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Rich chromatin structure prediction from Hi-C data
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ABSTRACT

Recent studies involving the 3-dimensional
conformation of chromatin have revealed the
important role it has to play in different processes
within the cell. These studies have also led to
the discovery of densely interacting segments of
the chromosome, called topologically associating
domains. The accurate identification of these
domains from Hi-C interaction data is an
interesting and important computational problem
for which numerous methods have been proposed.
Unfortunately, most existing algorithms designed to
identify these domains assume that they are non-
overlapping whereas there is substantial evidence
to believe a nested structure exists. We present
an efficient methodology to predict hierarchical
chromatin domains using chromatin conformation
capture data. Our method predicts domains at
different resolutions and uses these to construct
a hierarchy that is based on intrinsic properties
of the chromatin data. The hierarchy consists of
a set of non-overlapping domains, that maximize
intra-domain interaction frequencies, at each level.
We show that our predicted structure is highly
enriched for CTCF and various other chromatin
markers. We also show that large-scale domains,
at multiple resolutions within our hierarchy, are
conserved across cell types and species. Our
software, Matryoshka, is written in c++11 and
licensed under GPL v3; it is available at https:
//github.com/COMBINE-lab/matryoshkal

INTRODUCTION

The 3D structure and folding of chromatin has been
shown to influence many biological processes within the
cell. These include cell replication, differentiation and gene
expression (1, [2), as well as alterations leading to disease
(3). Recent advances in chromosome conformation capture
(3C) technologies (4), that combine chemical cross-linking
and high-throughput sequencing, have led to the discovery
of densely packed regions of chromatin referred to as
topologically associating domains. These domains are found
to be conserved across cell types and species, reflecting their

biological importance, and their boundaries are known to be
enriched for several epigenetic marks, suggesting that these
domains play a role in epigenomic regulation of expression
(1155164 7).

Several methods have been developed to identify these
domains using data from Hi-C — a high-throughput
experimental assay that allows genome-wide conformation
capture (8, [9). These methods are based on a variety
of different approaches, but most focus on exploiting
particular statistics and properties of contact frequencies in
the resulting data. Dixon et al. (1) introduced the concept
of the directionality index, which measures the difference in
contact frequency upstream and downstream of a particular
chromosomal locus. Treating the directionality index as a
spatially-varying statistic over the chromosome, they use
a Hidden Markov Model to determine a set of domain
boundaries. This statistic was then employed in several
other studies (10, [11). Similarly, the arrowhead algorithm,
introduced by Rao et al. (12), performs a transformation on the
contact matrix designed to enhance domain boundary signals.
The algorithm then determines the positions of high-scoring
“corners” to determine domains (thus the algorithm’s name).
Instead of predicting domains directly, some methods provide
change points along the diagonal of the contact frequency
matrix (L3, [14), but this leaves the question of which
chromatin regions are not in domains unresolved. Filippova
et al. (15) introduce a dynamic programming approach that
predicts domains by maximizing a score based on normalized,
intra-domain interaction frequencies. The algorithm is run at
multiple resolutions and a consensus domain set is returned
with the goal of predicting domains that persist across multiple
scales. However, all these algorithms have an underlying
assumption that chromatin domains are non-overlapping or are
not nested.

There is significant evidence to believe that chromatin
folding is hierarchical, wherein sub-domains combine to
form larger super-domains, instead of a sequence of non-
overlapping or non-nested domains. This was initially
predicted in the Drosophila genome by Sexton et al. (6).
Further studies across different cell types and species have
supported this claim. Gibcus et al. (16) went on to explain
the possibility of inter-domain interactions, along with the
intra-domain interactions, in mammalian genomes, including
mouse and human. It was shown by Filippova et al. (15)
that domains predicted by their method at different size
scales tend to be more nested (i.e. hierarchical) than what
would be expected in a collection of appropriately randomized
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domains with the same size distribution. There is also
theoretical evidence to believe that the chromatin structure is
hierarchical as shown by replicating its statistical properties
on a heteropolymer chain and observing the structure of the
resulting folding pattern (17).

Here, we introduce a new, efficient algorithm to derive a
nested hierarchy of domains from chromatin conformation
capture data. Initially, our method optimizes an objective
function to obtain an optimal set of non-overlapping domains
at a collection of different resolutions (i.e. size scales)
(15). The resolution values are then clustered based on
the variation of information distance (18) between the
corresponding domain sets. This clustering is used to
determine discrete levels of the hierarchy. In order to
obtain consensus domains at each level, we use a scoring
function that is proportional to the frequency of interactions
within the domain but is normalized for variation across
domain sizes. We analyze the biological significance of the
hierarchical domains predicted by our method, Matryoshka,
in a number of ways and also compare our results against the
only other publicly available tool, TADtree, for identifying
hierarchical chromatin domains (19). We show that, across
multiple levels of our predicted hierarchy, the boundaries of
domains are statistically significantly enriched for chromatin
binding factors and modifications known to be associated
with domain boundaries. We also test the conservation of
multiple levels of the hierarchy across cell types and species,
and find that significant conservation occurs at multiple
levels. Across a variety of datasets, we demonstrate that our
method can efficiently determine a domain hierarchy and can
automatically account for variations in nesting and domain
sizes in a data-dependent manner.

MATERIALS AND METHODS
Algorithm Overview

In order to find the set of nested domains in Hi-C data,
we designed a multi-step algorithm that aims to predict
a collection of domains such that inter-domain interaction
frequencies are maximized. The algorithm first predicts an
optimal set of domains across a wide range of resolutions, and
then clusters and nests these domains in a data-driven manner
to produce a coherent hierarchy representative of the input
contact matrix. The algorithm is illustrated in Figure [I] and
the phases of the algorithm are explained in detail below:

1. A set of non-overlapping domains is predicted at each
resolution, where domain sizes tend to vary across
resolutions. The heatmap in Figure [I] made using
HiCPlotter (20), gives an idea of the hierarchical
structure observed in HiC data.

2. The variation of information between domain sets
is calculated. This is used as a distance metric for
clustering the sets.

3. The domain sets are clustered and corresponding y
(resolution) value clusters are used for building the
hierarchy of chromatin domains.

4. A set of consensus domains is obtained based on a
quality score using the relevant v values at each level

of the hierarchy. For the first level, the set of consensus
domains is across the whole matrix and for subsequent
levels, submatrices predicted as domains at the higher
level are used.

Identifying putative domains across resolutions

Matryoshka takes as input an n Xn interaction frequency
matrix A, where each entry Ajj represents the interaction
frequency between chromosome locations (bins) ¢ and j, and
a set of resolution parameters, I', where each v €I' > 0. Using
the method of Filippova et al. (15), a set of non-overlapping
domains D is identified for each «y. Each D maximizes the
following objective:

q(k,Ly)=s(k,l,y) —ps(l—k), ¢))

where k and / are respective genomic positions along the
chromosome, and
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Here, ps(l—k) is the mean value of s(k,l,7) over all sub-
matrices of A with length [—k. As Filippova et al. note,
is inversely proportional to domain size.

In order to obtain a set of domains in the matrix, the
following dynamic program is run over the length of the
chromosome. This program enumerates the optimal set of
domains in the sub-matrix defined by the first [ positions on the
chromosome, such that the objective function is maximized.

OPT(Z):I%lg;({OPT(k'f1)+1nax{q(k,l,’y),0}}. 3)

Additionally, we further filter the domains based on their
boundary indices (19). This filtering, not originally applied
by Filippova et al., is a reflection of the amount of shift in
interaction frequencies around the boundary, and we find that
it substantially reduces the number of “spurious” domains
called by the algorithm. Valid boundaries should have a larger
shift and, therefore, we consider domains where at least one
of the boundaries has an index value greater than the mean
boundary index for the whole matrix A. The boundary index
for any position ¢ is calculated as follows

i+q | p
Bpgi)=Y_"1> Apiyrn—Ari—il, )
l=i—qlk=1

where p is the interval containing ¢ and ¢ is the length (i.e.
window size) we wish to use for calculating the difference in
interaction frequency upstream and downstream of ¢. Values
for p and q are set to 3 and 12, respectively, as used by Weinreb
et al. (19)).

Given a collection I of resolution parameters with |I'| = K,
we apply this dynamic program over all v €I, and obtain K
sets of domains. The set of domains returned at each resolution
are non-overlapping, but domains across resolutions may
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Figure 1. Overview of main steps of the hierarchical domain finding algorithm of Matryoshka.

overlap. Smaller ~ values result in solutions with larger
domains and vice versa. These domain sets are then used to
cluster similar solutions across resolutions, and the consensus
domains of each cluster are used to construct the different
levels of the hierarchy.

Clustering domains to generate hierarchy

Domains obtained across resolutions from the first step are
clustered based on the variation of information distance
between them (18). The method for calculating variation of
information between two sets of domains is described by
Fillipova et al. (I5). For any two domain sets, D; and Dj,
new derivative sets, C; and Cj, are constructed such that
C; contains all the domains and the inter-domain regions
from D; and similarly C; is constructed from D;. The
probability of seeing an interval a; =[a;,b;] in a derivative set
for chromosome of length L is defined as p;=(b;—a;)/L.
In the same way, the joint probability is defined as p;; =
|[ai,b;]N [a;,b;]| /L. Using these probabilities, the entropy of
a derivative set C; is computed as

H(Cy)=Y_ pilogp;, o)
x,EC,-

and the mutual information is computed as

I(OZ',CJ')Z Z Z pileg[pij/pipj]- (6)

xiECiwj ECj

Finally, the variation of information between two sets is
defined as VI (C@Cj) ZH(CZ‘)-l-H(Cj) -2 (CZ‘,C]').

From these distances, the K x K variation of information
matrix V is constructed. Each entry V;; of this matrix
provides the VI distance between the set of domains at
resolutions ¢ and j. Next, we use a clustering procedure to
obtain a grouping of the K domain sets into a collection
of J< K clusters. Rather than allow clusters to consist of
groups of domain sets at arbitrary resolutions, we restrict
clusters to consist of collections of domain sets at contiguous
values of the resolution parameter — this also allows us
to employ a simple dynamic program to obtain an optimal
set of clusters, by turning the clustering problem into a
problem of finding an optimal partitioning of the domain
sets across values of . Consider a particular partitioning
of K domain sets into ¢ disjoint intervals, given as Z=
[[0,21][z1+1,22],...,[Tt—1+1,K]]. We define a cost for this
partition as

= > >ooovi - (7)

[m,m/|eZ \m<i<j<m/'

We seek a partitioning of our K domain sets into a collection
of intervals that minimizes this cost. Given the desired number
of intervals, ¢, we can determine the optimal intervals by
finding those that minimize the following objective:

Y .
opPTS =minC(T 8
cggg_() 8)

Further, this objective can be minimized efficiently via

dynamic programming. Consider the objective OPTé(m),
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which defines the cost of an optimal set of £ intervals that cover
domains at resolutions 0 through z. OP Tlc () is trivial (simply
the interval [0,z]), and

0 - 1
OPTC(:C):H;I/D OPTy (2')+

> Vil ®)

/' <i<j<z

If we consider computing OP Tgc(x) for increasing values of x
and increasing values of /, the optimal solution for the overall
partitioning problem OP TKC (K) can be computed in O (K 52)
time; the actual set of intervals obtaining the optimal score can
be recovered via backtracking.

The optimal number of clusters is decided based on the
maximum silhouette value (21), averaged over all the points

in the dataset, of the returned clustering which is defined as

L b(i)—a(i)
s(i)= max(a(i),b(i))” (10)

Here, i is a particular domain set, a (%) is the average distance
of ¢ from all points within the cluster and value b(7) is the
lowest average distance of ¢ from points in a cluster other than
its own, called the neighboring cluster of ¢. The number of
clusters for which the average of this value over all domain
sets is maximum is chosen as the optimal cluster number for
the domain sets across all resolutions. Based on this clustering,
the domain sets at the corresponding  values are clustered
and then used to identify consensus domains at each level of
the hierarchy.

Building hierarchy using consensus domains

Given the sized K set of -y values that are split into J clusters,
{T'1,I'2,...," 7} where 1<.J< K and ~ values are sorted in
ascending order, we construct a hierarchy of domains with J
levels. Domains at any level ¢ are constructed using ~y values
from within a cluster I';. A non-overlapping set of domains is
derived at each level using a quality score independent of
and domains at any level ¢ completely cover the domains at
any level j >i. Domains at coarser levels (for example level
1) are identified using larger y values than those at finer levels
(for example level J).

At level 1 of the hierarchy, a multiset of domains D is
obtained using the interaction matrix A as described above.
Instead of using the complete ~ set, only the first cluster, ',
which has the largest v values, is used. In order to obtain a
set of non-overlapping consensus domains for level 1 of the
hierarchy, the problem is reduced to the weighted interval
scheduling problem (15, 22), where each domain in Dy is
assigned a quality score that corresponds to its priority as
follows:

l l

D
gs(k,)=logio [ > > Agn 10%10<C(;V_(k)>, 11

g=kh=g+1

where cov(D) is simply the length of the chromosome covered
by the complete set of domains D obtained in the first step.

This quality score normalizes the sum of the interaction
frequency Agp, between genomic loci k and [, which increases
logarithmically with the domain size, against the ratio of
length covered by the domain. This ratio is calculated over
the complete length covered by domains in D instead of the
chromosome length in order to disregard non-domain regions,
which may cover a large portion of the chromosome. This
quality score gives us the ability to compare domains of vastly
different sizes across resolutions so that we can extract a set of
non-overlapping consensus domains while reducing bias due
to domain sizes. The result of solving the weighted interval
scheduling problem with the quality scores defined above is
a set of consensus domains, D1 ={dy,ds,...,dy}, for the first
level of the hierarchy.

Now, for each domain d; € D1, we get a submatrix of the
interaction matrix A[a;,b;] such that the size of this submatrix
is defined by the boundaries of the domain where d; = [a;,b;].
On this submatrix, we repeat the steps explained above to get
a set of domains at different resolutions defined by the values
from I'o. Then we get a set of non-overlapping consensus
domains using weighted interval scheduling that is placed at
the second level of the hierarchy. This procedure is repeated
for the all the domains within D1. In a similar way, we use
{T'3,T'4,...,I' 7} in order to get domains at lower levels of
the hierarchy, {D3,Dy,...,D s} and then extract consensus

domains from it for each level, { D3, Dy,....D 7} to eventually
construct the complete hierarchy of chromatin domains.

Data and testing

We have tested Matryoshka using Hi-C data from human
IMRO90 fibroblasts and mouse embryonic stem cells provided
by Dixon et al. (1). The resulting interactions matrices were
created with a bin size of 40kb and normalized for biases
using an integrated probabilistic model (23). We applied our
algorithm considering the ~ values {0,0.05,0.1,0.15,...,1}.
For the IMR90 data, we used CTCF sites from (24) and
for mESC from (25). Datasets for histone modification sites
were obtained from various studies. For IMR90 we present
results for H3K4me3 and H3K9me3 for which data is publicly
available (26). Similarly, for mESC we present H3K4me3,
H3K27ac (25) and H3K36me3 (27). Where needed, the
relevant data was shifted to assemblies hgl8 and mm9 for
human and mouse data, respectively, using the UCSC liftover
tool (28).

Relevant results from the mouse embryonic stem cell data
are compared against the hierarchy generated by TADtree
(19). We choose to use their result where, on average, 1.6
domains are allowed per megabase on each chromosome,
since this returns the closest number of domains to our results.

Similarly, we also compare conservation and enrichment
results against randomized hierarchies which are generated
such that the following features of the hierarchy are preserved
while shuffling the order of domains and non-domains:

1. The number of domains at each level of the hierarchy.

2. Sizes of the domains, as well as the regions between the
domains.
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3. The structure of the hierarchy, such that the nesting
of the domains is preserved and sub-domains shuffle
within the shuffled super-domain.

RESULTS
CTCF enrichment at domain boundaries

It has been shown that the protein CTCF binds many known
insulator or barrier elements in the genome which tend to lie
at the borders of chromatin domains (29). Hence, enrichment
of CTCF binding has been used as a measure of quality of
domains predicted by previous works (1} [15). We show that
our hierarchical domains are highly enriched for CTCF at
their boundaries for both the human and mouse datasets (see
Figure [2h, b). We also compare against the mouse domains
given by TADtree (19) and show that our domains appear more
enriched with a sharper peak around the domain boundaries
(see Figure 2k). This suggests that our hierarchical domains
are more closely linked with biologically functional sites in the
genome. This is also shown by the depletion of CTCF towards
the center of the domains.

Apart from these, we also compared the ratio of CTCF
sites overlapping with our domain boundaries in the IMR90
dataset against 1000 randomized hierarchies, generated as
explained above. For the whole genome, the 1000 randomized
hierarchies had a much lower ratio (p-value 0.001). We
repeated the same analysis for each level of the hierarchy.
For the first 4 levels, all the randomized domains have a
lower ratio (p-value 0.001); for level 5, however, the result
we obtain is not statistically significant (p-value <0.24).
The higher values at this level may be due to the much
smaller number of domains, combined with the decreasing
sizes along the hierarchy. These tests act as a control to show
that the enrichment results we observe at multiple levels of our
hierarchy are unlikely to occur by chance.

Histone modification analysis at domain boundaries

Histone modification marks are also used for analysis of
chromatin domain boundaries since many of these are known
to coincide with regions of enhancer-promoter interactions,
resulting in active transcription (5, 30). For the hierarchical
domains predicted in the human IMR90 dataset, we show
they are enriched for H3K4me3 (see Figure [3p). These
factors are associated with promoters in the mammalian
cells (31). In contrast, there is a depletion of H3K9me3
marks at the boundaries, which are not associated with
promoters as predicted by Dixon et al. (1) (see Figure ).
In a similar way, we analyzed the hierarchical domains
predicted by our algorithm and compared them against those
predicted by TADtree. We show enrichment for several
histone modifications and a higher average number of
peaks within close proximity of our domain boundaries,
as compared against those from TADtree. We analyzed
H3K4me3 marks, which are indicative of active promoters
in mice (25); H3K27ac marks, known to be associated with
active enhancers (and therefore abundant around boundaries
and within domains) (32) and H3K36me3 marks that are
linked with actively transcribed genes (31)) as well as promoter
clusters (30). These have been shown to be enriched around
domain boundaries predicted by earlier tools (1, [15) and we

therefore use these to analyze quality of our hierarchical
domain boundaries.

Conservation of hierarchy across species and cell types

Previous studies have shown that chromatin domains are
conserved across species and cell types (1). We show that
not just the domains we predict, but the hierarchical structure
is conserved at each level as well. We do so by comparing
domains in the whole genome, as well as those at individual
levels of the hierarchy. Since we are comparing human
fibroblast data with mouse embryonic stem cell, results would
reflect conservation across both species and cell type. In order
to compare the datasets, we use the UCSC liftover tool to
convert domains from one set to the other. We calculate the
ratio of overlap between two sets of domains, D; and Dj, as
follows:

IS(D;,Dj)

overlap(D;,D;) =

d;eD; d;eD;

12)

where d;=[a;,b;] and IS is simply the sum of the
lengths of intersecting regions from the two sets,

We converted domains from the IMR90 data to the mESC
data and calculated the overlap between this new domain set
and the domains from mESC. Similarly, we converted the
mouse domains and compared against human domains. As
control, we randomized the hierarchical domains predicted by
our program and repeated the procedure on these randomized
sets. The randomized results presented are an average over a
1000 randomized domain trials. These results are presented in
Table [T} Overall, we see a greater overlap between predicted
domains in the whole genome as compared to randomized
domains, showing that they are conserved across the datasets.
This is also true for the higher (i.e. coarser) levels of the
hierarchy. The discrepancy at lower levels could reflect that
superdomains are conserved, whereas the subdomains allow
for the variation across cell types (33). It has been predicted
that larger domains are stable across cells and changes at
a smaller level correspond to differentiation and variation
in gene expression (16). These results reflect the biological
significance of chromatin structure and domains that have
been conserved across evolution and are an important property
of the genomic architecture. It is also possible, of course, that
lack of statistically-significant conservation at lower (i.e. finer)
levels of the hierarchy results from the inevitable loss of data
when lifting-over between species and cell types, and of the
resolution limits of the original data.

Overlap with interacting regulatory elements

Enhancers and promoters regulate gene expression but
can frequently be at long distances from the genes that
they control. It is predicted that associated enhancers and
promoters are more likely to interact within the same
topological domain as compared to across domains (25). To
test this for our domains, we used enhancer-promoter units

> (bi—a))+ > (bj—a;)—15(D;,Dj)
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(EPUs) in mESC defined by and enhancer-promoter pairs
in IMROO0 predicted by (34), lifted over to hg18. We compared
the ratio of these clusters or pairs that are completely nested
within domains predicted by our algorithm against 1000
randomized hierarchies. For the mouse dataset, we find that

56% of the EPUs are completely nested within the domains
predicted, compared to an average of 26% in the randomized
domains (p-value 0.001). Similarly, for the domains in IMR90,
43% of the enhancer-promoter pairs were nested, compared
to an average of 27% in the random selection (p-value <

Table 1. Conservation of domain structure across species and cell types, as measured by overlap as specified in equation

Projection type Whole Genome Level 1 Level 2 Level 3 Level 4
D_mESC vs. D.LIMR90 — mESC 0.637 (0.001) 0.584 (0.001)  0.417 (0.001)  0.004 (0.73) 0 (1)
RD_mESC vs. RD_IMR90 — mESC 0.467 0.426 0.024 0.007 0.002
D_IMR90 vs. D-mESC — IMR90 0.643 (0.001) 0.635 (0.001)  0.041 (0.001)  0.01 (0.055) 0 (1)
RD_IMR90 vs. RD_-mESC — IMR90 0.455 0.452 0.019 0.004 0.001

Key: The —

implies that the dataset was converted using the

UCSC liftover tool; D is for domains predicted by

Matryoshka and RD for randomized domains. Values in brackets are p-values calculated against a 1000 randomized datasets.
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Figure 4. Histone modification analysis in domains from mESC data compared against domains from TADtree showing higher enrichment around domain
boundaries predicted by Matryoshka. The blue lines are for boundaries and green for midpoints of topological domains, as explained previously.
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0.06). These show a strong correlation between topological
domains and regulatory elements in the genome, with more
interaction within a domain and relatively greater insulation
across domains. These also reflect the functional role that
topological domains play in gene expression and regulation.
Further analysis is required to study the functional and
biological relationship between genes from the same domain
and effects on their expression with changes in chromatin
architecture and domain nesting.

Runtime analysis

Matryoshka, using vy values from O to 1 (inclusive) with a step
size of 0.05, takes only 1-2 minutes to run on 40kb resolution
Hi-C data from human chromosome 10. For human fibroblast,
processing data for 22 chromosomes in total, took 39 minutes
and 42 seconds, on a personal computer with 1.8GHz Intel
Core i7 and 8Gb of RAM. On the same computer, the mouse
embryonic stem cell data took 31 minutes and 11 seconds for
the entire dataset, containing 19 chromosomes. In comparison
with this, TADtree can take several hours to run on data from
a single chromosome depending on the choice of parameters
by the user. Hence, our method provides an efficient way for
predicting hierarchical chromatin structure using Hi-C data.

DISCUSSION

Analysis of chromatin conformation data has revealed the
hierarchical nature of chromatin folding but there are no
efficient tools that allow the extraction of this hierarchy
from raw chromatin conformation capture data. In this paper,
we presented a tool, Matryoshka, that predicts the nested
structure of chromatin domains from raw Hi-C interaction
matrices. Domains are extracted independently across a wide
range of different scales using a variant of the method of
Filippova et al. (15). Subsequently, our method effectively
predicts the number of levels for the hierarchy based on the
variation among domains at multiple resolutions. The distance
metric used for clustering reflects the variation in domains at
different resolutions and therefore a greater variation implies
a larger number of possible nested domains. The algorithm is
completely data-driven, and the only input required from the
user is the maximum ~ value, for which an appropriate value
can be set based on properties of the input data. We show that
the domain boundaries predicted by Matryoshka are highly
enriched for insulator and barrier-like elements. The role of
these elements in gene regulation and their relationship with
chromatin domains has been previously validated.

Further, we show the relationship between hierarchical
domains in mouse and human data and demonstrate that
superdomains (the coarse-grained levels of our hierarchy)
are conserved. A more extensive study of the complete
structure across various species, and not just the set of
linear domains, could contribute to our understanding of the
evolution of DNA structure. It would help to analyze how
gene regulatory mechanisms vary at the super and subdomain
levels in different organisms. Previous studies have predicted
that stable larger domains may have a role to play in cell-cycle
regulation and timing, whereas changes within these domains
could control gene expression and differentiation (35}136). Our
method provides an efficient way to classify the structures

of domains at different scales, enabling us to compare them
across cell types.

Similarly, the role of hierarchical domains in diseased cells
could be analyzed. It is known, for example, that chromatin
structure is correlated with the activity of cancerous cells (3}
37,138). A comparison of the nested structure in diseased and
normal cells could give insights into the regulatory methods
employed by healthy cells and how these are perturbed in the
disease state. Further analysis would be required to determine
if differences are in superdomains or subdomains, and the
functions to which the genes in these domains correspond. Our
algorithm allows for these studies to be carried out efficiently
on a large number of datasets.

Apart from these investigations, future work on chromatin
structure using higher resolution data would give more
insights into how domain hierarchies vary at a finer level
and the significance of nested domains may become be
more evident. Combining chromatin structure data with other
sequencing assays is an interesting direction to explore
and will enable us to relate variation in expression levels
with topological domains (39, 40). The relationship between
nesting of domains and differential expression can be be
studied in a similar way. The importance of the 3-dimensional
structure of chromatin may only become fully apparent when
analyzed in conjunction with other assays, so that we can
explore how changes in chromatin architecture correlate with
other functional changes in the cell.
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