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Computational methods for Target Fishing permit the discovery of new targets of a drug, which 

may result in its reposition in a new indication or improving our current understanding of its 

efficacy and side effects. Being a relatively recent class of methods, there is still a need to improve 

their validation, which is technically difficult, often limited to a small part of the targets and not 

easily interpretable by the user. Here we propose a new validation approach and use it to assess the 

reliability of ligand-centric techniques, which by construction provide the widest coverage of the 

proteome. On average over approved drugs, we find that only five predicted targets will have to be 

tested in order to find at least two true targets with submicromolar potency, although a strong 

variability in performance is observed. Also, we identify an average of eight known targets in 

approved drugs, which suggests that polypharmacology is a common and strong event. In addition, 

we observe that many known targets of approved drugs are currently missed by these methods. 

Lastly, by using a control group of randomly-selected molecules, we discuss how the data 

generation process confounds this analysis and its implications to method validation. 
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1.  Introduction 

Target Fishing, also known as Target Prediction, consists in predicting the macromolecular targets 

of a query molecule. This problem is the reverse of Virtual Screening
1
, where the goal is to predict 

the ligands of a query target. Computational methods for Target Fishing are of great interest, as 

identifying previously unknown targets of a molecule is the basis of a number of important drug 

design and chemical biology applications. Indeed, discovering a new target in a drug could lead to 

its reposition in a new indication as well as an enhanced understanding of its efficacy and side-

effects. Furthermore, these tools can be used for target deconvolution of phenotypic screening 

hits
2
, which is a prerequisite to gain mechanistic understanding of phenotypic activity and helpful 

for drug development. This two-stage process, phenotypic screening followed by target 

deconvolution, constitutes an attractive alternative strategy for the discovery of molecularly 

targeted therapies. 

The fast growth of freely-available bioactivity resources (e.g. PubChem
3
 or ChEMBL

4
) has 

sparked a new generation of powerful data-driven methods for Target Fishing. This growth is 

exemplified by the ChEMBL database
5
, which in a few years has assembled and fully curated 

chemical structures and bioactivities from more than 50,000 scientific publications. Moreover, this 

database is periodically updated and will eventually incorporate a flood of new data that is being 

extracted from the patent literature (https://www.surechembl.org/search/). 

There are two major classes of methods for Target Fishing: target-centric and ligand-centric. 

Target-centric methods build a predictive model for each target, which is used to determine 

whether the query molecule has activity against the target. Thereafter, the query molecule is 

evaluated by this panel of models to provide its set of predicted targets. Each method adopt a 
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particular model type, e.g. Quantitative Structure–Activity Relationship (QSAR)
6
, chemical 

similarity to an ensemble of cognate ligands
7,8

 or structure-based
9 

models. On the other hand, 

ligand-centric methods are based on calculating the similarity of a very large number of target-

annotated molecules to the query molecule. These molecular similarities are also of different 

types, e.g. Two-Dimensional (2D)
10

 based on Morgan fingerprints
11

 or Three-Dimensional (3D)
9,12

 

based on Ultrafast Shape Recognition (USR)
13

 variants. 

Both classes of methods are complementary. In cases where the targets of interest are known 

to have many ligands, more accurate target-centric models will be possible and thus these tools are 

likely to be more suitable. By contrast, in cases where evaluating as many targets as possible is 

preferable, ligand-centric tools will be more suitable, as these provide the widest coverage of the 

proteome. Indeed, whereas ligand-centric methods can interrogate any target that has at least one 

known ligand, target-centric models can only evaluate the much smaller set of targets for which a 

model can be built. For instance, building a structure-based model usually requires the availability 

of a suitable X-ray crystal structure for the target and methods based on QSAR/similarity-

ensemble can only build a model in those targets with a sufficiently high number of known 

ligands. 

It has been argued that the difficult validation of Target Fishing methods hinders comparisons 

of the performance of each method.
14

 Furthermore, these comparisons are often restricted to a few 

tens of information-rich targets, using benchmarks borrowed from Virtual Screening, and thus tell 

us very little about how well the methods perform on the remaining thousands of targets. This 

common preference is probably due to the technical difficulties associated to mining large-scale 

chemogenomics data for benchmark design. More importantly, Target Fishing is often posed as a 
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single classification problem (whether the combination of any target and any ligand is active or 

not), which is not well suited to analyse how performance changes depending on the query 

molecule. Furthermore, commonly applied performance measures, such as the ROC (Receiver 

Operating Characteristic) AUC (Area Under Curve), do not precisely answer the question of how 

well the method will work prospectively. For example, how do you estimate how many true 

targets of a query molecule you are likely to find if the validation shows that the average ROC  

AUC over 40 targets is 0.7? As a result, these measures do not offer guidance on pragmatic 

questions such as how many predicted targets have to be tested on average to find a true target or 

how many known targets of the query molecule are typically missed. 

In this study, we propose a new approach to validating methods for Target Fishing, which 

naturally lends itself to answer such questions. This approach is based on formulating an identical 

classification problem for each query molecule. From this new perspective, we provide a lower-

bound for the current performance of ligand-centric methods with which to analyse the minimum 

that can be expected nowadays from these methodologies. As a byproduct, our analysis gives an 

update for the degree of polypharmacology observed in approved drugs. The rest of the paper is 

organised as follows. Section 2 describes the experimental setup, including data selection, data 

partitions, target fishing method and performance metrics. Section 3 discusses the results. Section 

4 presents the conclusions. 

2.  Experimental setup 

This section describes the setup of all the numerical experiments carried out in this study. This 

setup is composed of the following elements: data selection, data partitions, target-fishing method 
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and measures of predictive performance. All molecular data processing is done with Structured 

Query Language (SQL) queries from Python 2.7.9 on a local copy of the ChEMBL database 

running PostgreSQL 9.4.3, with molecular similarity searches using in addition the RDKit 

PostgreSQL cartridge (2015.03.1 release). 

2.1.  Data selection 

The first step is constructing datasets from the ChEMBL database
4
. We started by downloading 

release 20 as a PostgreSQL dump
15

, which contains data for 10,774 targets, 1,456,020 molecules 

with disclosed chemical structure and 13,520,737 bioactivities. 

Single-protein was the most common target type (6,018 of the 10,774 targets). In order to 

provide the most specific target prediction, we restricted to single-protein targets, which 

incidentally constitutes the largest molecular target type in the database (the ‘protein complex’, 

‘protein family’ and ‘nucleic-acid’ types only have 261, 217 and 29 targets respectively). The 

remaining general constraints were confidence_score = 9 (i.e. direct single-protein target assigned 

by the data curator), activities.published_relation = '=', assay_type = 'B' and standard_units = 'nM'. 

As a result of this process, 888,354 molecules were found to be associated to the 6,018 single-

protein targets through 4,871,527 bioactivities. 

Further requirements are commonly imposed for the measured bioactivity of a ligand against a 

target to be counted as a known target for that ligand. First, the bioactivity measurement must be 

of relatively high quality,  activities.standard_type IN ('EC50','Ki','Kd','IC50'), which discards 

percentages of inhibition among other lower-quality measurements. Second, only target-ligand 

complexes with a sufficiently potent bioactivity are retained (common activity thresholds are 1µM 
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and 10µM meaning that a ligand hitting any target with an activity higher than 10µM will not be 

considered to be a target in neither of these two scenarios). Third, only targets with at least n 

qualifying ligands are considered. For target-centric methods, a sufficiently high number of 

ligands are requested to build a model for the target, e.g. those methods based on similarity-

ensemble approaches (n=5)
7
 or classical QSAR (n=40)

6
. In this study, we analyse ligand-centric 

methods, which can evaluate any target with at least a known ligand (i.e. n=1), with two common 

activity thresholds (the more potent is this threshold, the fewer targets will be included in the 

search). Thus, this study exclusively analyses the first two rows of Table 1.  

This table also shows the number of targets that would be searched by methods requiring n=5 

and n=40. For example, a method that builds models requiring at least 40 ligands per target and 

defining a target with an activity threshold of 10µM would be predicting whether the query 

molecule has activity against any of the 917 available single-protein targets. In contrast, a ligand-

centric method with the same activity threshold will be able to evaluate 2,109 additional targets, 

for which the first method is unable to provide any prediction by construction. Of course, the 

advantage of target-centric over ligand-centric methods is that the former will tend to perform 

Table 1.  Dataset size depending on modelling constraints. 

Dataset 
Only targets 
with at least #Targets 

Thres1µM 1 ligand 2,592 

Thres10µM 1 ligand 3,046 

Thres1µM 5 ligands 1,788 

Thres10µM 5 ligands 2,158 

Thres1µM 40 ligands 725 

Thres10µM 40 ligands 917 
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better on those targets with a higher number of ligands, which highlights the complementarity of 

both approaches. 

2.2.  Data partitions 

Next, we partition each of the two n=1 datasets as follows. First, we identify the subset of 

approved drugs. Second, we search for all those approved drugs in the ChEMBL database meeting 

the criteria introduced in the previous section and hitting any of the targets in Table 1 (these are 

620 drugs in the Thres1µM set and 750 drugs in the Thres10µM set). These are the two approved-

drugs sets of query molecules. Third, we pick at random two further sets of molecules of the same 

size, which we called random-molecules sets. This will serve as a control group to understand how 

target predictions for marketed drugs differ from those made for other types of molecules. The rest 

of ligands form the set of database molecules, which is the same for both sets of query molecules 

but different between thresholds (this is shown in Table 2). 

2.3.  A simple method for Target Fishing 

For our analysis, we selected a standard 2D chemical similarity search
14

 in order to obtain a lower-

bound for the performance of ligand-centric target-fishing methods.  This is a two-step procedure 

starting with the generation of MACCS fingerprints
17

 for all query and database molecules in 

Table 2. For each molecule, MACCS (for Molecular ACCess System) codifies 166 predetermined 

Table 2.  Dataset size depending on modelling constraints. 

ID Dataset #query-molecules #database-molecules 
A   approved-drugs_Thres10µM 750 184,163 

B   random-molecules_Thres10µM 750 184,163 

C   approved-drugs_Thres1µM 620 147,751 

D   random-molecules_Thres1µM 620 147,751 
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chemical groups as a binary string of the same size. These fingerprints were generated using the 

RDKit PostgreSQL cartridge
18

 and inserted in the database for its use. 

As usual, fingerprint generation could not be generated for a few unusual molecules and 

consequently queries could not be performed for these (e.g. 5 out of 750 in approved-

drugs_Thres10µM). This is the case of Gramidicin (CHEMBL1201469), which is actually not a 

molecule but a mixture of three antibiotic compounds. Other examples are some organometallic 

compounds such as the anti-rheumatic agent Auranofin (CHEMBL1366).  

Using their MACCS fingerprints, the Dice score was used to measure the similarity between a 

query molecule and all the database molecules. The Dice score is defined as: 

              (1) 

where a is the number of on bits in molecule A, b is number of on bits in molecule B, while c is 

the number of bits that are on at the same positions in both molecules. For each query, the top k 

hits can be identified from the corresponding ranking of database molecules (these are the k 

database molecules with the most similar chemical structure to that of the query molecule). We 

consider here k = 1, 5, 10 and  15 to investigate the dependence of the method with its only control 

parameter k. 

Finally, the known targets for the k hits are retrieved from the ChEMBL database and returned 

as predicted targets for the considered query molecule. Thus, a set of predicted targets is obtained 

for each combination of query molecule and k value. Note that the known targets are not any 

target annotated in the ChEMBL database, but those that comply with the requirements set in 

section 2.1. for each of the four cases in Table 2. 
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2.4.  Measuring predictive performance 

Each performed query can be posed as a separate classification problem. For validation purposes, 

the known targets of the query molecule are taken as a ground truth. Thus, we assume that the 

known targets are all the qualifying targets of the molecule, whereas the rest of considered targets 

are non-targets for that molecule. However, as the query molecule has only been tested against 

less than 0.1% of the ChEMBL targets on average, it is expected that many unconfirmed targets, 

especially those coming from molecules similar to the query molecule, would be actually targets if 

only these could be thoroughly tested. As a result, any positive prediction on a non-target will 

have to be rejected as false, despite an unknown part of these being true targets of the molecule. 

Therefore, we must keep in mind that we will be looking at a lower-bound for performance also in 

this sense. 

Table 3 shows the confusion matrix arising from assessing target predictions against 

experimental evidence for each query molecule. After the assessment, each target prediction can 

be classed in one of four categories: TP for True Positive (the predicted target is a known target); 

TN for True Negative (the target was not predicted but anyway is not known to be a target); FP for 

False Positive (the predicted target is not known to be a target, i.e. a false discovery or Type I 

error); and FN for False Negative (the target was not predicted and it is actually a target, i.e. 

missed discovery or Type II error).  
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From these quantities, we will calculate four performance measures per query molecule. The 

Accuracy (ACC) is the proportion of correct target predictions: 

    
     

           
 (2) 

The Positive Predictive Value (PPV) which is essentially the proportion of new targets that 

would be obtained after experimentally validating the predictions of the method: 

    
                                           

                           
 

  

     
 (3) 

The False Negative Rate (FNR) accounts for the proportion of true targets that the method has 

missed: 

    
                                             

                       
 

  

     
 (4) 

The Matthews Correlation Coefficient (MCC) captures both types of error in a single metric, 

with higher values being better up to +1 (perfect classification): 

    
           

√                            
 (5) 

Table 3.  Confusion matrix arising from assessing target predictions against 
experimental evidence for each query molecule. 

Target Predicted Non-predicted 

Yes    (experimentally tested) TP FN 

No     (not tested/tested) FP TN 
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Lastly, the Number of Predicted Targets (NPT) will be also reported to investigate how this 

varies with the method’s control parameter k. The entire workflow is sketched in Fig. 1. 

 

Figure 1. Generic workflow to apply and validate a ligand-centric method for target fishing. 

3.  Results and Discussion 

Three questions are addressed in this section, each in a different subsection.  This analysis is based 

on the performance obtained by the query molecules in the four datasets in Table 2, which will be 

summarised with boxplots of PPV, FNR, MCC and NPT. 

3.1.  How many targets are typically hit by a molecule?  

For each of the four cases in Table 2, Fig. 2 shows Tukey boxplots summarising the distribution of 

the number of known single-protein targets across query molecules. On the left, a substantial 

number of strong outliers are appreciated. These correspond to promiscuous query molecules such 

as sunitinib, which has 192 submicromolar targets. In contrast, there are also selective drugs like 
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the antiretroviral agent Nelfinavir with only one known target below 1µM (HIV-1 protease; 

although there are also many non-molecular targets annotated in ChEMBL for this drug). On the 

right, we can appreciate that approved drugs have an average of eight known targets with potency 

better than 1µM (dashed yellow line in set A), although the median number is three targets 

(continuous red line in the same set). However, the boxplot’s lower quartile value indicates that at 

least 25% of these drugs have just one known target and thus seem very selective. It is also 

noteworthy that the number of annotated targets for the set of random molecules is smaller than 

that for approved drugs, with four targets on average (set B) instead of eight. This substantial 

difference is likely to be due to a much higher number of targets being tested during the process of 

developing a drug. 

 

(a) (b) 

Figure 2. (a) Tukey boxplots with the number of known targets across query molecules (b) A 

zoom of the same boxplots on the left (the mean is the yellow line and the median is the red line). 

A = (Approved, 10µM), B = (Random, 10µM), C = (Approved, 1µM), D = (Random, 1µM). 
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3.2.  How many predicted targets have to be tested to find a true target?  

Table 4 presents average performance results for approved drugs, with the method using four 

different k values. As k increases, Type I errors increase (i.e. lower PPVs) and Type II errors 

decrease (i.e. lower FNRs). In other words, as more top hits are used to provide predicted targets, 

fewer known targets are missed. However, this comes at the cost of having more false positives, as 

target inferences are made using increasingly less similar database molecules. Using the top 5 hits 

to predict targets (k=5) provides the best compromise between these two conflicting objectives 

(i.e. the highest average MCC). This setting leads to 4.57 predicted targets on average over the 

query molecules (note that each top hit may have more than one known target, but collectively 

provide fewer targets because some of these are repeated). Lastly, the very high average ACC 

values are due to each classification problem being highly unbalanced and the method correctly 

discarding the vast majority of non-targets. However, unlike PPV and FNR, ACC does not 

precisely measure Type I and II errors and hence is not helpful to address the investigated 

questions. 

Fig. 3 shows the distribution of the number of predicted targets across query molecules using 

k=5. By comparing it with Fig. 2, it is observed that there are substantially more known targets 

than predicted targets for approved drugs using the top 5 hits for predictions (this is not the case 

Table 4. Average (av) performance for query molecules from set C= (Approved, 1µM). 

k avNTP avACC avPPV avFNR avMCC 

1 1.83 0.997 0.49 0.76 0.32 

5 4.57 0.997 0.41 0.62 0.36 

10 7.08 0.996 0.32 0.56 0.33 

15 9.18 0.995 0.30 0.53 0.34 
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for the sets of random molecules, where most molecules have a higher number of predicted targets 

than of known targets). 

 

(a) (b) 

Figure 3. (a) Tukey boxplots with the number of predicted targets across query molecules using k=5; 

(b) A zoom of the same boxplots on the left (the mean is the yellow line and the median is the red 

line). A = (Approved, 10µM), B = (Random, 10µM), C = (Approved, 1µM), D = (Random, 1µM). 

 

Fig. 4 (a) summarises the distribution of PPV results across the query molecules. For approved 

drugs, the mean PPV is between 0.35 and 0.41 depending on the adopted threshold. That is, 

despite the simplicity of the method and thanks to the wealth of data on which relies, on average 

only five predicted targets will have to be tested in order to find at least two true targets with 

potency better than 1µM. In all cases, there is strong performance variability across the query 

molecules, as it can be appreciated by the large interquartile range (IQR) of each boxplot. For 

instance, in set C, the predicted targets of 150 approved drugs are 100% correct (PPV=1), whereas 

those for other 170 approved drugs are 100% wrong (PPV=0). Also, the cases with a tighter 
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activity threshold of 1µM are on average better predicted than their counterparts using 10µM. On 

the other hand, the sets with random molecules obtained much better results than those with 

approved drugs. Thus, if we order the four cases by average PPV (yellow line in Fig. 4), this gives 

the following performance hierarchy D>B>C>A (i.e. D obtains higher average PPV than B, B 

better than C and C better than A). Interestingly, this is the opposite ranking for both the number 

of known targets (A>C>B>D). In other words, those sets with a higher number of known targets 

tend to be harder to predict. 

 

Figure 4. Tukey boxplots for PPV, FNR and MCC for the four datasets using k=5. A = (Approved, 10µM), 

B = (Random, 10µM), C = (Approved, 1µM), D = (Random, 1µM). 

However, the cause of obtaining lower predictive accuracy with approved drugs is not their higher 

number of known targets per se, but an underlying factor correlated with it: the query drug and its 

top hits, which should include some of the chemical derivatives that eventually led to this drug, 

often have a lower overlap in terms of known targets. A possible explanation for a low overlap is 

that some of the top hits could have been tested against a range of targets in other studies, which 

might not have included the drug and thus this was not tested against the targets (a lower PPV for 

this query molecule would be consequently obtained, as such targets would be perceived as false 

positives). Importantly, while these are not known targets of the drug, some are expected to 
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become a known target once tested. In contrast, a molecule from the randomly-chosen set often 

has a larger overlap with its top hits (e.g. in set D, the predicted targets of 294 randomly-chosen 

molecules are 100% correct, whereas those for just 40 randomly-chosen molecules are 100% 

wrong). Many of these cases are likely to arise from a situation where a chemical series is 

investigated against a set of related targets to be later abandoned (e.g. because of these molecules 

having insufficient whole-cell activity). This would explain the lower number of known targets 

and the smaller predictive errors for these sets.  

3.3.  How many known targets of the query molecule are typically missed?  

This question is rarely analysed in the context of Target Fishing, but it is necessary to estimate 

how many discoveries are being missed by the method. Fig. 4 presents the results in terms of FNR 

and MCC. Looking at the FNR boxplots, only about 10% of the targets are on average missed in 

the sets of random molecules (i.e. FNR~0.1), whereas the mean of missed targets for approved 

drugs is about 65%. A large part of these missed targets might be due to more intense research on 

the drug after approval than on its chemical derivatives, leading to many targets being tested in the 

former but not the latter. On the other hand, the MCC boxplots show the distribution of the total 

error across query molecules, i.e. a high MCC necessarily means that query molecule obtains low 

levels of both Type I and II errors.  The latter occurs to most random molecules regardless of the 

activity threshold (almost 75% of these query molecules have MCCs higher than 0.6). In contrast, 

only a small proportion of approved drugs are in this category. Again, the performance hierarchy 

is D>B>C>A for both FNR and MCC. Here, the higher number of known targets in the query 
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molecules is also correlated with the difficulty of predicting their targets, but this is also explained 

by the different ways in which the query molecules and their hits were tested against targets. 

4.  Conclusions 

We have seen that ligand-centric techniques for Target Fishing are capable of considering up to 

thousands of targets more than target-centric techniques. However, it was not clear how accurate 

the prediction by ligand-centric techniques is in practice. Using the proposed benchmark, we have 

been able to analyse the performance of a representative of these techniques using approved drugs 

as the query molecules. Despite the simplicity of the adopted method and owing to the wealth of 

data on which relies, on average only five predicted targets will have to be tested in order to find at 

least two true targets with potency better than 1µM. This level of performance is already useful for 

prospective applications and it is encouraging that there is plenty of scope for methodological 

improvement. The latter will be particularly needed to reduce the high number of false negatives, 

or known targets that are currently missed by ligand-centric techniques. Note that, while this issue 

has not been investigated yet for target-centric techniques, the many targets not considered by 

these are by construction false negatives of any molecule that hits them.  

The results for the set of randomly-selected molecules used as a control group are far better 

than those for approved drugs. We have argued that the different way in which targets are tested 

against the query molecules and their top hits is the reason for this marked difference. Since 

approved drugs have been presumably tested against many more targets, we consider that their 

performance level is more realistic than that of the control set. Interestingly, we have identified an 

average of eight known targets under 10µM in approved drugs, which suggest that 
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polypharmacology is a common and strong event. Lastly, high performance variability across 

query molecules has been observed in all cases. Thus, a promising avenue for future research 

consists in investigating which features make the molecule more difficult to predict in order to 

assign a confidence score to each prediction. 
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