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Abstract	

	

Background:	The	adaptation	of	the	CRISPR-Cas9	system	to	pooled	library	gene	knockout	

screens	in	mammalian	cells	represents	a	major	technological	leap	over	RNA	interference,	

the	prior	state	of	the	art.		New	methods	for	analyzing	the	data	and	evaluating	results	are	

needed.	

Results:	We	offer	BAGEL	(Bayesian	Analysis	of	Gene	EssentiaLity),	a	supervised	learning	

method	for	analyzing	gene	knockout	screens.		Coupled	with	gold-standard	reference	sets	of	

essential	and	nonessential	genes,	BAGEL	offers	significantly	greater	sensitivity	than	current	

methods,	while	computational	optimizations	reduce	runtime	by	an	order	of	magnitude.	

Conclusions:		Using	BAGEL,	we	identify	~2,000	fitness	genes	in	pooled	library	knockout	

screens	in	human	cell	lines	at	5%	FDR,	a	major	advance	over	competing	platforms.		BAGEL	

shows	high	sensitivity	and	specificity	even	across	screens	with	highly	variable	reagent	

quality.	
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Background	

	

	 Perturbing	gene	activity	and	evaluating	the	resulting	phenotype	is	a	fundamental	

technique	for	identifying	the	biological	processes	in	which	a	gene	participates.		

Traditionally,	the	ability	to	induce	complete	gene	knockouts	on	a	genomic	scale	has	been	

exclusively	the	domain	of	model	organisms	such	as	yeast,	while	experiments	in	higher	

eukaryotes,	including	human	cell	lines,	have	relied	on	RNA	interference	(RNAi).		RNAi	uses	

the	endogenous	RNA-induced	silencing	complex	(RISC)	machinery	to	target	messenger	RNA	

transcripts,	which	have	a	very	large	dynamic	range	of	abundance,	resulting	in	data	that	is	

often	diluted	by	incomplete	target	knockdown	and	off-target	effects	of	variable	severity	[1-

3].	

	 The	adaptation	of	CRISPR-Cas9	technology	to	pooled	library	gene	knockout	screens	

in	mammalian	cells	allows	the	identification	of	genes	whose	knockout	contributes	to	gene	

fitness	[4-8].		A	pooled	library	screen	typically	contains	several	guide	RNAs	(gRNA)	

targeting	each	gene,	and	large	numbers	of	cells	are	treated	such	that	each	cell	is	affected	by	

(on	average)	a	single	gRNA	clone,	while	each	gRNA	species	targets	hundreds	of	cells.		

Unperturbed	cells,	or	cells	with	knockouts	showing	no	growth	phenotype,	grow	at	wildtype	

rates,	while	cells	harboring	a	guide	RNA	that	targets	a	gene	resulting	in	a	growth	defect	

show	lower	growth	rates	(Figure	1A).		To	identify	the	genes	whose	knockout	causes	a	

fitness	defect,	the	frequency	distribution	of	gRNA	in	the	population	is	assayed	by	deep	

sequencing	and	compared	to	the	frequency	distribution	at	an	early	control	timepoint.		

Changes	in	the	frequency	distribution	of	gRNA	are	measured	as	log	fold	changes	(Figure	1A,	

sidebar)	where	severe	negative	fold	changes	reflect	gRNA	that	cause	severe	fitness	defects.	

	 Aggregating	individual	reagent	effects	into	an	accurate	estimate	of	gene-level	effect	

is	a	major	challenge	in	the	analysis	of	pooled	library	screen	data[9-13].		To	analyze	pooled	

library	RNAi	screens,	which	have	similar	experimental	design,	we	developed	an	early	

Bayesian	classifier	and	demonstrated	its	superiority	over	contemporary	approaches	[2].		A	

key	feature	of	this	study	was	the	establishment	of	reference	sets	of	core	essential	and	

nonessential	genes,	which	can	be	used	as	gold	standards	to	evaluate	other	algorithms	in	

analyzing	fitness	screens.		Here	we	describe	BAGEL,	the	Bayesian	Analysis	of	Gene	

EssentiaLity,	an	adaptation	of	the	previously	described	Bayesian	classifier.		BAGEL	features	

a	more	robust	statistical	model,	major	performance	enhancements,	and	an	improved	user	
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interface.		BAGEL	source	code,	documentation,	and	reference	files	are	available	at	

http://bagel-for-knockout-screens.sourceforge.net/.	

	

Methods	

	

	 A	pooled	library	CRISPR-Cas9	fitness	screen	in	human	cells	involves	having	multiple	

gRNA	reagents	targeting	each	gene	and	is	often	evaluated	at	several	timepoints,	ideally	with	

multiple	replicates	at	each	timepoint.		BAGEL	first	estimates	the	distribution	of	fold	changes	

of	all	gRNA	targeting	all	genes	in	either	the	essential	or	nonessential	training	sets	(Figure	

1B).		Then,	for	each	withheld	gene,	it	evaluates	the	likelihood	that	the	observed	fold	changes	

for	gRNA	targeting	the	gene	were	drawn	from	either	the	essential	or	the	nonessential	

training	distributions.		The	result	is	a	Bayes	Factor:	

	

𝐵𝐹 =  
Pr 𝐷  𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙)

Pr 𝐷 𝑛𝑜𝑛𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙)
=  

Pr 𝐷 𝑘, 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙) Pr 𝑘 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙) 𝑑𝑘
Pr 𝐷 𝑘, 𝑛𝑜𝑛𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 Pr 𝑘 𝑛𝑜𝑛𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙) 𝑑𝑘

	

	

where	the	data,	D,	is	the	set	of	observed	fold	changes	for	the	uncharacterized	gene	and	k	is	

the	fold	change	distribution	of	the	training	set,	empirically	estimated	using	a	kernel	density	

estimate	function	(Figure	1B,	red	and	blue	curves).	

	 The	integral	is	estimated	by	bootstrap	resampling	of	the	training	sets.		At	each	

iteration	the	k	distributions	are	calculated	and	a	log	BF	is	calculated:	

	

𝐵𝐹! =  
Pr 𝐷!  𝑘!"")
Pr 𝐷! 𝑘!"!)

	

	

log 𝐵𝐹! = log 𝑃𝑟 𝐷! 𝑘!"" ) − log (Pr 𝐷! 𝑘!"! )	

	

log 𝐵𝐹! =   log Pr fc!   𝑘!"" − log (Pr fc! 𝑘!"!)) )
!

	

	

where	fci	are	the	observed	fold	changes	for	gRNA	targeting	gene	g.		One	thousand	

bootstrapping	iterations	are	conducted;	a	Bayes	Factor	is	calculated	for	each	iteration	and	

the	mean	and	standard	deviation	of	the	resulting	posterior	distribution	of	BFs	is	reported.	
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	 Two	factors	inherent	in	the	data	require	that	empirical	boundaries	be	applied	to	the	

calculations.		First,	when	taking	the	ratio	of	two	curves,	the	ratio	can	take	on	extreme	values	

when	the	denominator	approaches	zero.		Second,	kernel	density	estimates	become	unstable	

in	regions	of	sparse	data.		For	these	reasons,	we	identify	the	lowest	fold	change	(x-

coordinate)	at	which	the	knon	density	estimate,	the	denominator	above,	exceeds	2-7,	and	set	

this	as	a	lower	bound	(Figure	1C).		All	observed	changes	below	this	boundary	are	set	to	the	

boundary	value.		Similarly,	we	calculate	the	fold	change	at	which	the	log	ratio	of	the	curves	

is	a	minimum	and	set	this	as	an	upper	bound	(Figure	1C).		These	boundaries	ensure	that	

individual	observations	do	not	dominate	the	final	BF	score	while,	in	our	experience,	making	

no	material	change	to	gene	estimates:		observed	fold	changes	outside	these	boundaries	are	

not	stronger	evidence	that	a	gene	does	or	doesn't	induce	a	fitness	defect,	given	the	normal	

constraints	of	the	experiment	(number	of	cells,	sequencing	depth,	etc.).		Note	that	this	

approach	makes	no	statement	about	whether	a	gene	knockout	can	increase	cell	fitness,	only	

whether	perturbation	causes	a	growth	defect.	

	 For	very	large	CRISPR	libraries,	the	calculation	as	described	can	be	computationally	

expensive.	To	speed	up	the	calculations,	we	include	two	optimizations.		First,	we	round	all	

calculated	fold	changes	to	the	nearest	0.01.	Second,	for	each	bootstrap	iteration,	we	

calculate	the	value	of	the	log	ratio	function	(Figure	1C)	at	each	0.01	within	the	empirical	

boundaries	described	above	and	store	the	values	in	a	lookup	table.	Then,	instead	of	

recalculating	the	values	for	each	gRNA,	we	pull	the	value	of	the	log	ratio	function	from	the	

lookup	table.	These	optimizations	decrease	processing	time	by	over	an	order	of	magnitude,	

with	no	impact	on	final	results	(Pearson's	r	~	0.999	for	final	BFs;	data	not	shown).	

	 For	knockout	screens	with	multiple	timepoints,	the	BF	is	calculated	at	each	

timepoint,	and	a	final	BF	is	the	sum	of	the	timepoint	BFs.	Since	the	posterior	BF	

distributions	are	approximately	normal	(by	KS	tests,	not	shown),	the	variance	of	the	final	BF	

is	estimated	as	the	sum	of	the	variances	at	the	timepoints.	

	

Results	and	discussion	

	

	 We	demonstrate	this	approach	with	screens	from	the	Toronto	KnockOut	(TKO)	

library	in	four	cell	lines:		a	patient-derived	glioblastoma	cell	line	(GBM,	Figure	2A),	HCT116	

colorectal	carcinoma	cell	line	(Figure	2B),	HeLa	cervical	carcinoma	cell	line	(Figure	2C),	and	

RPE1	retinal	pigmented	epithelial	cells	(Figure	2D)	[14].			All	the	screens	were	sampled	at	
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multiple	timepoints.		Using	the	gold-standard	reference	sets	from	[2],	BFs	were	calculated	

for	each	timepoint	and	precision-recall	(PR)	curves	were	plotted.		In	all	cases,	later	

timepoints	showed	improved	recall	over	the	earliest	timepoint.		The	"integrated"	sample	is	

the	sum	of	the	timepoint	BFs	and	can	be	considered	a	summary	result	for	the	entire	screen;	

the	PR	curve	for	the	integrated	sample	is	in	every	case	as	good	or	better	than	the	timepoint	

curves.		In	all	cases	screens	yielded	a	very	large	number	of	fitness	genes:		on	average,	

~2,000	genes	at	5%	false	discovery	rate	(FDR)	using	the	integrated	results,	and	these	genes	

show	very	high	functional	coherence	(see	[14]	for	a	more	complete	evaluation).	

	 One	question	that	arises	from	these	results	is	whether	the	lower	performance	at	the	

early	timepoint,	relative	to	the	later	ones,	reflects	the	screening	technology	or	the	biology	of	

the	systems	being	perturbed.		We	address	this	question	by	looking	at	functional	enrichment	

in	genes	unique	to	the	early	hits,	genes	unique	to	the	late	hits,	or	genes	in	the	intersection,	

using	the	GORILLA	web	service[15].		We	find	that	most	(75-89%)	early	hits	are	also	

observed	at	the	last	timepoint	(Figure	3A),	and	that	genes	exclusively	in	the	early	hit	set	are	

not	meaningfully	enriched	for	annotated	biological	processes.		Looking	specifically	at	the	

GBM	cell	line,	genes	in	the	intersection	are	highly	enriched	for	core	biological	processes	one	

could	reasonably	expect	to	cause	fitness	defects	(Figure	3B).		Genes	in	the	intersection	

comprise	only	53-65%	of	the	total	number	of	hits	at	the	last	timepoint;	however,	genes	

exclusive	to	the	last	timepoint	typically	extend	coverage	of	the	biological	processes	

identified	in	the	intersection,	as	shown	for	GBM	cells	in	Figure	3B,	and	identify	few	novel	

processes.	

	 Though	late	fitness	genes	typically	reflect	the	processes	observed	in	early	fitness	

genes,	genes	which	encode	proteins	involved	in	mitochondrial	function	offer	an	interesting	

contrast.		Genes	in	both	the	early	and	late	timepoints	are	enriched	for	some	mitochondrial	

processes,	including	protein	transport	to	the	mitochondrion	and	mitochondrial	translation.		

However,	the	late-only	genes	are	enriched	for	a	small	number	of	GO	BP	terms	that	are	

centered	around	functions	related	to	oxidative	phosphorylation,	including	"respiratory	

chain	complex	I	assembly"	(7	hits	of	18	annotated	genes,	7.4-fold	enrichment),	"respiratory	

chain	complex	IV	assembly"	(4/8	genes,	9.4-fold),	and	"mitochondrial	electron	transport,	

NADH	to	ubiquinone"	(12/36	genes,	6.3-fold).		This	difference	may	reflect	a	more	subtle	

phenotype	(i.e.	lower	fitness	defect)	among	oxphos	genes	that	only	becomes	detectable	at	

the	later	timepoint	(Figure	1A).	
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	 We	compared	BAGEL	to	MAGeCK,	a	contemporary	method	for	analyzing	CRISPR	

knockout	screens[10].		MAGeCK	ranks	gRNAs	by	P-value	derived	from	a	negative	binomial	

model	comparing	control	to	experimental	timepoints,	then	calculates	gene-level	P-values	

using	modified	Robust	Ranking	Aggregation.		We	compared	MAGeCK	results	to	BAGEL	

results	using	only	the	final	timepoint	from	the	TKO	screens	described	above,	and	plotted	PR	

curves	using	the	same	reference	sets	(Figure	4A-D).		In	all	cases,	BAGEL	outperformed	

MAGECK,	yielding	more	recall	and	more	overall	hits	in	a	reasonable	range	of	empirically-

calculated	FDR	(5-15%).		Most	striking,	however,	was	the	severe	lack	of	sensitivity	using	the	

theoretical	model	of	MAGeCK.		Although	gene	rankings	for	the	two	methods	were	generally	

similar	(Spearman	correlations	0.76-0.81	for	the	top	3,000	genes	in	each	set),	the	MAGeCK	

algorithm	yielded	only	674	(mean;	range	489-905)	genes	at	10%	FDR,	using	its	own	FDR	

estimates	(Figure	4).		We	are	confident	that	the	higher	numbers	of	fitness	genes	detected	by	

BAGEL	are	in	fact	real:		we	analyze	their	expression	level,	biological	function,	and	other	

functional	genomic	data	in	detail	in	[14].	

	 We	also	compared	the	two	algorithms	using	a	newly	published	data	set	from	Wang	

et	al.	[16],	where	four	leukemia	and	lymphoma	cell	lines	were	screened	for	essential	genes	

using	a	large	gRNA	library.		As	with	the	TKO	screens,	the	BAGEL	algorithm	yields	equal	or	

superior	precision-recall	curves	and	greater	sensitivity,	though	with	a	smaller	margin	of	

improvement	(Figure	4E-H).		MAGeCK	identifies	1,571	(mean,	range	1,241-1,800)	hits	at	

10%	FDR	while	BAGEL	identifies	on	average	2,272	(range	1,963-2,482)	essential	genes	at	

5%	FDR.	

	 The	reason	behind	the	difference	in	sensitivity	between	BAGEL	and	MAGeCK	likely	

lies	in	the	variable	effectiveness	of	CRISPR	reagents.		Examining	the	fold	change	distribution	

of	all	guides	targeting	genes	in	the	reference	set	of	high-confidence	essentials	(Figure	1B),	it	

is	evident	that	many	gRNAs	targeting	essential	genes	do	not	show	significant	dropout.		The	

BAGEL	algorithm	chooses	between	the	essential	and	nonessential	distributions,	and	is	able	

to	detect	even	a	slight	shift	in	overall	effect,	whereas	a	statistical	test	based	solely	on	

excluding	the	null	hypothesis	–	generally	speaking,	that	the	observed	fold	changes	are	not	

likely	to	be	drawn	from	the	blue	curve	in	Figure	1A—requires	either	deeper	sampling	(i.e.	

more	replicates	and/or	more	guides	targeting	each	gene)	or	a	more	severe	phenotype.		In	

fact,	this	is	reflected	in	the	MAGeCK	results	for	the	four	TKO	cell	lines	tested:		the	GBM	and	

RPE1	cell	lines	were	screened	with	a	90k	library	and	MAGeCK	yielded	586	and	489	hits,	

respectively,	while	the	HeLa	and	HCT116	lines	were	screened	with	a	177k	library	and	
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MAGeCK	yielded	718	and	905	hits	–	on	average,	~50%	more	hits	using	the	larger	library.		

The	sequence-optimized	180k	gRNA	library	used	by	Wang	et	al.	has	a	lower	proportion	of	

non-performing	guides,	resulting	in	substantially	improved	sensitivity	for	both	BAGEL	and	

MAGeCK,	though	BAGEL	still	identifies	~50%	more	hits	in	each	screen.	

	

	

Conclusions	

	

	 The	ability	to	perform	accurate,	saturating	genetic	perturbation	screens	in	human	

cell	lines	could	transform	molecular	genetics	in	the	coming	years.		To	maximize	potential—

and	to	avoid	pitfalls	similar	to	the	costly	false	starts	encountered	in	the	RNAi	field—

rigorous	analytical	methods	must	be	applied	that	are	able	to	effectively	discriminate	true	

hits	from	false	positives.		While	data	suggests	that	off-target	effects	in	CRISPR-Cas9	pooled	

library	screens	are	much	less	of	a	concern	than	with	RNAi,	the	variable	effectiveness	of	

early	reagent	pools	makes	it	important	that	analytical	methods	are	able	to	detect	subtle	

phenotypes.		BAGEL	accurately	models	the	wide	variability	in	phenotype	shown	by	reagents	

targeting	known	essential	genes,	enabling	the	sensitive	and	precise	identification	of	fitness	

genes,	even	under	conditions	of	suboptimal	data	quality.	

	

	

Availability	and	requirements	

	

Project	name:		bagel-for-knockout-screens	

Project	home	page:	http://bagel-for-knockout-screens.sourceforge.net/	

Operating	system(s):		platform	independent	

Programming	language:		Python	

Licensing:	[to	be	determined]	
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Figure	Legends	

	

Figure	1.		BAGEL	overview.		(A)	Simulated	growth	curves	of	wildtype	cells	(blue),	which	

double	at	every	time	increment.		When	genetic	perturbations	are	induced	(T=3),	moderate	

(purple)	to	severe	(magenta)	fitness	defects,	growth	arrest	(red),	and	cell	death	(black)	

result	in	different	relative	growth	rates.		At	sampled	timepoints,	fold	change	relative	to	

wildtype	growth	is	the	readout	from	a	sequencing	assay.		(B)		Representative	data	from	one	

replicate.		The	fold	change	distribution	of	all	gRNA	targeting	essential	genes	(red)	is	shifted	

relative	to	the	fold	change	distribution	of	all	gRNA	targeting	nonessential	genes	(blue).		The	

fold	change	distribution	for	all	gRNA	(black)	is	shown	for	reference.		(C)		The	log	likelihood	

functions	of	the	red	and	blue	curves	from	(B),	left	Y	axis.		The	BAGEL	method	calculates	the	

log	likelihood	ratio	(black,	right	Y	axis)	of	these	two	curves,	within	empirical	boundaries	

(green	dashes),	for	each	bootstrap	iteration;	see	Methods	for	details.	

	

Figure	2.		Precision-recall	curves	for	BAGEL	results	for	GBM	(A),	HCT116(B),	HeLa	(C),	

and	RPE1	(D)	screens	using	the	TKO	library.		Where	indicated,	a	single	timepoint	is	plotted.		

"Integrated"	=	Bayes	Factors	summed	across	all	timepoints	in	the	experiment.	

	

Figure	3.		Comparing	early	and	late	hits.		(A)	Number	of	fitness	genes	detected	at	early	

timepoint	(cyan),	late	timepoint,	(green),	or	both	(blue)	in	each	TKO	screen.		(B)	

Representative	data	from	GBM	screen.		Most	GO_BP	terms	enriched	in	late-only	genes	

(green)	extend	observations	of	terms	enriched	in	genes	found	in	both	early	and	late	

timepoints.	

	

Figure	4.		Comparing	BAGEL	with	MAGeCK.		For	each	cell	line,	precision-recall	curves	

were	plotted	for	BAGEL	and	MAGeCK	results	using	the	last	timepoint	of	the	screen.		Red	

circle	indicates	results	at	MAGeCK-reported	10%	FDR	cutoff.		(A-D)	TKO	screens	from	Hart	

et	al.	[14]	(E-H)	Screens	from	Wang	et	al.	[16]	
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FIGURE	1	
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FIGURE	2	
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FIGURE	3	
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FIGURE	4	
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