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 Abstract 

This study examines how processes such as reward/aversion and attention, which are 

often studied as independent processes, in fact interact at a systems level. We 

operationalize attention with a continuous performance task and variables from signal 

detection theory, and reward/aversion with a keypress task using variables from relative 

preference theory. We find that while the relationship between reward/aversion and 

attention is functionally invariant, a power law formulation akin to the Cobb-Douglas 

production function in economics provides the best model fit and theoretical explanation 

for the interaction. These results indicate that a decreasing signal-to-noise with signal 

detection results in higher loss aversion. Furthermore, the estimated exponents for the 

multiplicative power law suggest capacity constraints to processing for attention and 

reward/aversion. These results demonstrate a systemic interaction of attention and 

reward/aversion across subjects, with a quantitative schema raising the hypothesis that 

mechanistic inference may be possible at the level of behavior alone. 
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Introduction 

Reward/aversion processing and attention have been independently studied for more than 

60 years, with quantitative descriptions of matching in reinforcement theory [1,2] and 

signal detection theory (SDT; [3-5]) providing early examples of mathematical 

specifications for these behavioral processes. Since these respective frameworks for 

reward/aversion and attention were developed, they have been extended by development 

of hedonic deficit theory [6,7], prospect theory [8,9], and relative preference theory 

[10,11] for reward/aversion, and digital communication incorporating demodulators for 

attention [12]. Across these reward/aversion frameworks, a basic calibration is described 

between (a) the intensity and valence of an individual’s emotion and/or wanting, and (b1) 

an environmental contingency for a goal-object (e.g., the probability of receiving a 

particular concentration of glucose in a water droplet; [1,2]), (b2) a hedonic deficit 

around such a goal-object [6,7], (b3) market or group evaluations of a goal-object [8,9], 

or (b4) the pattern of experience around such goal-objects [10,11]. Of these four 

frameworks for calibrating value, only one, namely matching, has been related to signal 

detection during attention [13], and this relationship was (i) purely theoretical and (ii) not 

validated by neuroscience data or human behavioral data.  

 

Modern overview models of attention include components such as “salience filtering”, 

“sensitivity control”, and “competitive selection” [14], which relate to aspects of 

reward/aversion [1,2,6,7,9,11]. Neuroscience data suggests that similar brain regions and 

neurotransmitters such as dopamine are involved with both reward/aversion and attention 

[15]. Psychopathology studies report alterations in attention with presumed disorders of 
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reward such as major depression or addiction, whereas addictive substances such as 

amphetamine can be used to treat attention deficit disorder [16,17,18]. Such results have 

led some to note that alteration in either reward or attention variables might be used to 

explain effects attributed to the other [19].  

 

Given this background, we explored if there was a mathematical relationship between 

reward/aversion and attention variables. We assessed this question in individuals who 

completed unrelated reward/aversion and attention tasks. We used two independent tasks 

so that the existence of a mathematical structure could not be predicted from the use of 

one task, or use of the same experimental stimuli across both tasks. For this proof of 

existence study, we focused on mathematical formulations of reward/aversion and 

attention with strong face validity, namely, relative preference theory (RPT) and the 

original SDT [3,4]. The results of this work have been presented in several talks/meetings 

previously [e.g., 20,21,22], as the manuscript describing these results has gone through 

many rounds of submission since early 2013.   

 

RPT models approach and avoidance behavior within an intrinsic motivation-like 

framework in which no external rewards are provided [23,24], yet participants can 

produce variable amounts of work [25,26] to modulate the time of stimulus viewing. RPT 

encodes fundamental features of the other reward theories [11] and is the only 

formulation of reward/aversion using an information theory variable [27]. To quantify 

RPT, we used a validated keypress task (e.g., [11,28-35]) with a beauty stimulus set [28] 

to produce variables K and H that encode, respectively, mean keypress number and 
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Shannon entropy (i.e., information; [27]; Figure 1a). These variables produce a valuation 

graph, which has been interpreted to relate “wanting” of stimuli [28] to the uncertainty 

associated with making a choice [11], and closely resembles the value function in 

prospect theory [8]. Keypress measures of value can be connected to neural systems [28-

34]. It should be noted that pattern variables such as the Shannon entropy have been 

shown to be important metrics for quantifying neural processing [36-38], and define the 

“information” that is processed in cognitive neuroscience [11,39].   

 

For attention function that could be quantified by SDT we used a continuous performance 

task (CPT) given it is one of the most widely used neuropsychological measures of 

attention [40-42]. Subjects participating in a CPT view a continuous presentation of 

changing stimuli, such as a sequential presentation of letters, and respond to designated 

targets. Signal probability (proportion of target to non-target stimuli and cuing) can be 

modified with AX-CPTs [43-45] that alter the classic CPT so subjects respond to a target 

(e.g., the letter “X”) only if it is preceded by a cue (e.g., the letter “A”). Along with 

allowing measurement of aspects of sustained attention and impulsivity [41], the AX-

CPT differs from traditional CPTs for integrating features of working memory [46-48] 

and interference suppression [44]. In the context of SDT [3,4,49], AX-CPTs allow the 

quantification and distinction of sensitivity (d’) from response bias (β) with interference 

suppression [50]. The d’ measure provides a metric of separation between the signal and 

noise distributions, and quantifies the degree to which targets are successfully 

discriminated from non-targets given attention capacity [4]. The β variable measures 

response style, where low values indicate a willingness to accept many false alarms to 
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keep hits high. This perspective on SDT has received widespread acceptance within 

cognitive neuroscience (e.g., [5,42,51,52]). 

 

We used data from a set of healthy subjects, and assumed individual differences across 

the two tasks were stable to the degree that a definable mathematical structure was 

apparent between RPT and SDT variables. Such an assumption is warranted for RPT 

across temporal intervals of 1-2 weeks [11]. We first tested for mediation between 

variables (a statistical approach), and if none were found, then used an iterative modeling 

approach [53] to determine if any mathematical structure existed like a manifold, 

function, or boundary envelope. We hypothesized that a relationship would be observed 

between β, which describes the threshold one sets (i.e., a form of bias; [54,55]) between 

signal and noise distributions to determine the proportion of hits versus false alarms, and 

the {K, H} variables. We further hypothesized that no relationship would be observed 

between d’ from SDT, and {K, H}, given d’ relates to assessment of the proximity of 

noise and signal distributions [54].  

 

Methods 

Subjects 

All subjects were recruited by advertisements from the New England region. Subject 

recruitment stopped after a set temporal window for recruitment, where target recruitment 

for healthy controls sought 50-100 subjects. This resulted in 77 subjects meeting criteria 

to be considered a healthy control in the Northwestern University and MGH Phenotype 

Genotype Project in Addiction and Mood Disorder (PGP; http://pgp.mgh.harvard.edu), 
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who were not family members of a participant with cocaine dependence and 

polysubstance abuse, or a participant with major depressive disorder. Of these 77 

subjects, 47 subjects were determined to have complete behavior, fMRI, and structural 

data for two reward/aversion tasks and a CPT task. In the analysis presented in the 

current manuscript, the data from the beauty keypress task and the CPT task are reported. 

Please see Data Analysis section for information about observation inclusion. For these 

subjects, the mean age was 31.0 years (SD 10.4), mean educational history was 15.6 + 

2.6 years, and subjects were 24/47 (51.1%) female, and 40/47 (85.1%) right-handed, with 

the following race identification: 36/47 European-American, 1/37 Native American, 6/47 

African-American, and 4/47 Asian. All subjects underwent a clinical interview with a 

physician (psychiatrist) that included the Structured Clinical Interview for Diagnosis – 

Axis I (SCID-I/P; [56]). Race was determined by individual self-identification on a 

standardized form [57], and handedness via the Edinburgh Handedness Inventory [58]. 

Eligible subjects were age 18-55, without any current or lifetime DSM-IV Axis I disorder 

or major medical illness known to influence brain structure or function, including 

neurologic disease, or HIV and Hepatitis C as determined by assay. Medical illness was 

assessed via physician-led review of systems and physical exam. Female subjects were 

studied during their mid-follicular phase based upon self-reported menstrual history, with 

confirmation at the time of testing based on hormonal testing with a urine assay. All 

subjects were studied at normal or corrected normal vision. 

 

Ethics Statement 
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This study was approved by the Institutional Review Board (IRB) of Massachusetts 

General Hospital (i.e., Partners Human Research Committee, Partners Healthcare). All 

subjects signed written informed consent prior to participation, following procedures 

approved by the IRB. All experiments were conducted in accordance with the principles 

of the Declaration of Helsinki. 

 

Experimental Paradigms  

a. Beauty Stimulus Set & Keypress Task 

A scheduleless keypress task was used to determine each subject’s relative preference 

toward the ensemble of faces [11]. The ensemble of faces included the following 

experimental conditions: beautiful (models) and average (non-models) faces of both 

genders (i.e., beautiful female [BF], average female [AF], beautiful male [BM], and 

average male [AM]; [28]). The keypress procedure was implemented with MatLab 

software. This task captured the reward valuation attributed to each observed face, and 

quantified positive and negative preferences involving (i) decision-making regarding the 

valence of behavior, and (ii) judgments that determine the magnitude of approach and 

avoidance [11,28]. The objective was to determine how much effort each subject was 

willing to trade for viewing each facial expression compared to a default viewing time. 

Subjects were told that they would be exposed to a series of pictures that would change 

every eight seconds (the default valuation of 6 seconds + 2 second decision block; Figure 

1a) if they pressed no keys. As published previously [11,28-35], each experimental 

stimulus would initially be presented for 0.2s, and be replaced by a fixation point for 

1.8s, until the face came back at 2s and they could alter viewing time via keypressing or 
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not. Keypressing to decrease or increase viewing time had a symmetric resistive function 

characterizing how more keypresses would result in ever smaller decrements or increases 

in viewing time. If they wanted a picture to disappear faster, they could alternate pressing 

one set of keys (#3 and #4 on the button box), whereas if they wanted a picture to stay 

longer on the screen, they could alternate pressing another set of keys (#1 and #2 on the 

button box). Subjects had a choice to do nothing (default condition), increase viewing 

time, decrease viewing time, or a combination of the two responses (Figure 1a). A 

“slider” was displayed to the left of each picture to indicate total viewing time. Subjects 

were informed that the task would last approximately 20 minutes, and that this length was 

independent of their behavior, as was their overall payment. The dependent measure of 

interest was the amount of work, in number of keypresses, which subjects traded for face 

viewtime. Keypress results could also be combined as total viewtime relative to the 

default baseline. 

b. Attention Task 

Subjects performed a continuous performance task (CPT; [42]) using visual rather than 

auditory stimuli [44]. In this task, subjects were required to respond to an “A” (target) 

following a “Q” (cue) after three intervening letters. This task added interference and 

divided attention load by, respectively, including false cues and/or false targets, and by 

intermingling a subset of QxyzA sequences within each other (e.g., QxQyAzA). Each 

letter was presented for 200ms and followed by a fixation point for 800ms. The task was 

administered as three “blocks” in the task, with each block lasting 60 seconds. Subjects 

responded to targets with a button press and did not respond to non-targets. Following a 

target detection framework [3-5], hits, missies, correct rejections, and false alarms were 
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assessed and used in statistical analyses.  

 

Data Analysis 

a. Computation of Operative Variables and Quality Assurance 

 Beauty Keypress Task 

Descriptive Statistical Measures 

Descriptive statistics were used to summarize keypress responses.  We computed the 

mean intensity of K+ and K- location estimates (mean of the positive and negative 

responses respectively), and the Shannon entropy (uncertainty of making a choice; [27]) 

for the positive and negative keypress responses following procedures detailed elsewhere 

[10,11]. Please see Table 1 for summary statistics of K+, K-, H+ and H-. Observations 

with a mean keypress of 0 were excluded from the analysis since the logarithmic 

transformation of 0 does not exist. There were 7 observations with mean K- value of 0 

(from 4 subjects) and 50 observations with a mean K+ value of 0 (from 26 subjects). 

Therefore, models with H+ as the dependent variable used 138 observations for the 

analysis, and models with H- as the dependent variable used 181 observations for the 

analysis. No exclusion of observations led to an exclusion of a participant. 

Testing for Relative Preference Theory Structure 

Location estimates (K+, K-) and Shannon entropy estimates (H+, H-) were evaluated to 

assess if graphical structure was observed in the form of power function with individual 

data that was consistent across subjects, and also observed as an envelop for group data 

with the same functional form as the individual data. These procedures are described 
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elsewhere [10,11], and shown for one subject from the cohort and for group data from 

this cohort in Figure 1c.    

Assessing recurrent relationships between location/dispersion measures 

Power law scaling was assessed between variables by mathematical evaluation of a 

power law function fit to the observed graphical structure.  If there was a recurrent 

structure confirmed across experimental conditions, then the similarities in graphical 

structure were assessed between (i) group data, and (ii) individual graphs.  The graphical 

similarity was evaluated for each individual to determine if there was a similar 

mathematical form (albeit with different parameter fits) to the envelope from group data. 

Attention Task 

Signal detection estimates of β and d’ were computed after first computing the signal 

detection parameters for hits and false alarms [4,5]. Hits were computed as the number of 

correct responses for identifying targets to the total number of (true) targets. False alarms 

were calculated as the number of responses for non-targets to the total number of false 

targets and false cues. With these hit and false alarm rates, we then computed β (beta) 

and d’ (dprime) following standard SDT metrics (see Table 1) with the following Matlab 

code: 

<MatLab code for computing d-prime and beta>  

function [dprime, beta] = sdt(hit, fa)  

z_hit = norminv(hit, 0, 1);  

z_fa = norminv(fa, 0, 1);  

dprime = z_hit - z_fa;  

beta = normpdf(z_hit, 0, 1)/normpdf(z_fa, 0, 1); 
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b. Mediation Analysis 

Kim and colleagues [10,11] found a significant relationship between K (independent 

variable) and H (dependent variable). To understand the role of β, we first examined 

whether H plays a mediating role between K and β, and found no significant relationship 

between H+ or H- and β. We then examined whether K plays a mediating role between β 

and H. Here, we found that while β has an insignificant effect on K+, its influence on K- 

is significant. Since the coefficients of β and K+/K- are both significant in a model that 

examines their impact on H+/H- (see Table 2), it seems that K partially mediates the 

relationship between β and H. We, therefore, decided to focus on a model that includes 

both K and β as explanatory variables and evaluate how they influence H.  

 

c. Assessment of Interactions between RPT and SDT Variables 

We assessed the graphical interaction of {K, H, β} through iterative modeling [53], as 

done on prior occasions to determine if any mathematical structure existed like a 

manifold, function, or boundary envelope [10,11]. Given observation of two-simplex 

manifolds for the positive and negative components of the KH value function (Figure 2a-

c), we checked for model stability, using random number generation to produce initial 

parameter estimates, and found no change in the estimated parameters. The fitting for 

these manifolds indicated H was a function of K and β in (a) a logarithmic relationship 

[H = log a + b⋅log β + c⋅log K; e.g., Figure 2a-c],  (b) a multiplicative power law 

formulation [H = a⋅βb⋅Kc], or (c) an additive power law formulation [H = a + βb + Kc; 
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Table 2]. Fits for these three models were tabulated in Table 3, and computed in the 

following manner.  

 

To assess the strength of the fits for these three formulations of H α {K, β}, we computed 

Root Mean Square Error (RMSE) for each formulation to allow a comparison between 

fits. RMSE was computed as follows: , where iY
∧

 is the predicted 

value of the dependent variable, iY  is the observed value of the dependent variable for 

observation i of n. We also computed R, where R is the Coefficient of Determination and 

is the square root of the ratio of Regression Sum of Squares (SSR) to Total Sum of 

Squares (SST). While SSR is the measure of the variation of the fitted regression values 

around the mean, SST is the measure of the variation of the observed values around the 

mean. Therefore,  , where iY
∧

 is the predicted value of the dependent 

variable, iY  is the observed value of the dependent variable for observation i of n and, Y
−

 

is the average observed value of the dependent variables for all n observations. 

 

In parallel with these assessments of functional fits between variables, we used the results 

of the power law estimation to get a better understanding of how β influences H+/H- and 

K influences β (Table 4). To partial out the effects of β on H+/H-, we computed the 

predicted values of H+/H- as follows: 

1. Use the respective estimated coefficients for β and K 
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2. Use the intercept estimated from the approach model as a common intercept for 

both approach and avoidance i.e., a = 1.522 

3. Keep K constant for both K+ and K- at mean K+=12.36 

4. Finally, vary β in small steps over the range [0,6] (please note the range of β in 

the data is slightly smaller at [0.75, 5.47]) to compute H+ and H-   

This allowed a plotting of the predicted values of H+ and H- (y-axis) vs. β (x-axis), and 

assessment of their (i) ratio and (ii) difference as proxy measures of loss aversion (see 

Figure 3a).  

 

To interpret this interaction, we further evaluated rank ordered data, whereby H+ and the 

absolute value of H- are ordered by iterative increases in β from values of 0.01 to 6.00, in 

increments of 0.05 (e.g., 0.01, 0.05, 0.10, 0.15…; see Figure 3b).  

 

Robustness checks that included using the mean value of K- rather than that of K+, and 

using the intercept estimated from the avoidance model rather than the approach model 

did little to change the results. 

 

To assess the potential quantitative interaction between RPT-based metrics of loss 

aversion and SDT-based measures of false alarms suggested in Figure 4a,b, we first 

computed loss aversion in the following way. In prospect theory, loss aversion has been 

defined as (i) the slope of the negative value/utility function (s-) compared to (ii) the 

slope of the positive value/utility function (s+), approximating the absolute value of s-/s+ 

(i.e., |s-/s+|; [9,59,60]). We applied a local definition of loss aversion [61-63] to the 
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individual KH graphs (e.g., Figure 1c), wherein s- and s+ were computed by the integral 

of the curve-fit slope over the 10% of the curve closest to the inflection point or origin: 

 

We then used an absolute value of s-/s+ in a regression analysis with the SDT false alarm 

estimates for divided attention during the continuous performance task. Both linear 

regression and logarithmic regression (via log transformation of the x-axis) were 

performed (and reported) given potential skew in the loss aversion measures. 

 

We used the threshold value of β observed in Figure 4a,b to determine the criterion 

parameter λ. Specifically, we used the illustration in Figure 4a,b to estimate the threshold 

criterion λ for an event where the distribution of noise is N(0,2) and that of the signal is 

N(6,2). Since the noise and signal have equal variances, we can calculate the parameter 

d’ as the distance between the means of the two distributions = 6-0 = 6. β is calculated as

( )
( )

s

n

f
f
λβ
λ

= , where fs(λ) and fs(λ) are the probability mass functions for signal and noise 

respectively. Hence, β is the ratio of the heights of the two distributions at the criterion, 

and using a standard normal table we can see that β = 2.60 when λ = 3.64 

( ) ( ') (3.64 6) 2.60
( ) ( ) (3.64)

s

n

f d
f
λ ϕ λ ϕβ
λ ϕ λ ϕ

 − −
= = = = 

   

 

Results 

K, H, β, d’ data were compiled from 47 healthy subjects (Table 1). 
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Assessment for Mediation: 

Given a known power law relationship between K and H [10,11], we first assessed if 

there was mediation between any three variables, and found none explaining more than 

10% of the variance.  

 

Iterative Modeling {K, H, β}: 

Graphical structure: We assessed the graphical interaction of {K, H, β} through iterative 

modeling [53], and found two-simplex manifolds for the positive and negative 

components of the value function (e.g., Figure 2a-c), across multiple formulations with 

significant parameter fits (Table 2). To check for model stability, we used a range of 

initial parameter estimates and found no change in the results.  

Functional Form of Observed Structure: We examined different functional forms and 

consistently found that K and β as explanatory variables explained 65-83% of the 

variance in H. Three functional forms were observed:  

(a) a logarithmic relationship [H = log a + b⋅log β + c⋅log K; Figure 2a-c],   

(b) a multiplicative power law formulation [H = a⋅βb⋅Kc],  

(c) an additive power law formulation [H = a + βb + Kc].  

 

Between the three functional forms, the multiplicative power law formulation [e.g., 

generalized as H± = d ± a⋅(β ± f)b⋅(K± ± g)c, where fitting parameters d, f, g = Ø with the 

current data] produced the lowest rank root mean square errors (RMSE) across both 

approach and avoidance fits (summarized in Table 3). This function is commonly 

referred to in economics as the Cobb-Douglas production function [64]. When fitting of 
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the three formulations for {K, H, β} was tried with the constraint that the functions pass 

through the origin, all RMSE measures worsened, which contrasts with prospect theory 

[8,9] whereby all utility functions intersect the origin. We also verified that β was not 

significantly influenced by H+ or H- and confirmed the same (Table 4). 

 

Iterative Modeling {K, H, d’}: 

To complete the necessary negative control for specificity of the relationship found with 

{K, H, β}, we assessed the variables {K, H, d’} and observed no graphical structure 

between these variables. 

 

Exploratory Analyses of Findings: 

 Relationship of K-, K+, and β: Other than a significant intercept, use of a power law 

estimation did not find β significantly influencing K+ or K- (Table 4).  

Relationship of H-, H+, and β: When one partials out the effects of β on H-/H+, one 

observes that while the values of H- are higher than H+ for small values of β, H+ values 

increase at a faster rate than H- as β increases. Given β does not significantly affect K±, 

one can look at the ratio H-/H+ and the difference (H-) – (H+) as proxies for the measure 

of loss aversion, which traditionally is described as a ratio of slopes [8,9] although the 

difference model has been used with neuroimaging [65]. As a function of β, the ratio H-

/H+ crosses the dimensionless value of 1 at a β of 2.6; similarly, the difference (H-) – 

(H+) crosses the value of 0 bits at the same β value (see Figure 3a).  

 

 17 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/032912doi: bioRxiv preprint 

https://doi.org/10.1101/032912


  

To confirm the relationship between H+ and H-, we evaluated rank-ordered data (Figure 

3b). When K is kept constant, and H-/H+ ordered by rank, there is a clear crossing of H- 

and H+ between lines 49 and 57 (Figure 3b).  

 

These results are schematized in Figure 4a,b; namely, when one holds K+/K- constant, 

and evaluates the relation of β and H±, one observes that for β under a value of 2.6, H- is 

greater than H+, consistent with the concept of “loss aversion” in prospect theory [8,9]. 

In contrast, above β = 2.6, H+ is greater than H- which suggests greater sensitivity to 

reward seeking. 

 

The relationship between graphs in Figures 4a,b suggests a positive correlation may exist 

between metrics of loss aversion from RPT and false alarms from SDT. We assessed this 

for a positive relationship and found that r(1,30) = 0.305, p < 0.048 as a linear regression, 

and r(1,30) = 0.353, p < 0.026 with log transformation of the x-axis. These results are 

consistent with the interactions shown in Figures 3a,b and 4a,b.    

 

Relationship of exponents for H = a⋅βb⋅Kc: For our data, b + c = 0.411 for approach, and 

b + c = 0.381 for avoidance. In Cobb-Douglas resource matching terms, this means that 

individuals show decreasing returns to scale or “inelasticity” in the form of reduced 

relative increases of H± despite substantial increases in (K±, β).  

 

Discussion 
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The relationship H α {K, β} means that equations modeling SDT [β = e(d’xC)] [4,5] and 

RPT [H = a(K ± d)c ± f] [10,11] can form a function space in mathematical terms (Figure 

2a-c). Two general implications arise from this finding. One implication relates to the 

concept of “loss aversion”, initially developed from prospect theory [8,9], but also 

observed with RPT [66]. Namely, loss aversion in the intrinsic motivation framework of 

RPT appears to be dependent on how individuals set the threshold for β in SDT. The 

more β decreases, consistent with increasing tolerance of noise in the form of more false 

alarms, the more one observes a relative prioritization of H- relative to H+, which in the 

context of holding K± constant, means the slope of the avoidance curve (i.e., K-H-) is 

steeper than the slope of the approach curve (i.e., K+H+). These data argue that “loss 

aversion” may be a property of decision-making when individuals must be more tolerant 

of lower signal-to-noise, and indeed a statistically significant positive interaction is 

observed between loss aversion estimates and false alarms. When there is high signal-to-

noise, H+ is prioritized relative to H-, and individuals are mainly responsive to gains. 

One observes the exponent b for β in equation H = a⋅βb⋅Kc shows a proportion of 2:1 for 

approach:avoidance, which is not the case for the exponent c (Table 2), indicating the 

crossing of curves in Figures 3b and 4b are due to attention-related effects. This is 

intriguing in the context that β in SDT is a likelihood measure [3,4], and hence relates to 

uncertainty, further supporting its relevance to the relationship between approach and 

avoidance. Altogether, signal detection appears to be important for the emergence of loss 

aversion. 
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A second implication arises when one considers that the multiplicative power law 

observed with our data (i.e., H = a⋅βb⋅Kc) has the same format as the Cobb-Douglas 

production function observed in economics [64]. In economics, the Cobb-Douglas 

function has been broadly used, in applications ranging from matching theory for 

describing mutually beneficial relationships [67], to the integration of real money 

balances into the production function to model the private domestic sector of the US 

economy from 1929-1967 [68]. An important feature of Cobb-Douglas is that the power 

law exponents together determine the relationship between the input variables (i.e., K±, 

β) and the output variable (H±) as a type of resource matching operation [64]. For 

instance, the output variable doubles when the inputs double and the exponents b + c = 1. 

When b + c > 1, the output variable (H) will show increasing returns to scale or higher 

“elasticity” in terms of small changes in the independent variables (K±, β), leading to 

larger changes in the dependent variable (H±). In contrast, if b + c < 1, the output variable 

will show decreasing returns to scale or “inelasticity” as reduced relative increases of H± 

despite substantial increases in (K±, β). For our data, b + c << 1 for both approach and 

avoidance, consistent with a control function defining capacity constraints [67] to mental 

processing for attention and reward/aversion.     

 

Our data shows that a relationship exists between quantitative formulations of 

reward/aversion and attention. The relationship H α {K, β} can be expressed as a 

multiplicative power law (i.e., Cobb-Douglas function) that in economics reflects 

resource matching operations of potential relevance for constraining the relationship 

between attention and reward/aversion in behavior. This relationship underscores why 
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concerns have arisen about the potential interaction of attention with reward/aversion in 

psychology and neuroscience [19], and raises at least two issues. First, when 

reward/aversion and attention tasks are performed in isolation, the results may need to 

carry a caveat about the other function not being controlled in the experiment. Second, 

the relationship observed between SDT and RPT in Figure 2c allows iterative modeling 

of the interaction between these variables as shown in Figures 3a,b and 4a,b. This 

interaction suggests that an engineering-based approach to behavioral science may be 

possible that allows variables across many behavioral domains to be connected and 

schematized as currently done for biochemical pathways. Such an interaction between 

variables resembles what is observed for the gas laws in thermodynamics, wherein one 

variable can be held constant, allowing the interaction of the other two to be explicitly 

modeled. This type of interaction is mechanistic, and explicitly allows for inference. If 

confirmed across other studies, such findings would imply that behavior modeling could 

be mechanistic, potentially to a similar degree as in chemistry. For this to occur, more 

work is needed given that domains such as attention encompass a broad field (e.g., [69]), 

and we have only shown how endogenous (vs. exogenous), overt (vs. covert) attention 

processes involving cognitive load (vs. perceptual load) is related with an RPT model of 

reward/aversion.  
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Figure Legends 

Figure 1: Experimental paradigms. (a) A schema for the keypress paradigm shows, at 

top, raster-plots of keypress effects on viewing time as blue curves going up or down 

from a default viewing time of 6 seconds. Pink and red blocks represent presentation of 

beautiful and average female faces, respectively. Below the raster-plots, timing of face 

presentation is schematized (see Methods). (b) Results of keypressing produced a 

boundary envelope for group data and curve fits for individual subjects, for the mean 

keypress variable K and Shannon entropy H [i.e., information]. (c) A visual continuous 

performance task quantified signal detection parameters during divided attention. One 

letter was shown per second in the center of the visual field. Subjects responded when a 

target letter (“a”) appeared exactly four letters after the cue (“q”). Cue-target pairs could 

be interleaved, necessitating divided attention. (d) Signal detection analysis allowed 

quantitation of a criterion response and relative signal-noise distributions for β and d’ 

variables. 

Figure 2: Iterative Modeling. (a) When K, H (in Figure 1b) include β as a z-axis, one 

observes a two-simplex manifold. (b) Fitting in Mathematica shows curvature along the β 

axis for approach and avoidance. (c) The twisting of the approach and avoidance 

manifolds is more obvious with colorized graphs in Matlab showing residuals of these 

graphs for approach (above right) and avoidance (below right). The approach manifold 

resembles a Cobb-Douglas graph. 

Figure 3: Evaluation of the Cobb-Douglas Function, and H± vs. β when K± is kept 

constant. (a) Using the ratio and difference of H- and H+ as proxies for loss aversion, 

graphed against β, we see both proxies cross mathematical inflection points (H-/H+ at 1, 
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and (H-)-(H+) at 0) when β = 2.60. (b) When K is kept constant, and variables ordered by 

increasing quantity, there is a clear crossing of H+ and H- between line 49 and line 57.  

Figure 4: Interaction of {K, H, β}. (a) The signal detection schema and results are 

shown, where d’ = 6 and λ = 3.64, indicating β = 2.60 as the threshold where H+ vs. β 

and H- vs. β curves cross each other. (b) The crossing of curves at β = 2.60 shows how 

the loss aversion proxy is evident for β < 2.60, but absent (reflecting reward dependence) 

for β > 2.60.  

 

  

  

 33 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 26, 2015. ; https://doi.org/10.1101/032912doi: bioRxiv preprint 

https://doi.org/10.1101/032912


  

 
 
Table 1: Descriptive Statistics for β, K and H 
 
 
 
 
 
 
 
 
 
 
 
 
Legend:  N (47 subjects x 4 observations per subject) is the total number of observations 
and S.D. is the standard deviation. The minimum and maximum values provide 
information on the observed range for the variable in the data.  

 
 
  

Variable N Mean S.D. Min. Max. 
β   188 2.63 1.279 0.75 5.47 
d’ 188 2.49 0.668 0.79 3.65 
K+ 188 12.36 18.679 0.00 86.95 
K- 188 10.94 7.957 0.00 29.30 
H+ 188 1.72 1.626 0.00 4.24 
H- 188 3.16 1.360 0.00 4.32 
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Table 2. Estimated Coefficients for β and K from Different Functional Forms 
 
 

  
Logarithmic: 

H = a + b⋅log β + 
c⋅log K 

Power Law: 
H = a * (β) b * 

(K) c 

Power Law 
Additive: 

H = a + βb + Kc 
H+ Parameter Estimate Estimate Estimate 

Intercept a 0.840** 
[.52, 1.15] 

1.063** 

[.86, 1.26] 
-1.117** 

[-1.41, -.82] 
     

β  b 0.321** 
[.04,.60] 

0.092* 

[-.01, .20] 
0.239** 

[.04, .43] 
     

K+ c 0.667** 
[.58, .75] 

0.319** 

[.27, .37] 
0.349** 

[.32, .37] 
RMSE  0.868 0.867 0.868 

R  0.808 0.809 0.808 

H- Parameter Estimate Estimate Estimate 

Intercept a 1.226** 
[1.03, 1.43] 

1.522** 

[1.37, 1.68] 
-0.542** 

[-.76, -.33] 
     

β  b 0.196** 
[.05, .34] 

0.044* 

[.00, .09] 
0.141** 

[0.01,0.27] 
     

K- c 0.951** 
[.89, 1.01] 

0.337** 

[.30, .37] 
0.443** 

[.42, .46] 
RMSE  0.511 0.566 0.593 

R  0.911 0.890 0.878 
 
Legend: 
95% confidence intervals are in brackets. RMSE and R are measures of model fit as 
described in Table 3.   ** Significant at p < 0.01    * Significant at p < 0.10 
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Table 3. Model Fits for H+ and H- Using Different Functional Forms 
 

Dependent Variable Functional Form RMSE R 
H + Logarithmic 0.8682 0.8079 
H - Logarithmic 0.5107 0.9112 
H + Power multiplicative 0.8667 0.8086 
H - Power multiplicative 0.5656 0.8899 
H + Power additive 0.8675 0.8082 
H - Power additive 0.5930 0.8782 

 
 
Legend: Root Mean Square Error (RMSE) and R are both measures of model fit. R is the 
Coefficient of Determination and is the square root of the ratio of Regression Sum of 
Squares (SSR) to Total Sum of Squares (SST). 
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Table 4: Assessment of Structure between RPT (Keypress) and SDT (Attention) Tasks 
 

Functional Form ( )H γβ α= ⋅ +  ( )H γβ α= ⋅ −  K γα β+ = ⋅  K γα β− = ⋅  

R 0.03 0.04 0.08 0.04 

RMSE 1.329 1.251 20.018 7.764 
 
Legend: Root Mean Square Error (RMSE) and R are both measures of model fit. R is the 
Coefficient of Determination and is the square root of the ratio of Regression Sum of 
Squares (SSR) to Total Sum of Squares (SST). 
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