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ABSTRACT  17 

How urbanization shapes population genomic diversity and evolution of urban wildlife is largely 18 

unexplored. We investigated the impact of urbanization on white-footed mice, Peromyscus 19 

leucopus, in the New York City metropolitan area using coalescent-based simulations to infer 20 

demographic history from the site frequency spectrum. We assigned individuals to evolutionary 21 

clusters and then inferred recent divergence times, population size changes, and migration using 22 

genome-wide SNPs genotyped in 23 populations sampled along an urban-to-rural gradient. Both 23 

prehistoric climatic events and recent urbanization impacted these populations. Our modeling 24 

indicates that post-glacial sea level rise led to isolation of mainland and Long Island populations. 25 

These models also indicate that several urban parks represent recently-isolated P. leucopus 26 

populations, and the estimated divergence times for these populations are consistent with the 27 

history of urbanization in New York City. 28 

 29 

 30 
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INTRODUCTION 32 

Urbanization is a particularly potent driver of environmental change around the world [1]. 33 

Understanding population genomic responses of organisms to human-driven change provides 34 

important context for predicting future evolutionary responses [2]. Using genome-wide SNP data, 35 

we investigate the effects of post-glacial environmental events and urbanization in the New York 36 

City (NYC) metropolitan area on historical demography of the white-footed mouse, Peromyscus 37 

leucopus. We examine the influence of climatic history over thousands of generations but also the 38 

effects of recent environmental events tens of generations in the past. This study is the first to 39 

examine the impact of urbanization on demographic history using patterns of genomic variation 40 

in wild populations. 41 

NYC is particularly well suited for studies on urbanization because the city’s recent 42 

history of geological [3], ecological [4,5], and cultural [6,7] change has been meticulously 43 

recorded. NYC also has clearly defined urban green spaces that are delimited by anthropogenic 44 

and natural barriers, and occupied by independently-evolving populations of species with poor 45 

mobility through the urban matrix [8]. 46 

Natural barriers include the Hudson and East Rivers that separate the mainland portion of 47 

the city (i.e. Bronx) from Manhattan and Long Islands. The establishment of Long Island did not 48 

begin until the retreat of the late Wisconsin glacier that covered much of present-day NYC [9]. 49 

The glacier began retreating northward ~21,000 years before present (ybp) [10], and over the next 50 

few thousand years white-footed mice recolonized the region from southern refugia [11]. During 51 

this time, P. leucopus presumably maintained continuous populations until sea level rise 52 

separated Long Island from mainland NY between 12,000—15,000 ybp [10]. Except for 53 

occasional land-clearing by Native Americans, anthropogenic barriers were not erected until after 54 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/032979doi: bioRxiv preprint 

https://doi.org/10.1101/032979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

European settlement of the area around 1600 CE [4]. During early phases of urbanization in NYC 55 

(1609-1790), green spaces within the city were parade grounds, cemeteries, farms, or private 56 

estates with highly manicured landscapes. In the mid-19th century heavily used land plots, like 57 

present-day Prospect and Central Parks, were taken over by city officials and transformed for 58 

aesthetic purposes [12]. Private estates were also acquired by the NYC government and 59 

redesigned as vegetated parkland [13]. Remnant fauna in these parks, surrounded by a dense 60 

urban infrastructure, may have recovered from bottlenecks caused by urban fragmentation as the 61 

parks developed mature forests.  62 

P. leucopus represents one of these remnant species, and we investigated the demographic 63 

history of populations occupying contemporary forest fragments in NYC and the surrounding 64 

area. P. leucopus are abundant across North America, have a typically short lifetime dispersal 65 

capability of ~100 m, prefer oak-hickory secondary forests, and consume a diet of arthropods, 66 

fruits, nuts, vegetation, and fungus.  White-footed mice are abundant in small, fragmented urban 67 

forests [14–16], and exchange migrants only through vegetated corridors between isolated NYC 68 

parks [17]. Substantial genetic structure at microsatellite loci exists between NYC parks [8], and 69 

there is evidence of divergence and selection in genes underlying functional traits in urban 70 

populations [18]. 71 

In this study we estimated the demographic history of P. leucopus in NYC to test 72 

hypotheses about population expansion and divergence in response to urbanization. We used a 73 

genome-wide SNP dataset previously generated [19] from a double-digest restriction-site 74 

associated DNA sequencing (ddRADseq) [20] protocol. Loci came from 23 white-footed mouse 75 

populations (Fig 1) representative of a rural to urban gradient [19]. We used percent impervious 76 

surface cover and human population density around sampling sites as proxies for the extent of 77 
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urbanization around each site  (See Table 1 and Figure 1 in [19]).  We then used sNMF version 78 

0.5 [21] to examine population structure, and TreeMix [22] to build population trees and identify 79 

likely genetic clusters of P. leucopus. We used data from five populations of white-footed mice in 80 

NYC parks that showed evidence of genetic isolation and had relatively high urbanization metrics 81 

to test the hypothesis that temporal patterns of population isolation resulted from urbanization 82 

(Table 1, Figure S3). We estimated demographic parameters from the site-frequency-spectrum 83 

(SFS) using the composite-likelihood and coalescent simulation approach implemented in 84 

fastsimcoal2 ver. 2.5.1 [23]. Fastsimcoal2 efficiently calculates the approximate likelihood from 85 

unlinked SNP loci and accommodates complex demographic models. We used these estimates of 86 

effective population sizes, divergence times, migration, and population size changes to infer the 87 

influence of urbanization on the demography of these populations. Can we distinguish recent, 88 

human-driven demographic changes from older natural events under a complex model? See 89 

supplemental file 1 for full details on the methodology for this study. 90 

 91 

RESULTS AND DISCUSSION 92 

Evidence for genetic structure and admixture 93 

Our ddRAD dataset of 14,990 SNPs from 191 individuals sampled at 23 sites (mean of 8 94 

± 0.17 individuals / site) [19] captured sufficient genetic variation to estimate the post-glacial 95 

demographic history of white-footed mouse populations in the NYC metropolitan area. Before 96 

inferring demography, a sparse non-negative matrix factorization approach (sNMF, Frichot et al. 97 

2014) supported assignment of individuals into two main groups separated by the East River and 98 

Long Island Sound: 1) Mainland & Manhattan (MM) and 2) Long Island (LI; Fig. S1). 99 

Population trees from TreeMix [22] supported the patterns inferred using sNMF. TreeMix also 100 
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indicated that several urban parks contain recently-fragmented populations (Fig 1B) with no 101 

evidence of admixture with other sites (Supplemental File 2). When assigning individuals to 102 

populations for demographic model development, we compared our results to those of a previous 103 

study that examined population structure using genome-wide loci [19]. Genetically differentiated 104 

populations included Central (area: 344.05 ha, 2 km buffer % impervious surface & human 105 

population size: 60.2, 351698.8), Inwood (79.21 ha, 2 km buffer % impervious surface & human 106 

population size: 30, 121354.2), and Van Cortlandt (433.15 ha, 2 km buffer % impervious surface 107 

& human population size: 27.7, 77541.7) Parks in MM (790,142 ha); and Jamaica Bay (263.38 108 

ha, 2 km buffer % impervious surface & human population size: 3.2, 1438.4) and Fort Tilden 109 

(248.96 ha, 2 km buffer % impervious surface & human population size: 8.5, 2357.5) in LI 110 

(362,900 ha). These urban parks are all large, extensively vegetated, and surrounded by dense 111 

urban development (Fig. 1A). No rural sampling locations exhibited patterns consistent with 112 

genetically isolated populations, suggesting the parks above were isolated due to urbanization.  113 

 114 

P. leucopus population history during recent urbanization in NYC 115 

 Inferred parameter estimates exhibit a consistent signal of an older split between LI and 116 

MM populations in line with geologic records followed by recent divergence of NYC park 117 

populations (Figure S2). Models had tight confidence intervals around divergence times for MM 118 

and LI (~13,600 ybp, Fig S2-E) except for the two-population model.  The two population model 119 

had the lowest likelihood and this result may reflect the relatively poor fit of the model.  120 

Divergence was followed by a strong population contraction (Table 1, Fig. S3). These divergence 121 

estimates concur with geologic records that date the separation of Long Island and the Mainland 122 

from ~13,000 – 15,000 ybp [24]. 123 
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 Our other demographic models examined whether contemporary urban populations 124 

diverged from MM or LI within the historical timeframe of urbanization in NYC. In 1609, shortly 125 

after European arrival, only 1% of the Manhattan landscape was urbanized. Over the next 400 126 

years, humans converted 97% of natural green spaces to human use [4]. Urban populations 127 

experienced strong population bottlenecks at the time of divergence (except Jamaica Bay) and the 128 

inferred time of divergence was always within the 400-year window of European settlement 129 

(Table 1). While 400 years, representative of ~800 P. leucopus generations assuming a generation 130 

time of 0.5 years, is relatively recent, detailed demographic inference over very recent time scales 131 

is possible with adequately large genomic datasets [23]. Additionally, many point estimates for 132 

urban park divergence are in line with the founding of urban parks in NYC (282 ybp – present, 133 

Table 1). These results indicate that isolation in urban fragments was sufficiently strong to impact 134 

the evolutionary history of urban fauna.  135 

 We detected bottlenecks immediately after isolation of urban populations, suggesting that 136 

a small remnant population within these parks at the time of the bottleneck provided most of the 137 

urban genetic variation found today. Our inferred migration rates between all populations were 138 

high and variable, but we estimated consistent patterns of low migration between MM and LI, 139 

and asymmetrical migration of individual mice from MM into urban populations (Table 1). 140 

Despite asymmetrical gene flow, urban parks consistently showed a signal of some emigration to 141 

LI or MM, suggesting that urban parks contain stable, though relatively small populations. 142 

However, given the extremely recent divergence times, these high migration rates could be due to 143 

retained ancestral polymorphisms from incomplete lineage sorting or geographic structure that 144 

are difficult to distinguish from admixture [25].  It is important to note that allelic dropout in 145 

ddRADSeq data from mutations in cut sites can affect demographic analyses, but using a 146 
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minimum coverage cutoff and restricting the amount of missing data can mitigate these effects 147 

(Supplementary File 1). 148 

 149 

CONCLUSIONS 150 

 Our results show that geography, geologic events, and human-driven habitat change have left a 151 

detectable genomic signature in NYC’s white-footed mouse populations. Patterns of genetic 152 

variation and population structure reflect past demographic processes [26], and genome-wide 153 

SNPs generated from ddRADseq provided enough information to distinguish recent demographic 154 

events from past geological processes. Our demographic models estimated divergence times and 155 

migration patterns that are consistent with the known geologic and historical record of NYC. This 156 

study is the first to use population genomic modeling to estimate the demographic impact of 157 

urbanization on wild populations. 158 

 159 

 160 
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METHODS 268 

Sampling and DNA extraction 269 

 During two previous studies [1,2] we sampled individual white-footed mice between 2009 270 

and 2013 from 23 separate localities that were used to generate the genomic data used in this 271 

study.  Sites were chosen to represent a rural to urban gradient (Fig. 1).  Rural sites were defined 272 

as large tracts of relatively undisturbed natural habitat, and urban sites were fragmented habitat 273 

surrounded by urban infrastructure and impervious surface.  Urbanization was also quantified by 274 

determining the percent impervious surface and human population size in a 2 km buffer 275 

surrounding each park (See Table 1 and Figure 1 in [2]).  For all sampling locations, we trapped 276 

individuals over a period of 1-3 nights each.  At each site, we set between one and four 7x7 m 277 

transects of Sherman live traps (7.62 cm x 7.62 cm x 22.86 cm), depending on the total area of 278 

each sampling site.  We weighed, sexed, and took morphological (ear length, tail length, hind foot 279 

length, total body length) measurements for all individual mice.   At all sites except Central Park, 280 

Flushing Meadow, New York Botanical Garden, Brook Haven Park & Wild Wood Park, High 281 

Point Park, and Clarence Fahnestock Park, we collected tissue by taking 1 cm tail clips, placing in 282 

80% ethanol, and storing at -20º C in the laboratory.  Individual mice were then released.  For 283 

these other six sites, we used previously-collected liver samples stored in RNAlater (Ambion 284 

Inc., Austin, TX) at -80º C.  We extracted genomic DNA using standard extraction protocols, 285 

quantified the yield, and checked quality before genomic sequencing library preparation. See 286 

methods in (Munshi-South et al. 2016) for full details. All animal handling procedures were 287 

approved by the Institutional Animal Care and Use Committee at Brooklyn College, CUNY 288 

(Protocol Nos. 247 and 266) and by Fordham University’s Institutional Animal Care and Use 289 

Committee (Protocol No. JMS-13-03). 290 
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RAD sequencing and SNP calling 291 

 We initially sequenced 233 individual white-footed mice but retained 191 P. leucopus 292 

individuals from 23 sampling sites for the genome-wide SNP dataset after filtering out close 293 

relatives and low-quality samples [2]. Briefly, we followed standard protocols for ddRADseq 294 

presented in Peterson et al. (2012), starting with DNA extraction using Qiagen DNEasy kits with 295 

an RNAse treatment.  Next we used a combination of the enzymes, SphI-HF and MluCI to 296 

generate similarly sized DNA fragments.  Using two restriction enzymes increases the probability 297 

of generating the same RAD loci across all samples.  We specifically chose SphI-HF and MluCI 298 

to generate ~50,000 RAD loci; this estimate was based on the number of fragments produced 299 

using the same REs on a related species (Mus musculus). We cleaned the digested DNA with 300 

Ampure XP beads and then ligated unique barcodes to each individual sample.  We then pooled 301 

samples in groups of 48 and used a Pippin Prep for precise DNA fragment size excision from gels 302 

and Phusion high-fidelity PCR to amplify fragments and add Illumina indexes and sequencing 303 

primers.  The resulting fragments were sent to the NYU Center for Genomics and Systems 304 

Biology for 2x100 bp paired-end sequencing in three lanes of an Illumina HiSeq 2000.  We 305 

checked initial quality of the raw reads using FastQC.  Subsequent primer removal, low-quality 306 

nucleotide trimming, and de novo SNP calling was conducted using the Stacks 1.21 pipeline [4]. 307 

We called and filtered SNPs in Stacks using default setting except for requiring that loci occur in 308 

22 / 23 sampling sites, and within each site, occur in at least 50% of individuals.  We chose a 309 

random SNP from each RAD tag to avoid linkage between loci.  Additionally, we removed 310 

individuals if they had too few reads resulting in extremely small SNP datasets or if they showed 311 

high levels of relatedness to other white-footed mice sampled.  These filters resulted in 14,990 312 

SNPs in the final dataset that we used for demographic modeling. 313 
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Population structure and migration 314 

 We investigated observed patterns of genetic diversity to define evolutionary clusters that 315 

could be used to inform demographic modeling of P. leucopus populations in the NYC region.  316 

We examined population structure and evidence of migration among all 23 sampling sites.  The 317 

program TreeMix [5] was used to build population trees and identify migration events.  TreeMix 318 

infers populations splitting and mixing using allele frequencies from large genomic datasets.  319 

Using a composite likelihood approach given allele frequency data, TreeMix returns the most 320 

likely population tree and admixture events given a user-specified number of admixture events.  321 

The number of admixture events tested ranged from 0 - 12 while the rest of the parameters used 322 

default settings.  P-values were generated for each admixture event and comparisons made 323 

between all trees.  We confirmed admixture between populations by running f3 three-population 324 

analyses in Treemix.  These statistics assess admixture between populations by identifying 325 

correlations between allele frequencies that do not fit the evolutionary history for that group of 326 

three populations. We used 500 bootstrap replicates to assess significance of f3 statistics. 327 

 We also used sNMF version 0.5 [6] to examine population structure  sNMF explores 328 

patterns of genetic structure by assigning individual ancestry coefficients using sparse non-329 

negative matrix factorization.  sNMF does not make any model assumptions like requiring 330 

populations to be in Hardy-Weinberg and linkage equilibrium [6], as opposed to other likelihood 331 

models like STRUCTURE [7].  For the number of putative ancestral populations tested, we chose 332 

a range from K = 1 to K = 11 using default parameters, with 10 replicate runs for each value of K.  333 

We chose 11 as an initial maximum because there were at least nine urban parks without any 334 

vegetated corridors between them (parks in Queens, NY have a small greenway connecting them) 335 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/032979doi: bioRxiv preprint 

https://doi.org/10.1101/032979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

plus rural LI and rural Mainland.  There was not a pattern supporting a higher number of clusters 336 

so we did not analyze K > 11.  We ran sNMF on the full 14,990 SNP dataset (≤ 50% of SNPs 337 

missing per population) and on a more conservative dataset with only ≤ 15% of SNPs missing per 338 

population.  sNMF imputes missing genotypes by resampling from the empirical frequency at 339 

each locus [6], and using fewer missing data ensured any inferred population structure was not 340 

due to incorrectly imputed genotypes (Fig. S1).  To infer the most likely number of ancestral 341 

populations, each model run generates a cross-entropy estimation based on ancestry assignment 342 

error when using masked genotypes. The model with the smallest cross-entropy score implies it is 343 

the best prediction of the true number of K ancestral populations [6].   344 

Demographic inference from genome-wide site frequency spectra 345 

 To reduce model complexity for demographic inference, we grouped individuals into the 346 

minimum number of populations representing unique evolutionary clusters. Global analyses in 347 

TreeMix and sNMF showed the highest support for two populations split by the East River, and 348 

hierarchical analyses using discriminate analysis of principal components [2] showed support for 349 

isolated urban populations.  Collectively, results suggested a minimum of seven putative 350 

populations captured most of the genetic variation between populations (Mainland & Manhattan: 351 

MM, Long Island: LI, Central Park: CP, Van Cortlandt Park: VC, Inwood Hill Park: IP, Jamaica 352 

Bay: JB, Fort Tilden: FT, Fig. 1).  Along with hierarchical population structure results, we chose 353 

several of the urban populations to include in demographic modeling based on the size of the 354 

park, the relative isolation of the park due to urbanization, and the population density of white-355 

footed mice in the park.  We generated the multi-population site frequency spectrum (MSFS) for 356 

subsets of populations to test specific demographic history scenarios.  We used the 357 
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dadi.Spectrum.from_data_dict command implemented in dadi [8] to generate the MSFS.  When 358 

we created the SNP dataset, we required a SNP to occur in ≥ 50% of individuals from each 359 

population, so the MSFS was down-projected to 50% to ensure the same number of individuals 360 

for all loci [8].  Once the MSFSs were generated, we used the software program fastsimcoal2 ver 361 

2.5.1 [9] for demographic inference.  Fastsimcoal2 (fsc2) uses a composite multinomial 362 

likelihood approach to infer demographic histories from the site frequency spectrum generated 363 

from genomic scale SNP datasets.  The expected SFS under user defined demographic scenarios 364 

is obtained using coalescent simulations. Fastsimcoal2 ver. 2.5.1 contained a bug that 365 

miscalculated Max Observed Likelihood values if the SFS contained non-integers, leading to 366 

Maximum Estimated Likelihoods that are higher than Max Observed Likelihoods.  Our data did 367 

not display this symptom and when point estimates were re-run using the latest version (fsc25), 368 

there was no impact on the values used here and on the final conclusions presented in the main 369 

text. 370 

We tested demographic histories under a scenario of population isolation with migration 371 

(IM). We compared inferred parameters between six hierarchical IM models (Fig. S3) using the 372 

same dataset. There was one two-population IM model (seven free parameters) to test older 373 

divergence patterns between MM and LI suggested from the geologic record.  The remaining five 374 

models were three-population IM models (15 free parameters each) testing for recent urban 375 

population divergence.  We chose to run separate models investigating each urban population 376 

separately in order to avoid inconsistencies from over-parameterization. For these remaining 377 

models we considered an ancestral population that split at time Tdiv1 and then an urban population 378 

that split more recently at time Tdiv2.  For Tdiv1 we included a range of divergence times based on 379 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/032979doi: bioRxiv preprint 

https://doi.org/10.1101/032979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

the LGM of the Wisconsin glacier, ~18,000 ybp.  For Tdiv2 we considered divergence times 380 

incorporating the timeframe of urbanization in NYC, ~400 ybp.  We allowed for migration 381 

between all populations, and tested occurrences of population bottlenecks when urban isolation 382 

was incorporated into the model.  During likelihood calculation, a conditional maximization 383 

algorithm (ECM) is used to maximize the likelihood of each parameter while keeping the others 384 

stabilized.  This ECM procedure runs through 40 cycles where each composite-likelihood was 385 

calculated using 100,000 coalescent simulations.  While increasing the number of simulations can 386 

increase precision, accuracy does not significantly increase past 100,000 simulations [9]. 387 

Additionally, in order to avoid likelihood estimates that oversample parameter values at local 388 

maxima across the composite likelihood surface, we ran 50 replicates with each starting from 389 

different initial conditions.  We chose the replicate with the highest estimated maximum 390 

likelihood score for each model. Using parametric bootstrapping, we generated confidence 391 

intervals for the most likely inferred demographic parameters generated. The SFS was simulated 392 

with the parameter values from the highest likelihood model and then new parameter values re-393 

estimated from the simulated SFS.  We ran 100 parametric bootstraps.  To find consistent signals 394 

of divergence that could be attributed to urbanization, we compared parameter values and 395 

overlapping confidence intervals between models.   396 

DEMOGRAPHIC INFERENCE 397 

 Parameters were allowed to vary in demographic modeling using fastsimcoal2, but all six 398 

models converged on similar parameter values estimated from the observed MSFS. Parameter 399 

estimates with the highest likelihood generally fell within the upper and lower bounds generated 400 

from parametric bootstrapping (Fig. S2, Table 1). The first two-population model tested 401 
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divergence time, effective population size, and migration rates between MM and LI populations 402 

(LI_MM, Fig. S3). The divergence time for the MM and LI split was inferred to be 13,599 ybp 403 

and the effective density of white-footed mice in MM (NE / size, 0.069 mice/ha) 23x larger than 404 

LI (NE / size, 0.003 mice/ha) (Table 1).  Divergence times are based on a generation time of 0.5 405 

years for Peromyscus leucopus. Migration was also inferred to be low (< 1 individual per 406 

generation) between MM and LI (Table 1).   407 

 The inferred demography for the more complex three-population models generally 408 

supported results from the two-population model.  The first two complex models both estimated 409 

the divergence between MM and LI, but one model tested for divergence of JB and LI after the 410 

MM and LI split (LI_JB_MM, Fig. S3) while the other model tested divergence between FT and 411 

LI after the MM and LI split (LI_FT_MM, Fig. S3).  This model also tested the likelihood of a 412 

bottleneck event when FT and JB, both urban populations, diverged.  We set up the other three 413 

complex models in an identical fashion, except we tested the urban populations of CP 414 

(LI_MM_CP, Fig. S3), VC (LI_MM_VC, Fig. S3), or IP (LI_MM_IP, Fig. S3) for divergence 415 

from MM after the MM and LI split.  Point estimates for demographic parameters converged on 416 

similar values and generally fell within the 95% confidence limits from parametric bootstrapping 417 

(Fig. S2, Table 1).  The average divergence time for MM and LI was 14,679 ybp, SD = 956.19.  418 

Similar to the two-population model, the MM NE was larger than the LI NE.  While the effective 419 

population sizes for the urban parks were smaller than NE for MM or LI, the urban populations 420 

contained much higher effective population densities (CP: 28.7 mice / ha, IP: 79.21 mice / ha, JB: 421 

23.8 mice / ha, FT: 24.3 mice / ha, VC: 0.36 mice / ha) than either MM (0.069) or LI (0.003). The 422 

individual urban populations all had NE values 10x smaller than MM, but often similar to LI.  The 423 

divergence time for the five tested urban populations, even with variation in number of 424 
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generations per year, was consistent with the timeframe of urbanization (mean divergence = 233 425 

ybp; SD = 164.5).  Our demographic models proved to be rather robust in returning reasonable 426 

parameter values with consistent convergence to similar values across replicates.  Although wide 427 

confidence intervals on many parameters suggest low resolution in inferring parameter values 428 

given the model and data, they are likely a consequence of the complexity of the model given the 429 

number of parameters and wide parameter ranges. The narrow confidence intervals on other 430 

parameters suggest that these inferences reliably capture important aspects of the true 431 

demographic history of white-footed mice in NYC, especially given the often biologically 432 

unrealistic parameter search space (See est files). One limitation in using Radseq data for 433 

demographic analysis is the effect that allelic dropout has on genetic variation.  Mutations can 434 

accumulate in RE cut sites causing the loss of loci with potentially higher mutation rates [10]. 435 

Thus, ddRADSeq may underestimate genetic diversity [11] and inflate sequence divergence 436 

[12,13].  We addressed this limitation by setting a minimum coverage limit and minimizing 437 

missing data that might be caused by allelic dropout [11].  We also used multiple other methods 438 

including discriminant analysis of principle components, sparse non-negative matrix 439 

factorization, classical population genetics statistics, and composite likelihood for population tree 440 

inference, to confirm our demographic analysis findings and inform our demographic modeling. 441 
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485 

FIGURES AND TABLES 486 

Table 1. Inferred demographic parameters with 95% confidence values from parametric bootstrapping for the three main fastsimcoal2 model varieties. (See Table S2 487 

for remaining models) 488 

 489 

  LI_MM                         LI_MM_CP                       LI_FT_MM                      

Parameters 
Site(s)    

(X) 
(Point Estimate)        

(95 % CI) 
Site(s)    

(X) 
(Point Estimate)        

(95 % CI) 
Site(s)    

(X) 
(Point Estimate)        

(95 % CI) 

Ancestral Ne - 

68083 
- 

81275 
- 

61507 

(53492,111400) (36559,2310630) (68608,284971) 

Long island Ne (LI) 
1057 

(LI) 
12075 

(LI) 
6515 

(798,2203) (7286,81320) (8325,71939) 

Mainland & 
Manhattan Ne 

(MM)  
54886 

(MM)  
25140 

(MM)  
12584 

(50557,105507) (13268,106624) (12915,77670) 

Local park Ne - - 

Central 
park 

9896 Fort 
Tilden  

6043 

(75,55103) (3876,56562) 

Time of divergence 
(LI_MM) 

(LI_MM) 
27198 

(LI_MM) 
29440 

(LI_MM) 
29354 

(6110,34227) (24111,29637) (12662,29600) 

Time of divergence 
(Urban_LI or MM) - - (CP_MM) 

746 
(FT_LI) 

423 

(512,13682) (638,6298) 

Ancestral resize 
factor  

(LI_MM) 
1.22 

(LI_MM) 
3.2 

(LI_MM) 
4.9 

(0.94,1.140) (1.8,4.6) (3.2,7.1) 

Urban pop resize 
factor - - (CP) 

9.2x10-6 
(FT) 

8.2x10-8 

(5.2x10-8,2.5x10-1) (2.2x10-7,1.6x10-3) 

Time of urban pop 
resize 

- - (CP) 
737 

(FT) 
317 

(512,13700) (638,6298) 

Mig_(X)_to_MM (LI) 
9.1x10-4  

(LI) 
1.8x10-6 

(LI) 
3.9x10-6 

(4.4x10-4,1.2x10-3) (5.4x10-7,2.7x10-5) (7.9x10-7,8.1x10-5) 

Mig_(X)_to_(LI) (MM) 
1.5x10-5  

(MM) 
1.0x10-6 

(MM) 
1.9x10-6  

(1.1x10-6,3.1x10-5) (7.2x10-7,7.5x10-5) (5.3x10-7,9.5x10-4) 

Mig_(X)_to LI - - (CP) 
2.7x10-3 

(FT) 
2.3x10-3 

(3.1x10-4,6.1x10-2) (1.4x10-6,1.6x10-3) 

Mig_(X)_to_MM - - (CP) 
5.1x10-4 

(FT) 
1.1x10-3  

(4.0x10-6,1.5x10-1) (1.1x10-4,8.9x10-4) 

.
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Mig_LI_to_(X) - - (CP) 
2.9x10-4 

(FT) 
1.0x10-2 

(9.3x10-6,6.3x10-4) (8.7x10,4,6.9x10-3) 

Mig_MM_to_(X) - - (CP) 
5.6x10-3  

(FT) 
3.2x10-3 

(1.7x10-4,5.9x10-3) (1.3x10-5,2.1x10-3) 
 490 
Ne = effective population size. Time of divergence is in generations. Migration is reported as the coalescent m, proportion of individuals that move from one 491 

population to another per generation. 492 
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Figure 1  493 

(A) Map of all sampling sites in NYC and the surrounding region.  Colors correspond to the 494 

National Land Cover Database: Dark Red = Urban High Density Development; Light Red = 495 

Urban Medium to Low Density Development; Greens = Forested areas; Yellow = Grasslands. 496 

Squares = sampling sites from MM. Circles = sites from LI. Yellow shapes = sites used for urban 497 

population demographic analysis. (See Suppl File 1, Table S1 for full site names). (B) TreeMix 498 

population tree. Red arrows represent significant admixture using TreeMix and f3 statistics. The 499 

drift parameter is plotted along the x-axis and represents the amount of genetic drift along the 500 

branch. Letters = sampling site codes (See Table S1 for full names, AP and CN were combined 501 

for all other analyses). Letters in bold and colored branches correspond to urban sampling sites 502 

described in Fig. 1A and show urban populations with relatively high levels of divergence to non-503 

urban populations, as evidenced by long-branch lengths. 504 

  505 
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