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Abstract:  22 

Phylogeny-based and functional trait-based analyses are used widely to study community 23 

composition. In principle, knowing all information about species traits should completely explain 24 

phylogenetic patterns in community composition. In reality, phylogenies may contain more 25 

information than the collection of measured traits. The extent to which functional trait 26 

information makes phylogenetic information redundant, however, is unknown. We used 27 

phylogenetic linear mixed models to analyze community composition of 55 understory plant 28 

species distributed across 30 forest sites in central Wisconsin. These communities showed strong 29 

phylogenetic attraction. Most of the 15 measured functional traits showed strong phylogenetic 30 

signal, but they only reduced the strength of phylogenetic community patterns in the abundances 31 

and presence/absences of co-occurring species by 57% and 89%, respectively, falling short of 32 

fully explaining phylogenetic community structure. Our study demonstrates the value of 33 

phylogenies in studying of community composition, especially with abundance data, even when 34 

rich functional trait data are available. 35 

Introduction 36 

Functional traits, arising as innovations through evolution, can capture essential aspects of 37 

species’ morphology, ecophysiology, and life-history strategy (McGill et al. 2006; Violle et al. 38 

2007). Although closely related species can differ greatly in some functional traits due to rapid 39 

evolution or ecological convergence (Losos, 2008, 2011), most functional traits show strong 40 

phylogenetic signal (Freckleton et al. 2002; Webb et al. 2002, Moles et al. 2005, Donoghue 41 

2008). Functional traits, with or without phylogenetic signal, are known to influence the species 42 

composition of communities, thereby providing mechanistic links between fundamental 43 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2015. ; https://doi.org/10.1101/032938doi: bioRxiv preprint 

https://doi.org/10.1101/032938
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

ecological processes and community structure (McGill et al. 2006; Violle et al. 2007; Adler et al. 44 

2013). Functional traits also provide a common currency that facilitates comparisons among 45 

species and across regions, allowing us to assess the generality of patterns and predictions in 46 

community ecology (McGill et al. 2006). This has lead to a proliferation of studies using 47 

functional traits to understand community composition. Functional trait-based approaches, 48 

however, are limited by the fact that it is impossible to measure all potentially important 49 

functional traits affecting the distribution of species. 50 

Even in the absence of functional trait information, it is still possible to infer the effects of 51 

(unmeasured) functional traits on community composition by investigating phylogenetic patterns 52 

in community composition. Phylogenies play an important role in community ecology by giving 53 

information about evolutionary relationships among species (Graves & Gotelli, 1993; Losos 54 

1996; Baum & Smith, 2012). Because phylogenetically related species often share similar 55 

functional trait values, we expect phylogenetically related species to co-occur more often in the 56 

same communities reflecting their shared environmental tolerances. Conversely, if 57 

phylogenetically related species have similar traits that cause them to compete with each other, 58 

then closely related species may be less likely to co-occur. These and other processes relating 59 

functional traits to community composition likely lead to phylogenetic signatures in how species 60 

are distributed among communities (Webb et al. 2002). However, in principle, if we have 61 

information for all relevant functional traits, then we expect phylogeny to provide little 62 

additional information relevant for community composition. That is, when all of the functional 63 

traits affecting community composition are known, we do not expect the unexplained residual 64 

variation in the occurrence of species to have phylogenetic signal (Ives & Helmus, 2011).  65 
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In practice, we cannot obtain information about all relevant functional traits. In addition, 66 

phylogenetic signals in community composition may result from factors beyond functional traits, 67 

such as the biogeographical patterns generated as species disperse across a landscape (Ricklefs et 68 

al. 1993; Moen et al. 2009). If these forces are important, then even after accounting for all 69 

functional traits whose measurements are available, we should expect phylogenies to contain 70 

additional information about community composition (Vane-Wright et al. 1991; Cadotte et al. 71 

2009). Thus far, however, we are aware of no study that has explicitly assessed the overlap 72 

between information from traits versus phylogeny. Here, we ask how much of the phylogenetic 73 

signal in the composition of a plant community assemblage can be explained by functional traits 74 

(Fig. 1). 75 

We analyzed data on the abundance of 55 understory plant species distributed across 30 76 

Wisconsin pine barrens sites (Li & Waller 2015). For each species, we had data on 15 functional 77 

traits and a recent highly resolved phylogeny (Cameron et al. unpublished manuscript1). At each 78 

site, we measured 20 environmental variables. Below, we first investigate whether there is 79 

phylogenetic pattern in community composition, using a phylogenetic community mixed model 80 

that tests for both “phylogenetic attraction” (phylogenetically related species more likely to occur 81 

in the same communities) and “phylogenetic repulsion.”  If there is phylogenetic pattern, then it 82 

could be produced by measured functional traits that themselves have phylogenetic signal (Fig. 83 

1, arrows 2, 4, and 7), unmeasured functional traits with phylogenetic signal (Fig. 1, arrows 2, 5, 84 

and 8), or phylogenetic processes unrelated to functional traits (Fig. 1, arrow 6). We then 85 

developed a phylogenetic community mixed model incorporating the measured functional traits 86 

to ask whether there is phylogenetic signal in the residual variation in community composition 87 

                                                       
1 Cameron, K., R. Kriebel, M. Pace, D. Spalink, P. Li, and K. Sytsma.  In prep. A complete molecular 
community phylogeny for the flora of Wisconsin based on the universal plant DNA barcode. 
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after the effects of these traits are removed. This analysis tests the hypothesis that we can explain 88 

all of the phylogenetic pattern in community composition using measured functional traits. 89 

Finally, we use a phylogenetic community mixed model to investigate whether phylogenetically 90 

related species respond similarly to environmental gradients across the communities. The 91 

motivation for this final analysis is to indirectly identify possible unmeasured functional traits 92 

that might play a role in community assembly. In cases where phylogenetically related species 93 

respond similarly to an environmental gradient, species presumably share traits that confer 94 

similar tolerances to, or preferences for, specific environmental conditions. Thus, this final 95 

analysis could point towards additional functional traits that might be relevant for explaining 96 

patterns in community composition. 97 

 98 

Methods 99 

Data  100 

Community composition. – We sampled 30 pine barrens forest sites in the central Wisconsin sand 101 

plains in 2012 using 50 1-m2 quadrats placed along five transects at each site. Within each 102 

quadrat, we recorded the presence/absence of all understory vascular plant species (see Li & 103 

Waller 2015 for details). Across all sites, we recorded 152 species. For the analyses other than 104 

the initial exploration of phylogenetic patterns in community composition, we focused on the 55 105 

species that occurred in three or more communities. We did this because we did not have 106 

functional trait data for many rare species, and we also wanted to limit the number of zeros in the 107 

data set.  108 
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Functional traits. – For the 55 focal species, we measured 11 continuous and four categorical 109 

functional traits on at least 12 individuals (four from each of at least three populations) using 110 

standard protocols (Pérez-Harguindeguy et al. 2013). Continuous traits include seed mass 111 

(g/seed), plant height (cm), specific leaf area (SLA, m2/kg), leaf dry matter content (LDMC, %), 112 

leaf circularity (dimensionless), leaf length (cm), leaf width (cm), leaf thickness (mm), leaf 113 

carbon concentration (%), leaf nitrogen concentration (%), and stem dry matter content (SDMC, 114 

%). We aggregated categories of each categorical trait into two levels: growth form (woody vs. 115 

non-woody), life cycle (annual vs. non-annual), and pollination mode (biotic vs. abiotic). We 116 

divided seed dispersal mode into three binary variables (wind dispersed vs. not, animal dispersed 117 

vs. not, and unassisted vs. assisted dispersal). Collectively, these functional traits, covering the 118 

leaf-height-seed (LHS) plant ecology strategy (Westoby, 1998), represent multidimensional 119 

functions of plants associated with resource use, competitive ability, dispersal ability, etc. For 120 

analyses, we log-transformed highly skewed traits first and then Z-transformed the trait values to 121 

have means of zero and standard deviations of one, allowing coefficients in the mixed models to 122 

be interpreted as effect sizes. 123 

Phylogeny. – The phylogeny used in this study is a subset of a phylogeny for all vascular plants 124 

in Wisconsin (Cameron et al. unpublished manuscript). Briefly, Cameron et al. used two plastid 125 

DNA barcode loci rbcL and matK to build the phylogeny using maximum likelihood (ML) in the 126 

program RAXML (Stamatakis, 2014). The phylogeny was then time-calibrated using the branch 127 

length adjuster (bladj) available in the program phylocom (Webb et al. 2008).  128 

Environmental data. – At each site, we pooled six soil samples to measure the soil properties 129 

listed in Table 4. We also took six vertical fish-eye photographic images at each site to measure 130 

canopy cover. To characterize climatic conditions, we extracted daily precipitation and minimum 131 
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temperature for each site from interpolated values estimated by Kucharik et al. (2010) from 2002 132 

to 2006 (data after 2006 were not available). All environmental variables were Z-transformed. 133 

Phylogenetic community composition  134 

We performed all analyses using both species abundances and species presence/absences among 135 

communities. In the main text we present the analyses of abundance data, because including 136 

abundance data in phylogenetic community analyses provides more information about 137 

community assembly (Freilich & Connolly, 2015). In the Appendix we present the results for 138 

presence/absence data.  139 

We first tested for phylogenetic community structure without including environmental or 140 

functional trait information. We used traditional metrics and randomization tests (i.e., null 141 

models) to identify whether there was phylogenetic pattern (phylogenetic attraction or repulsion) 142 

in the composition of our 30 communities. Specifically, we measured the phylogenetic structure 143 

of species abundances at each site using phylogenetic species evenness (PSE, Helmus et al. 144 

2007) and mean phylogenetic distance (MPD, Webb, 2000). For each site, we calculated PSE 145 

and MPD, and then calculated the mean of these metrics (PSE��� and MPD���) across all 30 146 

sites. To test for phylogenetic pattern, we permuted species randomly among sites (SIM2 in 147 

Gotelli, 2000) 4999 times and then calculated metrics base on each permutation data set. If 148 

PSE��� or MPD��� falls below (or above) 97.5% of the permutation values, then we infer a 149 

statistically significant phylogenetic attraction (or repulsion). This null permutation model 150 

retains the prevalence of each species across sites, but allows sites to change in species richness. 151 

Using this null model where sites can vary in species richness is justified, because under the null 152 

hypothesis of no phylogenetic signal, the values of PSE and MPD are independent of species 153 
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richness at the sites. We also performed permutation tests on the presence/absence of species 154 

from the 30 sites using phylogenetic species variation (PSV, Helmus et al. 2007) and MPD. 155 

In addition to these permutation tests, we fit a phylogenetic linear mixed model (PLMM) to test 156 

for phylogenetic community patterns in species abundances. A PLMM establishes a flexible 157 

statistical base to subsequently incorporate functional trait and environmental variables. 158 

Furthermore, PLMMs tend to have greater statistical power than permutation tests (Ives & 159 

Helmus, 2011). To build the PLMM, let n be the number of species distributed among m sites. 160 

Letting Y be the mn × 1 vector containing the abundance of species j (j = 1, …, n) at site s (s = 1, 161 

…, m), the PLMM is  162 

log(Y + 1) = α + aspp[i] + bspp[i] + ci + dsite[i] + ei 163 

 a ~ Gaussian(0, σ2
aIn) 164 

 b ~ Gaussian(0, σ2
bΣspp)  165 

 c ~ Gaussian(0, kron(Im, σ2
cΣnested)) 166 

 d ~ Gaussian(0, σ2
dIm)  167 

 e ~ Gaussian(0, σ2
eImn) (1) 168 

We use the convention of multilevel models here (Gelman & Hill, 2007), with fixed and random 169 

effects given by Greek and Latin letters, respectively. The function spp[i] maps the observation i 170 

in vector Y to the identity of the species (Gelman & Hill, 2007, p251-252), so i takes values from 171 

1 to mn. The intercept α estimates the overall average log abundance of species across all sites. 172 

The following three random variables aspp[i], bspp[i]  and ci incorporate variation in abundance 173 
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among plant species. Specifically, the n values of aspp[i] give differences among species in mean 174 

log abundance across all sites and are assumed to be drawn independently from a Gaussian 175 

distribution with mean 0 and variance σ2
a. The n values of bspp[i] also give differences in mean log 176 

abundance across sites but are assumed to be drawn from a multivariate Gaussian distribution 177 

with covariance matrix σ2
bΣspp, where the n × n matrix Σspp is derived from the phylogeny (see 178 

next paragraph), and the scalar σ2
b dictates the overall strength of the phylogenetic signal. Thus, 179 

aspp[i] and bspp[i] together capture variation in mean species log abundances that is either unrelated 180 

to phylogeny or has phylogenetic signal. The random variable ci accounts for covariance in the 181 

log abundances of plant species nested within sites (using the Kronecker product, kron). 182 

Specifically, ci assesses whether phylogenetically related plant species are more or less likely to 183 

co-occur at the same sites. Hence, ci is used to measure either phylogenetic attraction or 184 

phylogenetic repulsion; because σ2
c dictates the overall strength of these phylogenetic patterns, it 185 

is the key term we are interested in. Random effect dsite[i] is assumed to contain m values, one for 186 

each site, that are distributed by a Gaussian distribution with variance σ2
d to account for 187 

differences in the average log abundances of species from site to site. Finally, ei captures residual 188 

variance σ2
e. 189 

We derived the phylogenetic covariance matrix Σspp from the assumption of Brownian motion 190 

evolution. If a continuous-valued trait evolves up a phylogenetic tree with a constant probability 191 

of slight increases or decreases, the covariance in trait values between two species will be 192 

proportional to the length of shared evolution, given by the distance on the phylogenetic tree 193 

between the root and the species’ most recent common ancestor (Martins & Hanson 1997). This 194 

gives a direct way to convert the phylogeny into a hypothesis about the covariance matrix. For 195 

the assessment of phylogenetic attraction within sites, ci, we use Σnested = Σspp. For phylogenetic 196 
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repulsion, we use the matrix inverse of Σspp, Σnested = (Σspp)
–1.  Theoretical justification for Σnested 197 

= (Σspp)
–1 comes from a model of competition among community members (Ives & Helmus 198 

2011, Appendix A). Briefly, if the strength of competition between species is given by Σspp, as 199 

might be the case if closely related species are more likely to share common resources, then the 200 

relative abundances of species will have covariance matrix (Σspp)
–1.  201 

Equation 1 is the same as model I in Ives & Helmus (2011), except model I includes variation 202 

among species in mean log abundance across sites as fixed effects rather than two random 203 

effects, aspp[i] and bspp[i]. This change allows us to align equation 1 with equation 3 (below) that 204 

includes variation in the relationship between trait values and log abundance within sites as 205 

random effects. In our analyses, treating variation among species in mean log abundance as fixed 206 

effects (results not presented) led to almost identical estimates of phylogenetic signal (estimates 207 

of σ2
c), and therefore our treatment of aspp[i] and bspp[i] as random effects does not change the 208 

conclusions. 209 

We fit the PLMM with maximum likelihood using function communityPGLMM in the pez 210 

(Pearse et al., 2015) package of R (R Core Team, 2015). Statistical significance of the variance 211 

estimates σ22 was determined using a likelihood ratio test. Because the null hypothesis σ2  = 0 is on 212 

the boundary of the parameter space (σ2   cannot be negative), we used the 0.5χ2
0 + 0.5χ2

1 mixture 213 

distribution of Self & Liang (1987) for significance tests. The distribution of χ2
0 represents a 214 

distribution with a point mass at 0, and the p-values given by the constrained likelihood ratio test 215 

are one-half the values that would be calculated from a standard likelihood ratio test using χ2
1. 216 

Simulations suggest that p-values calculated in this way are more conservative (have higher 217 

values) than those from a parametric bootstrap (Appendix Text S1). 218 
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Our data set contained many zeros (Fig. 2), raising the question of the validity of applying a 219 

linear model to transformed data. Nonetheless, transforming data and applying a linear analysis 220 

is robust when assessing the significance of regression parameters (Ives, 2015).  221 

Can functional traits explain phylogenetic community composition? 222 

To quantify how much of the variation in phylogenetic patterns can be explained by measured 223 

functional traits, we estimated PLMMs with and without functional traits, and then compared the 224 

strength of phylogenetic signal in the residual variation: if functional traits alone serve to explain 225 

phylogenetic community composition, then as functional traits are included, the strength of the 226 

phylogenetic signal in the residuals should decrease. We selected functional traits one by one 227 

based on the two conditions necessary for them to generate phylogenetic signal in community 228 

composition. First, a functional trait must show phylogenetic signal among species, because in 229 

the absence of phylogenetic signal among species, a trait could not produce phylogenetic signal 230 

in species’ abundances. Second, there must be variation among sites in the relationship between 231 

species trait values and abundances; if a trait has phylogenetic signal but there is no variation in 232 

relationships between plant functional trait values and abundances among sites, then it will 233 

contribute to the overall phylogenetic signal of species abundance and will be captured by bspp[i] 234 

in equation 1, but it will not affect phylogenetic co-occurrence patterns captured by ci. Therefore, 235 

we only investigate traits that exhibit both strong phylogenetic signal and variation among sites 236 

in the apparent advantages the traits give to species. 237 

We tested the phylogenetic signal for each functional trait using model-based methods. Each 238 

continuous trait was tested with Pagel’s λ (Pagel, 1999) using phylolm (Ho & Ané, 2014). For 239 

the binary traits, we applied phylogenetic logistic regression (Ives & Garland, 2010) as 240 
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implemented by phyloglm (Ho & Ané, 2014). We also tested phylogenetic signal of functional 241 

traits via Blomberg's K (Blomberg et al. 2003) with picante (Kembel et al. 2010).  242 

We tested variation of relationships between trait values and log abundances with the LMM 243 

 log(Y + 1) = α + aspp[i] + (β + bsite[i])tspp[i] + ei 244 

 a ~ Gaussian(0, σ2
aIn) 245 

 b ~ Gaussian(0, σ2
bIm) 246 

 e ~ Gaussian(0, σ2
eImn) (2) 247 

where tspp[i] is the focal functional trait value of the species corresponding to observation i, and σ2
b 248 

gives the variation among sites in the relationship between species trait values and log 249 

abundances. This formulation is closely related to the model used by Pollock et al. (2012). If σ2
b  250 

> 0, we conclude that different sites select species differently based on the tested trait. We use p 251 

< 0.1 here to lower the risk of excluding potential important functional traits. 252 

We quantified the contribution of a trait to the observed phylogenetic pattern in community 253 

composition using the model 254 

 log(Y + 1) = α + aspp[i] + bspp[i] + ci + dsite[i] + (β + fsite[i])tspp[i] + ei 255 

 a ~ Gaussian(0, σ2
aIn) 256 

 b ~ Gaussian(0, σ2
bΣspp) 257 

 c ~ Gaussian(0, kron(Im, σ2
cΣnested)) 258 

 d ~ Gaussian(0, σ2
dIm)  259 
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 f ~ Gaussian(0, σ2
fIm) 260 

 e ~ Gaussian(0, σ2
eImn) (3) 261 

This model is the same as equation 1 used to assess phylogenetic patterns in community 262 

composition, except that it includes functional trait values tspp[i]. The proportion of phylogenetic 263 

signal in species composition (estimated by σ2
c) that trait tspp[i] can explain is assessed by 264 

comparing σ2
c between models with and without this trait as a product with the random effect 265 

fsite[i]. Finally, to evaluate the overall contribution of functional traits to the observed 266 

phylogenetic patterns, we built a multivariate version of equation 3 which included all traits that 267 

have both phylogenetic signal and strong variation among sites. 268 

Does any environmental variable drive phylogenetic pattern?  269 

If phylogenetic patterns in community composition are observed, yet no functional traits can 270 

explain the patterns, how could we identify additional functional traits that might be responsible? 271 

Phylogenetically related species usually are assumed to be ecologically similar due to niche 272 

conservatism (Wiens et al. 2010). Therefore, related species will tend to have similar responses 273 

to environmental variables. If these environmental variables are strong enough to drive 274 

phylogenetic patterns in community composition, then functional traits that are associated with 275 

tolerance or sensitivity to these environmental variables will likely be important in explaining 276 

community composition. Thus, we investigated phylogenetic patterns in the responses of species 277 

to environmental variables to suggest additional, unmeasured functional traits that might be 278 

important to explain phylogenetic patterns in community composition. 279 
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We tested for phylogenetic patterns in the responses of species to environmental variables using 280 

the PLMM 281 

log(Y + 1) = α + aspp[i] + bspp[i] + (β + gspp[i] + hspp[i])xsite[i] + ei 282 

 a ~ Gaussian(0, σ2
aIn) 283 

 b ~ Gaussian(0, σ2
bΣspp) 284 

 g ~ Gaussian(0, σ2
gIn) 285 

 h ~ Gaussian(0, σ2
hΣspp) 286 

 e ~ Gaussian(0, σ2
eImn)        (4) 287 

Here, gspp[i] and hspp[i] represent non-phylogenetic and phylogenetic variation among species in 288 

their response to environmental variable x (see model II in Ives & Helmus, 2011). The key 289 

parameter of interest is σ2
h, which we tested using a likelihood ratio test. If σ2

h  > 0, 290 

phylogenetically related species respond to environmental variable x in similar ways, suggesting 291 

the existence of an unmeasured phylogenetically inherited trait that is associated with species 292 

tolerances or sensitivities to x. Given the large number of environmental variables in our data set, 293 

we first applied equation 4 without the term bspp[i]  and hspp[i], and selected environmental 294 

variables for which there was variation in responses among species given by gspp[i] regardless of 295 

whether this variation was phylogenetic. For variables x for which σ2
g  > 0 in the reduced version 296 

of equation 4, we then applied the full equation 4 and tested whether σ2
h  > 0.  297 

 298 
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Results 299 

Phylogenetic community composition 300 

Phylogenetically related species co-occurred more often than expected by chance in pine barrens 301 

communities in central Wisconsin (Fig. 2). Permutation tests including all 152 species showed 302 

that closely related species are likely to have positive covariances in abundance among 303 

communities, as judged by either phylogenetic species evenness (PSE��� = 0.32, p = 0.03) or 304 

mean phylogenetic distance (MPD��� = 338, p = 0.01). In contrast, when we confine analyses to 305 

the 55 focal species that occurring in at least three communities, the permutation tests failed to 306 

show statistically significant phylogenetic patterns (abundance data: PSE��� = 0.27, p = 0.29; 307 

MPD��� = 286, p = 0.17; presence/absence data: PSE��� = 0.31, p = 0.20; MPD��� = 342, p = 308 

0.20). Nevertheless, the PLMM (p = 0.008; Table 1) and PGLMM (p < 0.001; Appendix Table 309 

S1) both reveal statistically significant phylogenetic patterns for the 55 focal species.  310 

Can functional traits explain phylogenetic community composition? 311 

Most functional traits showed strong phylogenetic signal (Table 2). Five traits – leaf width, leaf 312 

thickness, SLA, leaf circularity, and animal dispersal (marginally significant) – also significantly 313 

affected plant species’ abundances among sites (σ2
b > 0, equation 2, Table 2), indicating that 314 

different sites selected different species based on these three functional traits. Individually, the 315 

five traits reduced the phylogenetic variance in community composition (as measured by 316 

reduction in σ2
c in equation 3 when including these traits) by 18%, 8%, 7%, 2%, and 1%, 317 

respectively. Traits that did not pass our two-steps selection individually explained negligible 318 

amount of the phylogenetic variance (all <1% and mostly ~0%, data not shown), verifying our 319 
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initial selection of traits.  Including all five traits in the final model reduces the phylogenetic 320 

variation σ2
c by 57%. Thus, the many functional traits we measured in this study can only reduce 321 

the phylogenetic signal in community composition by 57%. Converting the data to 322 

presence/absence and using the PGLMM equivalent of equation 3 reduces σ2
c by 89% (Appendix, 323 

Table S3). Thus, functional traits explained more of the phylogenetic patterns in the 324 

presence/absence of species from communities than in their log abundance, although functional 325 

traits still cannot fully explain the phylogenetic pattern in community composition. 326 

Does any environmental variable drive phylogenetic pattern? 327 

There was significant variation among species in their responses to most of the environmental 328 

variables we measured, including soil conditions, canopy shade, precipitation, and minimum 329 

temperature (Table 4). However, there was no phylogeny signal in the differences among species 330 

in their responses to these variables (last column in Table 4). Therefore, no environmental 331 

variables we measured can explain the observed phylogenetic pattern in community composition. 332 

Using the PGLMM with the presence/absence data, species’ responses to minimum temperature 333 

and soil pH, Ca, and Mn concentration all show phylogenetic signal. That is, related species tend 334 

to occupy similar sites as measured by these environmental variables (Appendix Table S4). 335 

Therefore, functional traits associated with these environmental variables could potentially be 336 

responsible for phylogenetic patterns in presence/absence of species among communities. 337 

Discussion 338 

We used our extensive database of functional traits to answer a key question in trait-based and 339 

phylogeny-based community ecology: Can information about functional traits explain 340 
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phylogenetic patterns in community composition? Phylogenetically related plant species are 341 

more likely to reach similar abundances in the same pine barren communities of central 342 

Wisconsin, yet we could not explain this pattern completely using information about species’ 343 

functional traits. When functional traits that themselves showed phylogenetic signal among 344 

species were included in the phylogenetic linear mixed model (PLMM) for log abundances of 345 

species in communities, that component of the residual variance having phylogenetic covariances 346 

decreased by only 57%. The decrease in the phylogenetic component of residual variation was 347 

89% in the analyses of presence/absence data, yet even this leaves residual phylogenetic pattern 348 

in the unexplained variation in the presence/absence of species among communities. Thus, even 349 

though we measured 15 functional traits, including most of the standard functional traits used to 350 

analyze plant community structure, we could not fully explain the phylogenetic patterns in 351 

community composition. This suggests that there are either important functional traits that we 352 

have not measured, or that there are phylogenetic processes unrelated to functional traits that we 353 

have not identified. In either case, these results suggest that including phylogenetic information 354 

in addition to functional traits provides further insights into the processes affecting community 355 

assembly. 356 

When using the subset of 55 species that occurred in three or more communities, the PLMM 357 

(and PGLMM), but not permutation tests, found statistically significant phylogenetic patterns. 358 

Ives & Helmus (2011) showed that phylogenetic mixed models have greater statistical power 359 

than the metrics like PSE and MPD used with permutation tests. Simulations (Appendix Text S1) 360 

show that PLMM analyses tended to have, if anything, incorrectly low Type I error rates, 361 

implying that our PLMM results were not the result of false positives. We can thus conclude that 362 
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closely related species are more likely to co-occur and share similar abundances than expected 363 

by chance in these pine barren communities. 364 

Incorporating functional traits reduced the phylogenetic component of residual variation in 365 

species composition, what could explain the remaining phylogenetic component? Some 366 

unknown historical process might account for this residual phylogenetic variation (Fig. 1B, IV). 367 

However, our sites are all located within 100 km with each other, making it unlikely that 368 

historical biogeographical processes strongly affect the composition of these communities. It 369 

seems more likely that the main source of phylogenetic patterns that were not explained by our 370 

measured functional traits is additional unmeasured functional traits. Further analyses of the 371 

presence/absence data using PGLMMs suggested that soil conditions (pH, Ca, and Mn levels) 372 

and climate (minimum temperature) are potential driving variables for the residual phylogenetic 373 

patterns (Appendix Table S3). Traits associated with plant responses to these gradients in 374 

environmental conditions could thus account for more of the residual phylogenetic patterns. The 375 

functional traits we measured, however, are traits that are unlikely to capture species-specific 376 

responses to soil and climatic conditions, and we do not have information on likely traits such as 377 

root structure, micorrhizal associations, frost tolerance, etc. We expect such traits might be able 378 

to explain more of the phylogenetic pattern in community composition. 379 

We found that functional traits could explain a greater part of the phylogenetic component of the 380 

pattern of species presence/absence (89%) than of species abundances (57%). This is unlikely to 381 

be a statistical artifact. Because we used only the most common 55 species, detection of species 382 

in sites where they occur is likely to be high. In contrast, we expect considerable within-species 383 

variation in our estimates of abundance. Because within-species variation will decrease 384 

phylogenetic signal (Ives et al. 2007), we would expect less residual phylogenetic variation in 385 
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the abundance data than in the presence/absence data, the opposite of what we found. Therefore, 386 

our results suggest that the functional traits we measured have a greater effect on the overall 387 

suitability of sites for species than the finer-tuned quality of the sites to support large 388 

populations, supporting the argument that including abundance data in phylogenetic community 389 

analyses provides more information about community assembly (Freilich & Connolly, 2015). 390 

Implications 391 

Our results have several implications for community ecology. First, it is clear that studying 392 

community composition should incorporate analyses of both phylogenetic structure and 393 

functional traits. Phylogenetic and trait information clearly complement each other in allowing 394 

sophisticated analyses that can partition the amount of phylogenetic signal in community 395 

composition that is associated with functional trait variation (Fig. 1). Our results provide 396 

empirical support from community ecology for the argument that phylogenies can provide more 397 

information than a set of discretely measured traits (Vane-Wright et al. 1991; Cadotte et al. 398 

2009). Although functional traits are necessary to accurately infer the processes driving 399 

phylogenetic patterns (Kraft et al. 2007; Cavender-Bares et al. 2009), functional traits alone may 400 

often fail to provide a complete picture of community structure.  401 

Second, model-based methods are being increasingly applied in ecology because they are more 402 

interpretable, flexible, and powerful than either null models or conventional algorithmic 403 

multivariate analyses (Warton et al. 2014). With phylogenetic linear mixed models (PLMM), we 404 

not only detected phylogenetic patterns in community composition, but also assessed the extent 405 

to which these could be explained by functional traits. The ability to combine both phylogenies 406 

and functional traits into the same statistical model using PLMMs (and PGLMMs) provides an 407 
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integrated and quantitative framework for analyzing ecological communities and predicting 408 

abundance of one taxon from others.  409 

Finally, we can use phylogenetic analyses to suggest possible unmeasured functional traits that 410 

underlie patterns in community composition and that therefore should be measured. If species 411 

respond differently to an environmental variable, and if these differences are phylogenetic (i.e., 412 

related species respond to the environmental variable in similar ways), then there is likely to be a 413 

functional trait or traits that underlie the response of species to this environmental variable. In 414 

our study, the phylogenetic patterns in species responses to edaphic conditions like soil 415 

chemistry highlighted our lack of data on the specific functional traits related to roots or 416 

water/nutrient uptake. While this reveals that our study is incomplete, it also provides a valuable 417 

lesson and demonstrates the power of the integrated PLMM approach. 418 

 419 
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Tables: 521 

 522 

Table 1 Estimated variance of random effects for the PLMM (equation 1) used to detect phylogenetic 523 

patterns in community composition. 524 

PLMM σ
2
a σ

2
b σ

2
c σ

2
d σ

2
e p(σ2

c = 0) AIC 

Phylogenetic attraction:             

c ~ Gaussian(0, kron(Im, σ2
cΣspp)) 0.98 0 6.50×10-3 0 0.5154 0.008 3900 

Phylogenetic repulsion:             

c ~ Gaussian(0, kron(Im, σ2
c (Σspp)

-1) 0.98 0 0 2.28×10-2 0.5308 0.496 3906 

Non-nested model:                           

c removed 
0.98 2.29×10-2 - 0 0.5306 - 3904 

 525 

  526 
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Table 2 Phylogenetic signal and site variation for each functional trait. P-values for the null hypothesis σ2
b 527 

= 0 (equation 2) implying no difference among sites in the effects of trait values on log abundance are 528 

given in the column labeled p(σ2
b = 0). Functional traits with strong phylogenetic signal and p(σ2

b = 0) < 529 

0.1 are considered to be important in explaining phylogenetic patterns.  530 

Trait Pagel’s λ K p(σ2
b = 0) 

Leaf specific area (SLA, m2 ⁄ kg) 0.70** 0.26** 0.002 

Leaf circularity (Dimensionless) 1.00*** 0.71*** 0.001 

Leaf thickness (mm) 0.96*** 1.80*** 0.001 

Leaf width (cm) 0.98*** 0.56*** 0.008 
§Animal dispersal (Yes or no) 0.65*** 0.28** 0.054 

Life cycle (Annual or non-annual) 0.00 0.30 0.479 

Growth habit (woody or non-woody) 1.08*** 0.24** 0.500 

Pollination mode (Biotic or abiotic) 0.00 0.08 0.500 

Seed mass (g/seed) 0.56 0.30 0.373 

Leaf dry mass content (LDMC, %) 0.51 0.16 0.500 

Stem dry mass content (SDMC, %) 0.00 0.14 0.500 

Plant height (cm) 0.71** 0.17** 0.500 

Leaf length (cm) 0.96*** 0.32** 0.500 

Leaf carbon content (%) 0.65** 0.26** 0.500 

Leaf nitrogen content (%) 0.34 0.09 0.334 

Wind dispersal (Yes or no) 1.17*** 0.46*** 0.265 

Unassisted dispersal (Yes or no) 0.00 0.15 0.500 

* p < 0.05, ** p < 0.01, *** p < 0.001 531 

  532 
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Table 3 Reduction of the phylogenetic variance in community composition caused by the inclusion of 533 

functional traits (equation 3). 534 

Trait σ
2
c with traits σ

2
c without traits 100 × σ2

c (with traits)/σ
2
c (without traits)  

Leaf width 0.005302 0.006457 17.89 

Leaf thickness 0.005921 0.006457 8.30 

SLA 0.006024 0.006457 6.71 

Leaf circularity 0.006310 0.006457 2.28 

Animal dispersal 0.006380 0.006456 1.18 

SLA + circularity + thickness 

+ Leaf width + Animal 

dispersal 

0.002804 0.006480 56.73 

 535 

  536 
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Table 4 Variation in the response of species abundances to environmental variables (equation 4). 537 

Although 13/20 environmental variables generated variation in species composition among communities, 538 

none of these showed phylogenetic signal in which related species responded more similarly to the 539 

environmental variable.  540 

 541 

Environmental variables 
P-values σ2

g (no 

phylogenetic signal) 

P-values for σ2
h 

(phylogenetic signal) 

Minimum temperature < 0.001 0.500 

Precipitation < 0.001 0.500 

Canopy shade 0.002 0.500 

Total exchange capacity 0.002 0.500 

Organic matter 0.001 0.500 

pH < 0.001 0.500 

N < 0.001 0.500 

P 0.039 0.500 

Mg 0.030 0.500 

K 0.007 0.500 

Na < 0.001 0.500 

Mn < 0.001 0.354 

Ca < 0.001 0.122 

Clay 0.110 - 

Silt 0.070 - 

Sand 0.117 - 

Fe 0.500 - 

S 0.458 - 

Zn 0.500 - 

Al 0.500 - 

 542 
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Figures: 543 

Figure 1 Schematic diagram of the conceptual framework of the study. (A) Evolution is the 544 

ultimate source of all trait values, although only some traits have phylogenetic signal that reflects 545 

phylogenetic history (arrows 2, 4 and 5). Other traits do not (arrows 1 and 3), possibly because 546 

these traits evolve rapidly or experience convergent evolution. Community composition is 547 

determined by unmeasured and measured traits, and also by additional processes that could 548 

generate phylogenetic signal, such as biogeographical patterns in the distribution of species. 549 

Phylogenetic patterns in community composition can be generated from measured and 550 

unmeasured traits with phylogenetic signal (arrows 7 and 8), and by other phylogenetic processes 551 

(arrow 6). The question we address is how much of the phylogenetic signal in community 552 

composition can be explained by measured functional traits, and whether after accounting for 553 

these traits there is residual phylogenetic signal that could have been generated by unmeasured 554 

traits or other phylogenetic processes. (B) Traits and phylogeny contain overlapping and 555 

complementary information about how communities are assembled. Here, we focus on 556 

estimating the proportion of this overlapping information that the phylogeny contains (i.e., the 557 

magnitude of i relative to i + ii + iii). Note that we do not try to explain the proportion of 558 

overlapping information that functional traits contain (i.e., the magnitude of I relative to I + II + 559 

III) due to our inability to estimate the amount of information provided by unmeasured traits and 560 

hence estimate (I + II + III).  561 

Figure 2:  Phylogeny and relative abundance of the 55 common plant species found in the pine 562 

barrens of central Wisconsin in 2012. The area of dots is proportional to abundances within each 563 

site.  564 

 565 
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 566 
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Appendix  572 

In the Appendix we give Tables S1-S4 that correspond to Tables 1-4 in the main text, but using a 573 

PGLMM for presence/absence data. The equations used for the PGLMM are the same as equations 1-4, 574 

but for binomial data; for example, the PGLMM corresponding to equation 1 is 575 

Pr(Yi = 1) = logit-1(α + aspp[i] + bspp[i] + ci + dsite[i]), 576 

with other terms identical. 577 

 578 

 579 

Table S1 Estimated variance of random effects within the phylogenetic generalized linear mixed model 580 

used to detect phylogenetic patterns comparable to equation 1, where phylogenetic attraction and 581 

phylogenetic repulsion are estimated by σ2
c.  582 

 583 

PGLMM σ
2
a σ

2
b σ

2
c σ

2
d p(σ2

c  = 0) 

Phylogenetic attraction:             

c ~ Gaussian(0, kron(Im, σ2
cΣspp)) 

2.84 0 0.0452 0.01 <0.001 

Phylogenetic repulsion:             

c ~ Gaussian(0, kron(Im, σ2
c (Σspp)

-1) 
3.10 0 0.0011 0.19 0.5 

Non-nested model: c removed 
2.83 0 - 0.18 - 

 584 

 585 

 586 

 587 

 588 

 589 
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 590 

 591 

Table S2 Phylogenetic signal and site variation for each functional trait. P-values for the null hypothesis 592 

σ
2
b = 0 (equation 2) implying no difference among sites in the effects of trait values on presence/absence 593 

are given in the column labeled p(σ2
b = 0). Functional traits with strong phylogenetic signal and p(σ2

b = 0) 594 

< 0.1 are considered to be important in explaining phylogenetic patterns.  595 

Trait Pagel’s λ K p(σ2
b = 0) 

Leaf specific area (SLA, m2 ⁄ kg) 0.70** 0.26** 0.005 

Leaf circularity (Dimensionless) 1.00*** 0.71*** 0.005 

Leaf thickness (mm) 0.96*** 1.80*** 0.000 

Leaf width (cm) 0.98*** 0.56*** 0.002 

Animal dispersal (Yes or no) 0.65*** 0.28** 0.002 

Wind dispersal (Yes or no) 1.17*** 0.46*** 0.020 

Life cycle (Annual or non-annual) 0.00 0.30 0.000 

Growth habit (woody or non-woody) 1.08*** 0.24** 0.500 

Pollination mode (Biotic or abiotic) 0.00 0.08 0.500 

Seed mass (g/seed) 0.56 0.30 0.005 

Leaf dry mass content (LDMC, %) 0.51 0.16 0.500 

Stem dry mass content (SDMC, %) 0.00 0.14 0.500 

Plant height (cm) 0.71** 0.17** 0.500 

Leaf length (cm) 0.96*** 0.32** 0.500 

Leaf carbon content (%) 0.65** 0.26** 0.282 

Leaf nitrogen content (%) 0.34 0.09 0.500 

Unassisted dispersal (Yes or no) 0.00 0.15 0.500 

* p < 0.05, ** p < 0.01, *** p < 0.001 596 

 597 

 598 

 599 

 600 

 601 
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Table S3 Proportion of phylogenetic signal of species composition in communities explained by 602 

individual functional trait and multiple functional traits. With selected multiple functional traits, about 603 

61% percent of phylogenetic variation was explained, suggesting that phylogenies can provide additional 604 

information about community assembly beyond measured functional traits. See equation 3 in the Methods 605 

section for details about models. 606 

 607 

Trait σ
2
c with trait σ

2
c without trait 100 × σ2

c (with trait)/σ
2
c (without trait) 

Leaf width 0.018105 0.041847 56.74 

Leaf thickness 0.030925 0.041847 26.10 

Leaf circularity 0.035442 0.041854 15.32 

SLA 0.036811 0.041828 12.00 

Wind dispersal 0.039946 0.041844 4.54 

Animal dispersal 0.041534 0.041862 0.78 

Leaf width + Leaf thickness + 

Leaf circularity + SLA + Wind 

dispersal + Animal dispersal 

0.004616 0.041834 88.97 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 
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Table S4 There are strong variations in species’ relationships between their presence/absence and most 619 

environmental variables (p value of each environmental variable was presented in the P-values for 620 

variation column). Four of these variations show phylogenetic signal. For environmental variable that has 621 

no strong variation in species’ responses, no further test for phylogenetic signal of variation was 622 

conducted (thus “-” in the third column). P-values that are less than 0.05 are in bold. 623 

 624 

Environmental variables P-values for variation 
P-values for phylogenetic 

signal of variation 

Minimum temperature <0.001 0.002 

Precipitation <0.001 0.500 

Canopy shade 0.001 0.500 

Total exchange capacity 0.149 - 

Organic matter 0.161 - 

pH 0.005 <0.001 

N 0.052 - 

P 0.343 - 

Mg 0.500 - 

K 0.206 - 

Na 0.004 0.500 

Mn <0.001 <0.001 

Ca 0.012 <0.001 

Clay 0.431 - 

Silt 0.494 - 

Sand 0.500 - 

Fe 0.379 - 

S 0.500 - 

Zn 0.500 - 

Al 0.500 - 

 625 
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Text S1 Code to compare p-values of null hypothesis σ2  = 0 calculated from the 0.5χ2
0 + 0.5χ2

1 626 

mixture distribution and parametric bootstrap. The p-values based on the mixture Chi-square 627 

distribution are conservative (i.e. higher than those from parametric bootstrap). 628 

# packages used 629 

library(ape)  # for phylogeny reading 630 

library(plyr)                                                                631 

library(MASS) 632 

library(dplyr, quietly = TRUE) 633 

library(pez)  # for communityPGLMM function 634 

library(parallel)  # for multiple cores parallel computation, not available  635 

# for Windows operation system 636 

# data: vegetation data, phylogeny 637 

load("d_li_data.RData") 638 

# select 20 sites and 20 species of veg data in 1958 as an example 639 

test = veg.aggr.wide.1958[1:20, 1:20] 640 

test1 = filter(veg.aggr.long.1958, sp %in% names(test), site %in% rownames(te641 

st)) 642 

 643 

# this function calculates log likelihood of the fitted model on observed 644 

# data, then simulates data based on the fitted model, and fits model on 645 

# simulated data and calculates the log likelihood of the fitted model; then 646 

# calculates the p-value of the log likelihood of the fitted model on 647 

# observed data based all simulated ones (i.e. parametric bootstrap); so we  648 

# can compare the p-value get in this way (parametric bootstrap) with the    649 

# one from the mixture Chi-square distribution. 650 

q1_obs_sim = function(veg.long, phylo = pb.phylo, date = 1958, trans = NULL,  651 

    nsim = 100, ncores = 5) { 652 

    # transformation of freq 653 

    if (!is.null(trans)) { 654 

        if (trans == "log") { 655 

            veg.long$Y <- log(veg.long$freq + 1) 656 

        } 657 

         658 

        if (trans == "asin") { 659 

            veg.long <- group_by(veg.long, site) %>% mutate(Y = asin(sqrt((fr660 

eq + 1)/ifelse(date == 1958, 20 + 2, 50 + 2)))) %>% ungroup() %>%  661 

                as.data.frame() 662 

        } 663 

    } 664 

     665 

    veg.long$sp = as.factor(veg.long$sp) 666 

    veg.long$site = as.factor(veg.long$site) 667 

    nspp <- nlevels(veg.long$sp) 668 

    nsite <- nlevels(veg.long$site) 669 

     670 

    # Var-cov matrix for phylogeny 671 

    phy <- drop.tip(phylo, tip = phylo$tip.label[!phylo$tip.label %in% levels672 

(veg.long$sp)]) 673 
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    Vphy <- vcv(phy) 674 

    Vphy <- Vphy[order(phy$tip.label), order(phy$tip.label)] 675 

    Vphy <- Vphy/max(Vphy) 676 

    Vphy <- Vphy/det(Vphy)^(1/nspp) 677 

    Vphy.inv = solve(Vphy) 678 

     679 

    show(c(nlevels(veg.long$sp), Ntip(phy)))  # should be equal 680 

     681 

    # random effect for site 682 

    re.site <- list(1, site = veg.long$site, covar = diag(nsite)) 683 

    re.sp <- list(1, sp = veg.long$sp, covar = diag(nspp)) 684 

    re.sp.phy <- list(1, sp = veg.long$sp, covar = Vphy) 685 

    # sp is nested within site, to test phylo attraction or repulsion 686 

    re.nested.phy <- list(1, sp = veg.long$sp, covar = Vphy, site = veg.long$687 

site) 688 

    re.nested.rep <- list(1, sp = veg.long$sp, covar = Vphy.inv, site = veg.l689 

ong$site) 690 

     691 

    z <- communityPGLMM(Y ~ 1, data = veg.long, family = "gaussian", sp = veg692 

.long$sp, site = veg.long$site, random.effects = list(re.sp, re.sp.phy, re.si693 

te, re.nested.phy), REML = F, verbose = F, s2.init = 0.1) 694 

    show(z$ss) 695 

    z0 <- communityPGLMM(Y ~ 1, data = veg.long, family = "gaussian", sp = ve696 

g.long$sp, site = veg.long$site, random.effects = list(re.sp, re.sp.phy, re.s697 

ite),  698 

        REML = F, verbose = F, s2.init = 0.1) 699 

    z.rep <- communityPGLMM(Y ~ 1, data = veg.long, family = "gaussian", sp =700 

 veg.long$sp, site = veg.long$site, random.effects = list(re.sp, re.sp.phy, r701 

e.site, re.nested.rep), REML = F, verbose = F, s2.init = 0.1) 702 

    show(z.rep$ss) 703 

     704 

    # observed ouput, p-values are get from Chisq approx. 705 

    output_obs = data.frame(LRT_attract = (z$logLik - z0$logLik), p_attract =706 

 pchisq(2 * (z$logLik - z0$logLik), df = 1, lower.tail = F)/2, LRT_repulse = 707 

(z.rep$logLik - z0$logLik), p_repulse = pchisq(2 * (z.rep$logLik - z0$logLik)708 

, df = 1, lower.tail = F)/2, obs_sim = "obs") 709 

     710 

    # the fitting model z0: log(y_i + 1) = alpha + a_spp[i] + 711 

    # b_spp.phy[i] + c_site[i] + err[i]  712 

    alpha = z0$B  # intercept, overall mean of all sp 713 

    alpha.se = z0$B.se  # SE 714 

    LRT_sim = mclapply(1:nsim, function(x) { 715 

        # multi-cores 716 

        set.seed(x) 717 

        # z0$ss: random effects' SD for the cov matrix \sigma^2 * V, in order718 

: [1] 719 

        # sp with no phylo; [2] sp with Vphy; [3] site random effect 720 

        a_spp = rnorm(nspp, 0, z0$ss[1])  # simulate a_spp 721 
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        # simulate b_spp.phy 722 

        b_spp.phy = MASS::mvrnorm(1, mu = rep(0, nspp), Sigma = z0$ss[2] * Vp723 

hy) 724 

        mu_spp = alpha + a_spp + b_spp.phy  # mean freq of sp 725 

        c_site = rnorm(nsite, 0, z0$ss[3])  # site random 726 

        mu_spp_site = rep(mu_spp, nsite) + rep(c_site, each = nspp)  # each s727 

p at each site 728 

        y_i = rnorm(nspp * nsite, mean = mu_spp_site, sd = alpha.se)  # inclu729 

de SE of intercept 730 

        y_i_count = ceiling(exp(y_i) - 1)  # exp transf and round to positive731 

 interge 732 

        test1_sim = data.frame(sp = names(mu_spp_site), site = rep(1:nsite,  733 

            each = nspp), Y = y_i, freq = y_i_count) 734 

         735 

        test1_sim$sp = as.factor(test1_sim$sp) 736 

        test1_sim$site = as.factor(test1_sim$site) 737 

         738 

        # refit models on simulated data random effect for site 739 

        re.site.sim <- list(1, site = test1_sim$site, covar = diag(nsite)) 740 

        re.sp.sim <- list(1, sp = test1_sim$sp, covar = diag(nspp)) 741 

        re.sp.phy.sim <- list(1, sp = test1_sim$sp, covar = Vphy) 742 

        # sp is nested within site 743 

        re.nested.phy.sim <- list(1, sp = test1_sim$sp, covar = Vphy, site = 744 

test1_sim$site) 745 

        re.nested.rep.sim <- list(1, sp = test1_sim$sp, covar = Vphy.inv, sit746 

e = test1_sim$site) 747 

         748 

        z_sim <- communityPGLMM(Y ~ 1, data = test1_sim, family = "gaussian",749 

  750 

            sp = test1_sim$sp, site = test1_sim$site, random.effects = list(r751 

e.sp.sim, re.sp.phy.sim, re.site.sim, re.nested.phy.sim), REML = F, verbose =752 

 F, s2.init = 0.1) 753 

        # show(z_sim$ss) 754 

        z0_sim <- communityPGLMM(Y ~ 1, data = test1_sim, family = "gaussian"755 

, sp = test1_sim$sp, site = test1_sim$site, random.effects = list(re.sp.sim,  756 

                re.sp.phy.sim, re.site.sim), REML = F, verbose = F, s2.init =757 

 0.1) 758 

        # show(z0_sim$ss) 759 

        z.rep_sim <- communityPGLMM(Y ~ 1, data = test1_sim, family = "gaussi760 

an", sp = test1_sim$sp, site = test1_sim$site, random.effects = list(re.sp.si761 

m, re.sp.phy.sim, re.site.sim, re.nested.rep.sim), REML = F, verbose = F, s2.762 

init = 0.1) 763 

        # show(z.rep_sim$ss) 764 

         765 

        # log lik of refitted models on simulated data 766 

        data.frame(LRT_attract = (z_sim$logLik - z0_sim$logLik), LRT_repulse 767 

= (z.rep_sim$logLik - z0_sim$logLik)) 768 

    }, mc.cores = ncores) 769 
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     770 

    771 

        # output results 772 

    list(output_obs, ldply(LRT_sim)) 773 

} 774 

 775 

qqq = q1_obs_sim(test1, trans = "log", nsim = 1000, ncores = 6) 776 

saveRDS(qqq, "qqq.rds") 777 

qqq = readRDS("qqq.rds") 778 

qqq[[1]] 779 

##   LRT_attract p_attract  LRT_repulse p_repulse obs_sim 780 

## 1   0.3006013 0.2190598 -1.82719e-05       0.5     obs 781 

head(qqq[[2]]) 782 

##   LRT_attract  LRT_repulse 783 

## 1  -0.9611412 -15.68606765 784 

## 2   0.1303866  -0.14712624 785 

## 3  -2.9661583   0.06437319 786 

## 4  -0.2152182  -1.91538503 787 

## 5  -0.4204626   0.04073069 788 

## 6  -1.3125998  -0.40523844 789 

qqq[[2]]$obs_sim = "sim" 790 

q1_sim = rbind(select(qqq[[1]], -p_attract, -p_repulse), qqq[[2]]) 791 

1 - (rank(q1_sim$LRT_attract)[1] + 1)/1001  # 0.12088 vs 0.219 from Chisq 792 

## [1] 0.1208791 793 

1 - (rank(q1_sim$LRT_repulse)[1] + 1)/1001  # 0.40959 vs 0.5 from Chisq 794 

## [1] 0.4095904 795 
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