.
We hope to add support for simple discrete population structure in the near
future, as well as for populations evolving in continuous space (Barton et al.,
2010a,b, 2013b). We also hope to add gene conversion (Wiuf and Hein, 2000)
and variable recombination rates following the approach taken in cosi2.

Coalescence records also lead to an extremely compact storage format that

18

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

is several orders of magnitude smaller than the most compact method currently
available. Despite this very high level of compression, accessing the genealogical
data is very efficient. In an example with 100,000 samples, we saw a roughly
40,000-fold reduction in file size over the Newick tree encoding, and a greater
than million-fold decrease in the time required to iterate over the genealogies
compared to several popular libraries. This efficiency is gained through very
simple algorithms that we have stated rigorously and unambiguously, and also
analysed in terms of their computational complexity. Being able to process such
large sample sizes is not an idle curiosity; on the contrary, we have a pressing
need to work with such datasets. We envisage three immediate uses for our
work.

Firstly, sequencing projects are being conducted on an unprecedented scale
(Genome of the Netherlands Consortium et al., 2014; UK10K Consortium et al.,
2015; 1000 Genomes Project Consortium et al., 2015; Gudbjartsson et al.,
2015; Eisenstein, 2015; Stephens et al., 2015), and the storage and analysis
of these data pose serious computational challenges. Sophisticated new meth-
ods are being developed to organise and analyse information on this immense
scale (Durbin, 2014; Li, 2015; Layer et al., 2015). Perversely, developers have
struggled to generate simulated data on a similar scale (Durbin, 2014; Layer
et al., 2015), as present day simulators perform poorly on these huge sample
sizes. Using msprime, the time required to generate genome scale data for hun-
dreds of thousands of samples is reduced from weeks to minutes.

Secondly, prospective studies such as UK Biobank (Collins, 2011; Wain et al.,
2015) are collecting genetic and high-dimensional phenotypic data for hundreds
of thousands of samples. The key statistical method to interrogate such data
is the genome wide association study (GWAS) (Manolio, 2013), and large sam-
ple size has been identified as the single most important factor in determining
the power of these studies (Spencer et al., 2009). Simulation plays a key role in
GWAS, and typically proceeds by superimposing the disease model of interest on
haplotypes obtained via various methods (Yang et al., 2011). Because the accu-
rate modelling of linkage disequilibrium is essential in disease genetics (Schaffner
et al., 2005), recombination must be incorporated. Resampling methods (Mar-
chini et al., 2007; Li and Li, 2008; Spencer et al., 2009; Su et al., 2011) generate
simulated haplotypes based on an existing reference panel, and provide a good
match to observed linkage patterns. However, there is some bias associated
with this process, and there are statistical difficulties when the size of the sam-
ple required is larger than the reference panel. Other methods obtain simulated
haplotypes from population genetics models via forwards-in-time (Lohmueller
et al., 2008; Lohmueller, 2014) or coalescent (Günther et al., 2011; Chung and
Shih, 2013) simulations. None of these methods can efficiently handle the huge
sample sizes required, however. A simulator for high dimensional phenotype
data based on msprime could alleviate these performance issues and be a key
application for the library.

Thirdly, today’s large sample sizes provide us with an unprecedented op-
portunity to understand the history and geographic structure of our species.
Aside from its intrinsic interest, correctly accounting for population stratifica-

19

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

tion is critical for the interpretation of association studies (Marchini et al., 2004;
McCarthy et al., 2008), particularly for rare variants (Mathieson and McVean,
2012, 2014). Researchers are seeking to understand fine scale population struc-
ture using methods based on principal component analysis (Novembre et al.,
2008), admixture fractions (Alexander et al., 2009; Lawson et al., 2012; Liu
et al., 2013), length of haplotype blocks (Ralph and Coop, 2013; Harris and
Nielsen, 2013; Barton et al., 2013a) and allele frequencies (Gutenkunst et al.,
2009). To date, it has been challenging to assess the accuracy of these meth-
ods, as simulations struggle to match the required sequence lengths and sample
sizes. Furthermore, methods based on the SMC approximation (Li and Durbin,
2011; Schiffels and Durbin, 2014) have been tested using SMC simulations out
of necessity, making it difficult to assess the impact of the approximation on ac-
curacy. Simulations of the exact coalescent with recombination at chromosome
scales for large sample sizes and arbitrary demographies will be an invaluable
tool for developers of such methods.

As we have demonstrated, the tree sequence structure leads to very efficient
algorithms, and allows us to encode simulated data very compactly. We would
also wish to encode biological data in this structure so that we can apply these
algorithms to analyse real data. However, to do this we must estimate a tree
sequence from data, which is a non-trivial task. Nonetheless, there has been
much work in this area (Gusfield, 2014) with several heuristic (Minichiello and
Durbin, 2006) and more principled approaches that may be adopted (O’Fallon,
2013; Rasmussen et al., 2014). Using the PBWT (Durbin, 2014) to find long
haplotypes (which will usually correspond to long records) seems like a partic-
ularly promising avenue.

Finally, an interesting question arises when we consider the problem of infer-
ring a tree sequence from data. Many authors regard the ARG as a useful data
structure to represent the history of a sample and explicitly infer ARGs from
data (Minichiello and Durbin, 2006; Rasmussen et al., 2014). The tree sequence
is not an ARG, however, since any given tree sequence can correspond to an
infinite number of ARGs. By discarding information about the times and loca-
tions of recombination events, we lose information about the underlying graph
that was traversed by Hudson’s algorithm. We have seen that this leads to a
very compact representation and to highly efficient algorithms to reconstruct
marginal trees and calculate allele frequencies. In a sense, the tree sequence
is all that we can ever hope to estimate. If the mutation rate was infinite, we
could reconstruct the tree sequence perfectly, but we would still not know the
precise time and location of all recombination events. The specific realisation
of the ARG that gave rise to the data that we observe is therefore unknowable.
By focusing on the problem of estimating the observable consequences of an
ARG—the tree sequence—we may increase our power to detect its properties.

20

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

Acknowledgements

We would like to thank Richard Durbin for helpful discussions and insights. This
work was supported by Wellcome Trust core award 090532/Z/09/Z to the Well-
come Trust Centre for Human Genetics, Wellcome Trust grant 100956/Z/13/Z
to GM, and EPSRC grants EP/I01361X/1, EP/I013091/1 and EP/K034316/1
to AME.

References

1000 Genomes Project Consortium et al. A global reference for human genetic
variation. Nature, 526(7571):68–74, 2015.

D. H. Alexander, J. Novembre, and K. Lange. Fast model-based estimation of
ancestry in unrelated individuals. Genome Res, 19(9):1655–1664, 2009.

C. N. Anderson, U. Ramakrishnan, Y. L. Chan, and E. A. Hadly. Serial simcoal:
a population genetics model for data from multiple populations and points in
time. Bioinformatics, 21(8):1733–1734, 2005.

M. Arenas. Simulation of molecular data under diverse evolutionary scenarios.
PLoS Comput Biol, 8(5):e1002495, 2012.

M. Arenas and D. Posada. Recodon: coalescent simulation of coding DNA
sequences with recombination, migration and demography. BMC Bioinfor-
matics, 8(1):458, 2007.

M. Arenas and D. Posada. Coalescent simulation of intracodon recombination.
Genetics, 184(2):429–437, 2010.

N. H. Barton, A. M. Etheridge, and A. Véber. A new model for evolution in a
spatial continuum. Electron J of Probab, 15:7, 2010a.

N. H. Barton, J. Kelleher, and A. M. Etheridge. A new model for extinction and
recolonisation in two dimensions: quantifying phylogeography. Evolution, 64
(9):2701–2715, 2010b.

N. H. Barton, A. M. Etheridge, J. Kelleher, and A. Véber. Inference in two
dimensions: allele frequencies versus lengths of shared sequence blocks. Theor
Popul Biol, 87:105–119, 2013a.

N. H. Barton, A. M. Etheridge, and A. Véber. Modelling evolution in a spatial
continuum. J Stat Mech, P01002, 2013b.

A. Bhaskar, A. G. Clark, and Y. S. Song. Distortion of genealogical properties
when the sample is very large. Proc Natl Acad Sci U S A, 111(6):2385–2390,
2014.

21

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

P. Buendia and G. Narasimhan. Serial NetEvolve: a flexible utility for gener-
ating serially-sampled sequences along a tree or recombinant network. Bioin-
formatics, 22(18):2313–2314, 2006.

G. Cardona, F. Rosselló, and G. Valiente. Extended Newick: it is time for a
standard representation of phylogenetic networks. BMC Bioinformatics, 9:
532, 2008.

A. Carvajal-Rodŕıguez. Simulation of genomes: a review. Curr Genomics, 9(3):
155, 2008.

B. Charlesworth and D. Charlesworth. Elements of Evolutionary Genetics.
Roberts and Company, Greenwood Village, Colorado, 2010.

G. K. Chen, P. Marjoram, and J. D. Wall. Fast and flexible simulation of DNA
sequence data. Genome Res, 19:136–142, 2009.

R.-H. Chung and C.-C. Shih. SeqSIMLA: a sequence and phenotype simulation
tool for complex disease studies. BMC Bioinformatics, 14(1):199, 2013.

P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke,
I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. L. de Hoon.
Biopython: freely available Python tools for computational molecular biology
and bioinformatics. Bioinformatics, 25(11):1422–1423, 2009.

R. Collins. UK biobank: the need for large prospective epidemiological studies.
J Epidemiol Community Health, 65(1):A37, 2011.

P. Donnelly and T. G. Kurtz. Particle representations for measure-valued pop-
ulation models. Ann Probab, 27(1):166–205, 1999.

R. Durbin. Efficient haplotype matching and storage using the positional
Burrows-Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272,
2014.

M. Eisenstein. Big data: The power of petabytes. Nature, 527(7576):S2–S4,
2015.

A. Eriksson, B. Mahjani, and B. Mehlig. Sequential Markov coalescent algo-
rithms for population models with demographic structure. Theor Popul Biol,
76(2):84–91, 2009.

S. N. Ethier and R. C. Griffiths. On the two-locus sampling distribution. J
Math Biol, 29:131–159, 1990.

G. Ewing and J. Hermisson. MSMS: a coalescent simulation program includ-
ing recombination, demographic structure, and selection at a single locus.
Bioinformatics, 26(16):2064–2065, 2010.

22

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

L. Excoffier and M. Foll. fastsimcoal: a continuous-time coalescent simulator
of genomic diversity under arbitrarily complex evolutionary scenarios. Bioin-
formatics, 27(9):1332–1334, 2011.

L. Excoffier, J. Novembre, and S. Schneider. SIMCOAL: a general coalescent
program for the simulation of molecular data in interconnected populations
with arbitrary demography. J Hered, 91(6):506–509, 2000.

J. Felsenstein. PHYLIP—phylogeny inference package (version 3.2). Cladistics,
5:164–166, 1989.

P. M. Fenwick. A new data structure for cumulative frequency tables. Software:
Practice and Experience, 24:327–336, 1994.

P. M. Fenwick. A new data structure for cumulative frequency tables: an im-
proved frequency-to-symbol algorithm. Technical Report 110, The University
of Auckland, Department of Computer Science, 1995.

Genome of the Netherlands Consortium et al. Whole-genome sequence variation,
population structure and demographic history of the Dutch population. Nat
Genet, 46(8):818–825, 2014.

R. C. Griffiths. The two-locus ancestral graph. Lecture Notes-Monograph Series,
18:100–117, 1991.

R. C. Griffiths and P. Marjoram. An ancestral recombination graph. In P. Don-
nelly and S. Tavaré, editors, Progress in Population Genetics and Human
Evolution, IMA Volumes in Mathematics and its Applications, volume 87,
pages 257–270. Springer-Verlag, Berlin, 1997.

D. F. Gudbjartsson, H. Helgason, S. A. Gudjonsson, F. Zink, A. Oddson, A. Gyl-
fason, S. Besenbacher, G. Magnusson, B. V. Halldorsson, E. Hjartarson, et al.
Large-scale whole-genome sequencing of the Icelandic population. Nat Genet,
47(5):435–444, 2015.

T. Günther, I. Gawenda, and K. J. Schmid. phenosim - a software to simulate
phenotypes for testing in genome-wide association studies. BMC Bioinfor-
matics, 12(1):265, 2011.

D. Gusfield. ReCombinatorics. MIT Press, Cambridge Massachusetts, 2014.

R. N. Gutenkunst, R. D. Hernandez, S. H. Williamson, and C. D. Bustamante.
Inferring the joint demographic history of multiple populations from multidi-
mensional SNP frequency data. PLoS Genet, 5(10):e1000695, 2009.

M. V. Han and C. M. Zmasek. phyloXML: XML for evolutionary biology and
comparative genomics. BMC Bioinformatics, 10(356), 2009.

K. Harris and R. Nielsen. Inferring demographic history from a spectrum of
shared haplotype lengths. PLoS Genet, 9(6):e1003521, 2013.

23

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

G. Hellenthal and M. Stephens. mshot: modifying Hudson’s ms simulator to
incorporate crossover and gene conversion hotspots. Bioinformatics, 23(4):
520–521, 2007.

S. Hoban, G. Bertorelle, and O. E. Gaggiotti. Computer simulations: tools for
population and evolutionary genetics. Nat Rev Genet, 13(2):110–122, 2012.

R. R. Hudson. Testing the constant-rate neutral allele model with protein se-
quence data. Evolution, 37(1):203–217, 1983a.

R. R. Hudson. Properties of a neutral allele model with intragenic recombina-
tion. Theor Popul Biol, 23:183–201, 1983b.

R. R. Hudson. Gene genealogies and the coalescent process. Oxford Surveys in
Evolutionary Biology, 7:1–44, 1990.

R. R. Hudson. Generating samples under a Wright-Fisher neutral model of
genetic variation. Bioinformatics, 18(2):337–338, 2002.

R. R. Hudson and N. Kaplan. Statistical properties of the number of recombi-
nation events in the history of a sample of DNA sequences. Genetics, 111(1):
147–164, 1985.

J. Huerta-Cepas, J. Dopazo, and T. Gabaldón. ETE: a python environment for
tree exploration. BMC Bioinformatics, 11:24, 2010.

N. Kaplan and R. R. Hudson. The use of sample genealogies for studying a
selectively neutral m-loci model with recombination. Theor Popul Biol, 28:
382–396, 1985.

J. Kelleher, N. H. Barton, and A. M. Etheridge. Coalescent simulation in con-
tinuous space. Bioinformatics, 29(7):955–956, 2013a.

J. Kelleher, R. W. Ness, and D. L. Halligan. Processing genome scale tabular
data with wormtable. BMC Bioinformatics, 14:356, 2013b.

J. Kelleher, A. M. Etheridge, and N. H. Barton. Coalecent simulation in contin-
uous space: algorithms for large neighbourhood size. Theor Popul Biol, 95:
13–23, 2014.

J. F. C. Kingman. The coalescent. Stoch. Proc. Appl., 13(3):235–248, 1982.

D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro-
gramming. Addison-Wesley, Reading, Massachusetts, second edition, 1998.

D. E. Knuth. Combinatorial Algorithms, Part 1, volume 4A of The Art of
Computer Programming. Addison-Wesley, Upper Saddle River, New Jersey,
2011.

G. Laval and L. Excoffier. SIMCOAL 2.0: a program to simulate genomic
diversity over large recombining regions in a subdivided population with a
complex history. Bioinformatics, 20(15):2485–2487, 2004.

24

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

D. J. Lawson, G. Hellenthal, S. Myers, and D. Falush. Inference of population
structure using dense haplotype data. PLoS Genet, 8(1):e1002453–e1002453,
2012.

R. M. Layer, N. Kindlon, K. J. Karczewski, Exome Aggregation Consortium,
and A. R. Quinlan. Efficient genotype compression and analysis of large
genetic-variation data sets. Nat Methods, 2015. doi: doi:10.1038/nmeth.3654.

C. Li and M. Li. GWAsimulator: a rapid whole-genome simulation program.
Bioinformatics, 24(1):140–142, 2008.

H. Li. BGT: efficient and flexible genotype query across many samples. Bioin-
formatics, 2015. doi: 10.1093/bioinformatics/btv613.

H. Li and R. Durbin. Inference of human population history from individual
whole-genome sequences. Nature, 475:493–496, 2011.

H. Li and T. Wiehe. Coalescent tree imbalance and a simple test for selective
sweeps based on microsatellite variation. PLoS Comput Biol, 9(5):e1003060,
2013.

L. Liang, S. Zöllner, and G. R. Abecasis. GENOME: a rapid coalescent-based
whole genome simulator. Bioinformatics, 23(12):1565–1567, 2007.

M. Liang and R. Nielsen. The lengths of admixture tracts. Genetics, 197:
953–967, 2014.

Y. Liu, G. Athanasiadis, and M. E. Weale. A survey of genetic simulation
software for population and epidemiological studies. Hum Genomics, 3(1):79,
2008.

Y. Liu, T. Nyunoya, S. Leng, S. A. Belinsky, Y. Tesfaigzi, and S. Bruse. Soft-
wares and methods for estimating genetic ancestry in human populations.
Hum Genomics, 7(1), 2013.

K. E. Lohmueller. The impact of population demography and selection on the
genetic architecture of complex traits. PLoS Genet, 10(5):e1004379, 2014.

K. E. Lohmueller, A. R. Indap, S. Schmidt, A. R. Boyko, R. D. Hernandez,
M. J. Hubisz, J. J. Sninsky, T. J. White, S. R. Sunyaev, R. Nielsen, et al.
Proportionally more deleterious genetic variation in European than in African
populations. Nature, 451(7181):994–997, 2008.

D. R. Maddison, D. L. Swofford, and W. P. Maddison. Nexus: An extensible
file format for systematic information. Syst Biol, 46(4):590–621, 1997.

T. Mailund, M. H. Schierup, C. N. Pedersen, P. J. Mechlenborg, J. N. Madsen,
and L. Schauser. CoaSim: a flexible environment for simulating genetic data
under coalescent models. BMC Bioinformatics, 6(1):252, 2005.

25

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

T. A. Manolio. Bringing genome-wide association findings into clinical use. Nat
Rev Genet, 14(8):549–558, 2013.

J. Marchini, L. R. Cardon, M. S. Phillips, and P. Donnelly. The effects of human
population structure on large genetic association studies. Nat Genet, 36(5):
512–517, 2004.

J. Marchini, B. Howie, S. Myers, G. McVean, and P. Donnelly. A new multipoint
method for genome-wide association studies by imputation of genotypes. Nat
Genet, 39(7):906–913, 2007.

P. Marjoram and J. D. Wall. Fast “coalescent” simulation. BMC Genet, 7:16,
2006.

I. Mathieson and G. McVean. Differential confounding of rare and common
variants in spatially structured populations. Nat Genet, 44(3):243–246, 2012.

I. Mathieson and G. McVean. Demography and the age of rare variants. PLoS
Genet, 10(8):e1004528, 2014.

S. J. Matthews, S.-J. Sul, and T. L. Williams. A novel approach for compress-
ing phylogenetic trees. In M. Borodovsky, J. Gogarten, T. Przytycka, and
S. Rajasekaran, editors, Bioinformatics Research and Applications, volume
6053 of Lecture Notes in Computer Science, pages 113–124. Springer Berlin
Heidelberg, 2010.

M. I. McCarthy, G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J. Little, J. P.
Ioannidis, and J. N. Hirschhorn. Genome-wide association studies for complex
traits: consensus, uncertainty and challenges. Nat Rev Genet, 9(5):356–369,
2008.

J. R. McGill, E. A. Walkup, and M. K. Kuhner. GraphML specializations to
codify ancestral recombinant graphs. Fron Genet, 4:146, 2013.

G. A. T. McVean and N. J. Cardin. Approximating the coalescent with recom-
bination. Philos Trans R Soc Lond B Biol Sci, 360:1387–1393, 2005.

M. J. Minichiello and R. Durbin. Mapping trait loci by use of inferred ancestral
recombination graphs. Am J Hum Genet, 79:910–922, 2006.

M. M. Morin and B. M. E. Moret. NetGen: generating phylogenetic networks
with diploid hybrids. Bioinformatics, 22(15):1921–1923, 2006.

J. Novembre, T. Johnson, K. Bryc, Z. Kutalik, A. R. Boyko, A. Auton, A. Indap,
K. S. King, S. Bergmann, M. R. Nelson, et al. Genes mirror geography within
Europe. Nature, 456(7218):98–101, 2008.

B. D. O’Fallon. ACG: rapid inference of population history from recombining
nucleotide sequences. BMC Bioinformatics, 14(1):40, 2013.

26

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

E. Paradis, J. Claude, and K. Strimmer. APE: analyses of phylogenetics and
evolution in R language. Bioinformatics, 20:289–290, 2004.

S. Peischl, E. Koch, R. Guerrero, and M. Kirkpatrick. A sequential coalescent
algorithm for chromosomal inversions. Heredity, 111:200–209, 2013.

J. Pitman. Coalescents with multiple collisions. Ann Probab, 27(4):1870–1902,
1999.

S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender,
J. Maller, P. Sklar, P. I. de Bakker, M. J. Daly, and P. C. Sham. PLINK: a
tool set for whole-genome association and population-based linkage analyses.
Am J Hum Genet, 81(3):559–575, 2007.

P. Ralph and G. Coop. The geography of recent genetic ancestry across Europe.
PLoS Biol, 11(5):e1001555, 2013.

S. E. Ramos-Onsins and T. Mitchell-Olds. Mlcoalsim: multilocus coalescent
simulations. Evol Bioinform Online, 3:41, 2007.

M. D. Rasmussen, M. J. Hubisz, I. Gronau, and A. Siepel. Genome-wide infer-
ence of ancestral recombination graphs. PLoS Genet, 10(5):e1004342, 2014.

S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines.
J Appl Probab, 36(4):1116–1125, 1999.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Upper Saddle River, New Jersey, 1989.

S. F. Schaffner, C. Foo, S. Gabriel, D. Reich, M. J. Daly, and D. Altshuler. Cali-
brating a coalescent simulation of human genome sequence variation. Genome
Res, 15(11):1576–1583, 2005.

S. Schiffels and R. Durbin. Inferring human population size and separation
history from multiple genome sequences. Nat Genet, 46:919–925, 2014.

I. Shlyakhter, P. C. Sabeti, and S. F. Schaffner. Cosi2: an efficient simulator
of exact and approximate coalescent with selection. Bioinformatics, 30(23):
3427–3429, 2014.

Y. S. Song. On the combinatorics of rooted binary phylogenetic trees. Ann
Comb, 7(3):365–379, 2003.

Y. S. Song. Properties of subtree-prune-and-regraft operations on totally-
ordered phylogenetic trees. Ann Comb, 10(1):147–163, 2006.

C. C. Spencer and G. Coop. SelSim: a program to simulate population genetic
data with natural selection and recombination. Bioinformatics, 20(18):3673–
3675, 2004.

27

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

C. C. Spencer, Z. Su, P. Donnelly, and J. Marchini. Designing genome-wide asso-
ciation studies: sample size, power, imputation, and the choice of genotyping
chip. PLoS Genet, 5(5):e1000477, 2009.

P. R. Staab, S. Zhu, D. Metzler, and G. Lunter. scrm: efficiently simulating
long sequences using the approximated coalescent with recombination. Bioin-
formatics, 31(10):1680–1682, 2014.

J. E. Stajich, D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz, C. Dagdigian,
G. Fuellen, J. G. Gilbert, I. Korf, H. Lapp, H. Lehväslaiho, C. Matsalla, C. J.
Mungall, B. I. Osborne, M. R. Pocock, P. Schattner, M. Senger, L. D. Stein,
E. Stupka, M. D. Wilkinson, and E. Birney. The Bioperl toolkit: Perl modules
for the life sciences. Genome Res, 12(10):1611–1618, 2002.

Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron,
R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson. Big data: Astronomical
or genomical? PLoS Biol, 13(7):e1002195, 2015.

Z. Su, J. Marchini, and P. Donnelly. HAPGEN2: simulation of multiple disease
SNPs. Bioinformatics, 27(16):2304–2305, 2011.

J. Sukumaran and M. T. Holder. DendroPy: a Python library for phylogenetic
computing. Bioinformatics, 26(12):1569–1571, 2010.

K. M. Teshima and H. Innan. mbs: modifying hudson’s ms software to gen-
erate samples of DNA sequences with a biallelic site under selection. BMC
Bioinformatics, 10(1):166, 2009.

C. Than, D. Ruths, and L. Nakhleh. PhyloNet: a software package for analyzing
and reconstructing reticulate evolutionary relationships. BMC Bioinformat-
ics, 9:322, 2008.

The HDF Group. Hierarchical Data Format, version 5, 1997-2015.
http://www.hdfgroup.org/HDF5/.

UK10K Consortium et al. The UK10K project identifies rare variants in health
and disease. Nature, 526(7571):82–90, 2015.

R. A. Vos, J. P. Balhoff, J. A. Caravas, M. T. Holder, H. Lapp, W. P. Mad-
dison, P. E. Midford, A. Priyam, J. Sukumaran, X. Xia, and A. Stoltzfus.
NeXML: rich, extensible, and verifiable representation of comparative data
and metadata. Syst Biol, 61(4):675–689, 2012.

L. V. Wain, N. Shrine, S. Miller, V. E. Jackson, I. Ntalla, M. S. Artigas, C. K.
Billington, A. K. Kheirallah, R. Allen, J. P. Cook, et al. Novel insights into
the genetics of smoking behaviour, lung function, and chronic obstructive
pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank.
Lancet Respir Med, 3(10):769–781, 2015.

28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

J. Wakeley. Coalescent theory: an introduction. Roberts and Company, Engle-
wood, Colorado, 2008.

J. Wakeley and T. Takahashi. Gene genealogies when the sample size exceeds
the effective size of the population. Mol Biol Evol, 20(2):208–213, 2003.

Y. Wang, Y. Zhou, L. Li, X. Chen, Y. Liu, Z.-M. Ma, and S. Xu. A new method
for modeling coalescent processes with recombination. BMC Bioinformatics,
15(1):273, 2014.

C. Wiuf and J. Hein. Recombination as a point process along sequences. Theor
Popul Biol, 55(3):248–259, 1999a.

C. Wiuf and J. Hein. The ancestry of a sample of sequences subject to recom-
bination. Genetics, 151(3):1217–1228, 1999b.

C. Wiuf and J. Hein. The coalescent with gene conversion. Genetics, 155(1):
451–462, 2000.

J. Yang, S. H. Lee, M. E. Goddard, and P. M. Visscher. GCTA: a tool for
genome-wide complex trait analysis. Am J Hum Genet, 88(1):76–82, 2011.

T. Yang, H.-W. Deng, and T. Niu. Critical assessment of coalescent simulators in
modeling recombination hotspots in genomic sequences. BMC Bioinformatics,
15:3, 2014.

X. Yuan, D. J. Miller, J. Zhang, D. Herrington, and Y. Wang. An overview of
population genetic data simulation. J Comput Biol, 19(1):42–54, 2012.

S. Zhu, J. H. Degnan, S. J. Goldstien, and B. Eldon. Hybrid-Lambda: simulation
of multiple merger and Kingman gene genealogies in species networks and
species trees. BMC Bioinformatics, 16(292), 2015.

C. M. Zmasek and S. R. Eddy. ATV: display and manipulation of annotated
phylogenetic trees. Bioinformatics, 17(4):383–384, 2001.

A Detailed listing for Hudson’s algorithm

In this section we provide a detailed description of our implementation of Hud-
son’s algorithm. First, we require some notation. Let R∆(ξ1, . . . , ξk) define
a single independent sample from a random variable with distribution ∆ and
parameters ξ1, . . . , ξk. (Note that each instance of R∆(ξ1, . . . , ξk) within an
algorithm listing represents an independent random sample from the specified
distribution.) Using this notation, we define RU (A) to be an element of the
set A chosen uniformly at random, and RE(λ) as a sample from an exponen-
tially distributed random variable with rate λ. We use a simple linked list
representation of ancestral segments such that for a segment z, prev(z) de-
notes the previous segment to z in the linked list, and similarly next(z) denotes

29

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

the next segment. Let Λ denote a special segment indicating the end of a
chain (the null reference is convenient for this purpose in many languages). Let
z ← Segment(`, r, u, x, y) denote a newly allocated segment such that left(z) = `,
right(z) = r, node(z) = u, prev(z) = x and next(z) = y. We sometimes omit
the last two parameters for convenience; in this case, they are implicitly defined
as Λ, and therefore Segment(`, r, u) = Segment(`, r, u,Λ,Λ). Each element of a
linked list of these segments corresponds to a contiguous block of ancestry in
which we map the node u to the half-closed interval [`, r).

During recombination events we choose a breakpoint randomly and split the
ancestral material within an ancestor at that point. We model these breakpoints
as ‘links’ between adjacent sites. We use a binary indexed tree (Fenwick, 1994,
1995) L to track the cumulative number of links subtended by each extant seg-
ment (segments are ordered arbitrarily in this cumulative sum over the segments
in extant ancestors). A segment x subtends right(x)− left(x)−1 links if it is the
first in a chain; if it is not, it subtends right(x)− right(prev(x)). That is, a seg-
ment is associated with all the links that fall both within the interval it covers
and also with the links that fall in the interval between it and its predecessor.
To set the number of links mapped to a segment x to v, we use the notation
Lx ← v. To find the total number of links subtended by all segments, we use
total(L), and to obtain the cumulative number of links subtended by segment
x, we use total(L, x). Finally, find(L, v) returns the last segment whose cumu-
lative sum is ≤ v. Using these tools we can randomly choose a link and find the
segment that subtends it in logarithmic time.

Termination of Hudson’s algorithm works by a gradual process of removing
segments in which the MRCA has been reached. We implement this by main-
taining a map S that counts the number of extant segments intersecting with
a given interval. We use a balanced binary tree (Knuth, 1998, §6.2.3) to store
this map. To assign a value v to key k, we write Sk ← v. The data struc-
ture supports two further operations: search(S, k) returns the largest key ≤ k,
and nextkey(S, k) returns the smallest key > k. For each key k, Sk counts the
number of extant segments in the interval [k, nextkey(S, k)). As the simulation
proceeds we update this map to account for coalescences that occur, inserting
keys and decrementing the counts as necessary.

Algorithm H. (Hudson’s algorithm). Simulate the coalescent with recombina-
tion for a sample of n individuals on a sequence of m sites with recombination
at rate r per generation between adjacent sites.

H1. [Initialisation.] Set P ← ∅, C ← ∅, S ← BalancedBinaryTree() and L ←
BinaryIndexedTree(). Then, for 1 ≤ j ≤ n, set x ← Segment(0,m, j),
Lx ← m− 1 and P ← P ∪ {x}. Finally, set S0 ← n, Sm ← −1, w ← n+ 1
and t← 0.

H2. [Event.] Set λr ← r total(L), λ← λr+ |P | (|P |−1), and set t← t+RE(λ).
If RU ([0, 1)) < λr/λ, invoke Algorithm R; otherwise, invoke Algorithm C.

H3. [Loop.] If |P | 6= 0 go to H2 .

30

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

The basic structure of Hudson’s algorithm is very simple. We begin in H1
by allocating the set P to represent the extant ancestors and C to store our
coalescence records. We also allocate the balanced binary tree S and the binary
indexed tree L as discussed above. We then allocate a segment x covering the
interval [0,m), that points to node j for each individual 1 ≤ j ≤ n in the sample,
record that this segment subtends m − 1 links and then insert it into the set
of ancestors P . Afterwards, we initialise the map S by setting S0 ← n and
Sm ← −1 (stating that the number of extant segments in the interval [0,m) is
n), set the next available node w to n+ 1 and our clock t to zero.

In H2, we calculate the current rate of recombination and common ancestor
events, and increment t accordingly. We then choose the type of the next event
and invoke either Algorithm R or Algorithm C. Once the appropriate subroutine
has completed, we move on to H3, where we either terminate or loop back to
H2. Upon termination, C contains the set of coalescence records that defines
the output of the algorithm.

Algorithm R implements a single recombination event by choosing a link
uniformly and breaking it, resulting in a new individual being added to the
set of extant ancestors. There are two possibilities for this link: it is either
between two segments or within a segment, and these possibilities are dealt
with separately in steps R2 and R3, respectively. In either case, z points to the
head of the segment chain representing the new individual, which is inserted
into P in step R4.

Algorithm R. (Recombination event). Choose a link uniformly and break it,
resulting in one extra individual in the set of extant ancestors.

R1. [Choose link.] Set h← RU ({1, . . . , total(L)}), y ← find(L, h), k ← right(y)−
total(L, y) + h− 1 and x← prev(y). Then, if left(y) < k go to R3.

R2. [Break between segments.] Set next(x) ← Λ, prev(y) ← Λ, z ← y and go
to R4.

R3. [Break within segment.] Set z ← Segment(k, right(y), node(y),Λ,next(y)).
Then, if next(y) 6= Λ, set prev(next(y))← z. Afterwards, set next(y)← Λ,
right(y)← k and Ly ← Ly + k − right(z).

R4. [Update population] Set Lz ← right(z)− left(z)− 1 and P ← P ∪ {z}.

The algorithm begins in step R1 by choosing a link h uniformly from the
total(L) that are currently being tracked. We then find the segment y that
subtends this link using the binary indexed tree find function. Once we have
found the segment in question, we then calculate the corresponding breakpoint
k, so that we can determine whether link h falls within y or between y and its
predecessor x. Thus, if the breakpoint k > left(y), we go to R3, and otherwise
proceed to step R2.

Step R2 is very straightforward. Because the breakpoint k is between the
two segments x and y, we must simply break the forward and reverse links in
the segment chain between them. After breaking these links, we now have an
independent segment chain starting with z, which represents the new individual

31

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

to be added to the set of ancestors. On the other hand, if the breakpoint k falls
within y, we must split this segment in step R3 such that the ancestral material
from left(y) to k remains assigned to the current individual and the remainder
is assigned to the new individual z. We must also update the number of links
subtended by the segment y, which has right(z) − k fewer links as a result of
this operation. Finally, step R4 inserts the segment z into the set of ancestors,
since this is the first segment in the new individual. However, we must also
update the information about the number of links subtended by this segment.
Since z is the head of a new segment chain, there is no previous segment, and
the number of links it subtends is right(z)− left(z)− 1. After this, we complete
the recombination event, returning to Algorithm H.

Algorithm C implements a single common ancestor event, where we choose
two individuals randomly and merge their ancestral segment chains. If these two
ancestors have overlapping segments we record the corresponding coalescence
events. When a coalescence occurs, we decrement the number of extant segments
in the corresponding interval by updating S. When this value is reduced to 1,
we discard the corresponding segment since it can have no further effect on
the genealogies we are interested in. Thus, the algorithm always removes two
individuals from the set of ancestors P , but may reinsert zero or one, depending
on whether any ancestral segments remain after merging. By this process the
size of P is eventually reduced to zero and Hudson’s algorithm is complete.

Algorithm C. (Common ancestor event). Choose two ancestors uniformly and
merge their segments, recording any coalescences that occur as a consequence.

C1. [Choose ancestors.] Set x ← RU (P), y ← RU (P \ {x}). Then, set P ←
P \ {x, y}, z ← Λ and c← 0.

C2. [Loop head] If x = Λ and y = Λ, terminate the algorithm. Set α ← Λ. If
x 6= Λ and y 6= Λ go to C3. Otherwise, if x 6= Λ set α← x and set x← Λ.
If y 6= Λ set α← y and set y ← Λ. Go to C8.

C3. [Choose case] If left(y) < left(x), set β ← x, x ← y and y ← β. Then,
if right(x) ≤ left(y), set α ← x, x ← next(x), next(α) ← Λ and go to C8;
otherwise, if left(x) 6= left(y) set α ← Segment(left(x), left(y), node(x)),
left(x)← left(y) and go to C8.

C4. [Coalescence] If c = 0, set c← 1 and w ← w+1. Afterwards, set u← w−1,
`← left(x) and r∗ ← min(right(x), right(y)). If ` 6∈ S, set j ← search(S, `)
and S` ← Sj . Similarly, if r∗ 6∈ S, set j ← search(S, r∗) and Sr∗ ← Sj .
Then, if Sl 6= 2 go to C6.

C5. [Segment MRCA] Set S` ← 0 and r ← nextkey(S, `). Go to C7.

C6. [Decrement overlaps.] Set r ← `. Then, while Sr 6= 2 and r < r∗, set
Sr ← Sr−1 and r ← nextkey(S, r). Afterwards, set α← Segment(`, r, u).

C7. [Update x and y] Set C ← C ∪{(`, r,node(x), node(y), u, t)}. If right(x) =
r, set x ← next(x); otherwise, set left(x) ← r. If right(y) = r, set y ←
next(y); otherwise, set left(y)← r.

32

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

C8. [Update links] If α = Λ go to C2. If z = Λ set P ← P ∪ {α} and Lα ←
right(α) − left(α) − 1; otherwise, set next(z) ← α and Lα ← right(α) −
right(z). Afterwards, set prev(α)← z, z ← α and go to C2

We begin in step C1 by choosing our individuals x and y and removing them
from the set of ancestors. We then set the tail of the segment chain representing
the common ancestor z to the null segment Λ, and then proceed into the main
loop of the algorithm. This loop is controlled in step C2, and works by taking
the leading segment from the x and y chains at each iteration and processing
it. Once all segments have been consumed, we exit. Therefore, if both x and y
are null, this loop has completed and we terminate the algorithm. Otherwise,
we set α to the null segment. Throughout, we use this variable to point to
the next segment that is to be merged into the segment chain representing the
ancestor of the two chosen individuals. The last-merged segment in this chain is
pointed to by z, and the necessary operations to include α into the global state
are carried out in step C8.

Returning to the head of the loop in C2, if either x or y is null we have
reached the end of one of the segment chains, and all that remains to do is
attach the remainder of the non-null chain to our new individual. If both x and
y are non-null, on the other hand, we proceed to C3. In this step we consider
the two segments x and y and decide which of a number of cases we must deal
with. First, we maintain the invariant that left(x) ≤ right(y); if this is violated,
we swap the variables. Then, we address the various cases that can occur as x
and y overlap.

The simplest case is when there is no overlap between x and y which occurs
when right(x) ≤ left(y); here, we simply merge x into the new segment chain
and move on to C8. The next case we deal with is when we have a partial
overlap between x and y, which occurs when left(x) 6= right(y). In this case, we
create a new segment to represent this ‘overhang’, and merge this into the new
segment chain in C8. Finally, if none of these conditions have been satisfied,
we know that left(x) = right(y) and there is therefore a coalescence which we
handle in C4.

First, we check if another coalescence has occurred during this common
ancestor event. If not, we set our flag c ← 1, and increment the next node w.
Afterwards, we set the parent node for this coalescence u, and set ` and r∗ to
the boundaries of the coalescing interval. We then check if ` and r∗ are in S so
that we can subsequently update the number of extant segments in the intervals
to account for the coalescence. There are then two possibilities: if S` = 2, we
know that the MRCA has been reached in an interval starting at `, which we
deal with in C5; if not, we move on to C6.

In general, there will be many intervals with different numbers of extant
segments overlapping between ` and r∗. In C6 we iterate over each of these
intervals, decrementing the number of extant segments to account for the current
coalescence. After this has completed, we allocate the new segment α and move
on to C7. Here, we record the coalescence by updating the set C, handle any
trailing overlaps that may occur, and update x and y to point to the appropriate

33

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

next segments in their respective chains.
Step C8 is the final step of the main loop, where we insert the new segment

α into the chain representing the common ancestor. Firstly, if this segment is
null as a result of reaching the MRCA, then we have nothing to do, and so
return to the start of the main loop. The variable z is used to keep track of the
previous segment that was merged into the common ancestor’s segment chain.
Thus, if z is null we know that α is the first segment in the new chain and so we
can use this opportunity to insert the new individual into the set of ancestors
P ; otherwise, we merge α into the existing chain. In both cases, we update the
number of links subtended by α as appropriate, before returning to C2.

As stated, Algorithm H correctly simulates the coalescent with recombi-
nation and returns a set of coalescence records fully describing the generated
genealogies. In the interest of brevity we have omitted some details that are
important for efficiency. Firstly, it is important to defragment segments in order
to save time and memory. That is, if we have two adjacent segments (`, k, u)
and (k, r, u) we should merge these into a single equivalent segment (`, r, u).
This can be done quite simply after Algorithm C has completed, and we can
detect when such defragmentation is required in step C8. Similarly, it is vital
for efficiency to opportunistically defragment the map that counts the number
of extant segments in a given interval. Since Sj counts the number of segments
covering the interval [j, k), where k is the smallest key > j in S, if Sj = Sk
we can simply delete the key k without loss of information. Although it does
not affect simulation efficiency, it is also important to defragment the coales-
cence records output by the algorithm. This is easily done, since any records
(`, k, u, c, t) and (k, r, u, c, t) that can be merged must be stored sequentially
without any intervening records.

The implementation of msprime is closely based on Algorithm H as given
here. We also provide a simpler Python implementation in the file algorithms.py
at https://github.com/jeromekelleher/msprime-paper. This repository also
contains all code required to run the simulations, and to create all figures and
illustrations in this paper.

B Illustration of Hudson’s algorithm

Figure 5 shows an illustration of Hudson’s algorithm for a sample of four indi-
viduals. In this illustration we show the state of the algorithm and its effects on
the marginal trees after every event. The state of the algorithm is fully defined
by the ancestral lineages (defined by the segments of ancestral material that
they carry), the next available node w and the current time t. Although it is
not necessary to store the partially built genealogies in memory, we show them
here in the lower part of each panel for clarity. The left-to-right axis represents
genomic coordinates. We also show the current time (t) and the number of
potential recombination breakpoints (L) in each panel.

In this example, we have simulated the ancestry of the sample for a sequence
of 10 sites. The initial state of the simulation at time 0 is shown in panel

34

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

0 5 10 0 5 10

(a) t = 0.000 L = 36

l1 1
l2 2
l3 3
l4 4

1 23 4

(b) t = 0.007 L = 35 RE

l1 1
l2 2
l5 3
l4 4
l6 3

1 23 4 1 2 3 4

(c) t = 0.071 L = 28 CA

l1 1
l2 2
l5 3
l7 4 5

1 23 4 1 2 3 4

5

(d) t = 0.090 L = 19 CA

l1 1
l5 3
l8 6

1 23 4

6

1 2 3 4

5

6

(e) t = 0.135 L = 18 RE

l9 1
l5 3
l8 6
l10 1

1 23 4

6

1 2 3 4

5

6

1 2 3 4

5

6

(f) t = 0.170 L = 12 CA

l5 3
l10 1
l11 7 6

1 23 4

6

7

1 2 3 4

5

6

7

1 2 3 4

5

6

(g) t = 0.202 L = 2 CA

l5 3
l12 7

1 23 4

6

7

1 2 3 4

5

6

7

1 2 3 4

5

6

8

(h) t = 0.253 L = 0 CA

1 23 4

6

7

9

1 2 3 4

5

6

7

1 2 3 4

5

6

8

Figure 5: An illustration of Hudson’s algorithm using sparse trees. In each
panel we show the state of the algorithm after an event. Events are either
recombination (RE) or common ancestor (CA). On the top of each panel, every
line represents an ancestor which may be composed of several distinct segments.
The bottom of each panel shows the state of the trees at that point in time.
The horizontal direction represents genomic coordinates.

35

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

(a), where we see four lineages corresponding to our sampled chromosomes.
Lineage l1 can be represented as the segment (0, 10, 1), which states that over the
genomic interval [0, 10), the lineage occupies the tree node 1. This information
is shown explicitly in the figure, where we draw the full range of each segment
and label the line with the node it is associated with. Nodes are colour-coded,
so that we can easily see which tree nodes are associated with each segment.
Since this is the initial state of the algorithm, the only tree nodes defined are the
leaf nodes. This is shown in the bottom part of the panel, where we draw out
the nodes of the trees that have been assigned so far. (The nodes are ordered in
these panels such that they are consistent with the orderings induced by later
events.)

The first event that we encounter as we go backwards in time is a recom-
bination event which occurs at time t = 0.007. Panel (b) shows the state of
the simulation immediately after this event. Recombination has split lineage l3,
resulting in two new lineages, l5 and l6. As the breakpoint was at 2, we have
l5 = (0, 2, 3) and l6 = (2, 10, 3). The other effect of this recombination event is
to create a new tree: since the histories of the sample over the intervals [0, 2) and
[2, 10) can now be different, we must create a new tree to record these histories
as they are simulated. (Note again that these trees are shown for illustration
only; they are not stored in the simulation.)

After the recombination in event (b), a common ancestor event occurs in (c)
in which l4 and l6 are merged to form a common ancestor l7. At a common
ancestor event we merge the ancestral material from two lineages. Any non-
overlapping segments are copied directly into the new lineage. In this example,
only one of the lineages carried ancestral material in the interval [0, 2), and so
this is copied directly to the common ancestor. However, in the interval [2, 10)
both carry ancestral material, and so a coalescence occurs. In this coalescence,
nodes 3 and 4 have a common ancestor in the interval [2, 10). We therefore
create a new node 5, and update the tree covering the interval [2, 10) to reflect
this.

The simulation continues generating common ancestor and recombination
events at the relevant rates until complete genealogies have been generated
across the entire sequence. Termination of the algorithm is controlled by keep-
ing track of the amount of ancestral material present in each distinct interval
produced by recombination. An important aspect of Hudson’s algorithm is that
we do not continue to track the ancestry of segments in which the trees are
already complete. An example of this can be seen in panel (f) of Figure 5. In
this event lineages l8 and l9 have merged to form l11. In the interval [0, 7), these
have overlapping ancestral material and we therefore create a new node 7 and
update the trees covering [0, 2) and [2, 7) to show that node 7 is the parent of 1
and 6. However, we note that the tree covering the interval [2, 7) is complete as
a result, and so we omit the segment mapping to the new node over this inter-
val. This process is important for efficiency, as we would continue to generate
recombination and common ancestor events for the segment, even though these
events could not effect the genealogy over this interval.

Panel (f) also illustrates the concept of trapped material. Lineage l11 consists

36

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

of the two segments (0, 2, 7) and (7, 10, 6). Recombination events occurring
anywhere in [0, 10) on this lineage will therefore result in a different arrangement
of ancestral material. The total number of possible recombination breakpoints
for l11 is therefore 9. In contrast, there are only 2 possible breakpoints for
l10, since any recombination that occurs in [0, 7) cannot affect the ancestral
material. Similarly l5 has only one potential breakpoint, and so the total number
of potential breakpoints L = 12.

C Supplemental Figures

l r u c t
1 2 10 5 (3, 4) 0.071
2 0 2 6 (2, 4) 0.090
3 2 10 6 (2, 5) 0.090
4 0 7 7 (1, 6) 0.170
5 7 10 8 (1, 6) 0.202
6 0 2 9 (3, 7) 0.253

Table 1: Tabular representation of the coalescence records output by the sim-
ulation in Figure 5 and depicted in Figure 3. The corresponding index vectors
are I = (2, 4, 6, 1, 3, 5) and O = (6, 2, 4, 5, 3, 1).

37

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

0 20 40 60 80 100
Megabases

0

50

100

150

200

250

300

350

400
CP

U
Ti

m
e

(s
ec

on
ds

)
cosi2
msprime (Text)
msprime (HDF5)
scrm

0 20 40 60 80 100
Sample size×103

0 5 10 15 20 25 30 35 40
ρ× 103

sample size = 1000 sequence length = 50Mb

Figure 6: Comparisons of the running times for various coalescent simulators
to generate mutations for varying sequence length and sample size. We use a
scaled mutation rate of θ = 4Neµ = 0.0004.

0 20 40 60 80 100
Megabases

0

1

2

3

4

5

6

M
em

or
y

(G
ig

ab
yt

es
)

cosi2
msprime (Text)
msprime (HDF5)
scrm

0 20 40 60 80 100
Sample size×103

0 5 10 15 20 25 30 35 40
ρ× 103

sample size = 1000 sequence length = 50Mb

Figure 7: The corresponding maximum memory usages for the simulators in
Figure 6.

38

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

0 20 40 60 80 100
Megabases

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Br
ea

kp
oi

nt
s
×1

05

MaCS
msms
msprime
scrm

0 20 40 60 80 100
Sample size×103

0 5 10 15 20 25 30 35 40
ρ× 103

sample size = 1000 sequence length = 50Mb

Figure 8: The mean number of recombination breakpoints for the simulations
in Figure 2 along with the theoretical prediction (black line). This plot shows
that the number of recombination events within ancestral material for these
simulations is identical for all simulators and agrees very well with the theoretical
value of ρHn−1, where Hn is the nth Harmonic number.

39

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 30, 2015. ; https://doi.org/10.1101/033118doi: bioRxiv preprint

https://doi.org/10.1101/033118
http://creativecommons.org/licenses/by/4.0/

