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Abstract 9 

 10 

Many theories have been proposed attempting to explain the origin of the genetic code. 11 

While strong reasons remain to believe that the genetic code evolved as a frozen accident, 12 

at least for the first few amino acids, other theories remain viable. In this work, we test the 13 

optimality of the standard genetic code against approximately 17 million genetic codes, and 14 

locate 18 which outperform the standard genetic code at the following three criteria: (a) 15 

robustness to point mutation; (b) robustness to frameshift mutation; and (c) ability to encode 16 

additional information in the coding region. We use a genetic algorithm to generate and 17 

score codes from different parts of the associated landscape, and are, as a result 18 

presumably more representative of the entire landscape. Our results show that while the 19 

genetic code is sub-optimal for robustness to frameshift mutation and the ability to encode 20 

additional information in the coding region, it is very strongly selected for robustness to point 21 

mutation. This coupled with the observation that the different performance indicator scores 22 

for a particular genetic code are seemingly negatively correlated, make the standard genetic 23 

code nearly optimal for the three criteria tested in this work.  24 

 25 

 26 

Keywords: Standard Genetic Code, Optimality, Frameshift, Point Mutation.  27 
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Introduction 28 

 29 

Genetic code is an assignment of codons to amino acids, and defines the translational 30 

system for protein synthesis. Looking at the definition of a genetic code as a combinatorics 31 

problem, it equates to allotment of codons (say, non-identical balls) to amino acids and a 32 

stop signal (say, boxes). The total number of possible genetic codes therefore equates to 33 

solving the problem of number of ways to distribute the 64 non-identical balls among the 21 34 

unique boxes, ensuring that each box gets at least one ball. A simple calculation shows that 35 

the total number of solutions available for this problem is of the order of 1083. The standard 36 

genetic code is only one of the possible solutions to this problem. What makes the standard 37 

genetic code so special against all other possible solutions? Or is the choice of standard 38 

genetic code being most used in all life forms random and a result of a chance event? 39 

 40 

One of the key features of the standard genetic code is redundancy, where more than one 41 

codon corresponds to the same amino acid (1). As an example, in standard genetic code, 42 

Leucine is coded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG). It is interesting to 43 

note that the nucleotide U, present in the 2nd position is common for all the codons but only 44 

those in the first and third positions vary. Similarly, in the case of glutamic acid, there are two 45 

codons GAA and GAG, for which only the nucleotide located at the 3rd position differs. The 46 

effect of redundancy is that, degeneracy in the third position of the triplet codon cause only a 47 

silent mutation i.e. there is no effect of mutation in protein translation because the 48 

biochemical property is conserved by equivalent substitution of amino acids. 49 

 50 

One of the theories for the evolution of the standard genetic code is that it is thought to be a 51 

frozen accident during evolution. This theory states that “genetic code is a random, highly 52 

improbable combination of its components formed by an abiotic route, and altering it from its 53 

present state would be disadvantageous”, which implies that the mechanism of allocating 54 
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codons to amino acids is entirely a matter of chance (2). Several recent studies however 55 

suggest that the genetic code is not a frozen accident but has evolved so as to minimize 56 

transcriptional and translational errors (3). It has been shown that the standard genetic code 57 

minimizes the effect of point mutations or mistranslations: either the erroneous codon is a 58 

synonym of the original amino acid, or it encodes an amino acid with similar biochemical 59 

properties (4). 60 

 61 

Standard genetic code, when compared with a truly random code, was observed to be 62 

partially optimized for robustness to frame-shift and point mutations (5). Canonical genetic 63 

code outperforms generated random codes in terms of polar requirement scale (6, 7), where 64 

polar requirement is the biochemical property of each amino acid defined by the paper 65 

chromatography experiments of Woese and co-workers (8). 66 

 67 

The standard genetic code has also been shown to be capable of including additional 68 

information within protein-coding sequences (9). These additional data can be biological 69 

signals like binding sequences for regulatory and structural proteins (10-12), and splicing 70 

signals that include specific 6–8 base pair sequences within coding regions and mRNA 71 

secondary structure signals (13-15). For comparison of standard genetic code with other 72 

possible codes, simulations have been performed in the past. However, the computationally 73 

intractable large number of possible genetic codes means that only a miniscule fraction of all 74 

possible genetic codes can be analyzed. For example, in a study by Koonin and co-workers 75 

(5) rules were defined to limit the possible number of genetic codes, and a small fraction of 76 

the possible codes were then generated and analyzed. 77 

 78 

Some of the other attempts in this regard have also been carried out recently (16, 17). 79 

Schonauer and Clote iterate over millions of codes to explore the optimality of the genetic 80 

code in a much larger space and mapping of {‘A’, ‘T’, ‘C’, ‘G’} onto the 20 amino acids and 81 

one stop codon. Sergey Naumenko et al and Churchill et al., 1990 discuss the importance of 82 
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stop codons on the optimality of the standard genetic code, and suggest that among all 83 

genetic code mark-ups with three stop codons, the standard genetic code mark-up has the 84 

maximum possible probability of the terminating the mis-translation process (16-18). 85 

 86 

In this work, we try and analyse the optimality of the standard genetic code against randomly 87 

generated genetic codes across three performance criteria: (a) robustness to point 88 

mutations, (b) robustness to frameshift mutations, and (c) the ability of a code to encode 89 

additional information in the coding region. We first present results from a local sampling 90 

from the “sequence space” associated with the genetic codes, and compute scores across 91 

the three indices. We show that in this local sampling, the standard genetic code comes out 92 

as an almost optimal genetic code. However, our results show that the same 93 

trends/qualitative features of the standard genetic code do not all hold up when the genetic 94 

code sampling is more diverse from its “sequence space”. Our results indicate that the 95 

genetic code is sub-optimal for robustness to frameshift mutation and ability to encode 96 

additional information; it is strongly selected for robustness to point mutations. Last, we note 97 

that the performance of a genetic code across the difference indicators seems to be 98 

negatively correlated.  99 

  100 
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Methods 101 

 102 

To analyse the optimality of the standard genetic code, we use the following performance 103 

parameters: robustness to frame-shift and point mutations; and the ability to encode 104 

additional information in the coding region of the genome of Escherichia coli (str. K 12 105 

substr. DH10B chromosome) (E. coli). The length of the genome is 4.6 million bases (18). 106 

Computations and analyses were done using Perl and Python. 107 

 108 

Generation of Random Genetic Codes. 109 

To compare the performance of the standard genetic code against other possible genetic 110 

codes, random genetic codes were generated using Perl. The randomly generated codes 111 

were designed based on three criterion as follows. Within each criteria, 10,000 codes were 112 

generated randomly. 113 

 114 

Random Codes 1 (RC1). 10,000 genetic codes were generated by random allocation of 115 

codons to amino acids while ensuring that the number of codons allotted to each amino acid 116 

(and stop signal) is the same as that in the standard genetic code. 117 

 118 

Random Codes 2 (RC2) In this case, 10,000 genetic codes which satisfy the following two 119 

properties were generated. First, as in RC1, the number of codons allotted to each amino 120 

acid was same as that in standard genetic code. Second, codon allocation was done in a 121 

semi-random manner, where only codons which correspond to polar amino acids in the 122 

standard genetic code were re-allocated between polar amino acids (and codons 123 

corresponding to non-polar amino acids were re-allotted to non-polar amino acids only). This 124 

was done to ensure that the localized structure of biochemical properties in the genetic code 125 

is preserved. In this set, the codons corresponding to the stop codons were kept the same 126 

as that in standard genetic code. 127 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2015. ; https://doi.org/10.1101/032748doi: bioRxiv preprint 

https://doi.org/10.1101/032748
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

 128 

Random Codes 3 (RC3) An identifying feature of the standard genetic code is its "block 129 

structure" where all codons allocated to an amino acid occur as a "block". To preserve this 130 

structure, 10,000 genetic codes were generated ensuring that this structure of the standard 131 

genetic code is preserved. For allocation of stop codons, it was ensured that two of the three 132 

stop codons differ only in the third position, and that the third stop codon differs in the 133 

second position (just as in the standard genetic code).  134 

 135 

Genetic Algorithm. 136 

To generate genetic codes with performance better than that of standard genetic code, we 137 

implemented a genetic algorithm with three separate fitness functions. The fitness functions 138 

namely optimized the point mutational robustness, frameshift robustness, and ability to 139 

encode parallel information, in the genetic code. In this algorithm, we started with a 140 

population of nineteen randomly generated codes, and the standard genetic code to kick-141 

start the evolution. The population size was maintained constant at 20. In each generation of 142 

the simulation, genetic codes were mutated, recombined, scored for their fitness and the 143 

fitter codes were selected for the next generation. The probability of a mutation was defined 144 

as the chance that a codon assigned to an amino acid is re-assigned to another amino acid 145 

chosen randomly. This value was taken to be 0.05. The mutation rate was set at 0.1, 146 

meaning approximately two codes undergo mutation every generation on average. The 64 147 

codons in the genetic code were numbered from 1 to 64. Recombination between the two 148 

codes was defined at codon number X, such that all codons with numbers less than X are 149 

taken from code I, and all codons from numbers X to 64 are taken from code II. Two codes 150 

were chosen and recombined randomly in each generation. After mutation and 151 

recombination, the viability (that all 20 amino acids and stop signal were represented in the 152 

code) of the new "evolved" codes was verified. The new genetic codes were then scored 153 

based on fitness scoring as follows, and the fitter ones were selected to the next generation, 154 

based on roulette wheel sampling. 155 
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 156 

Quantification of performance of genetic codes. 157 

 158 

Point mutational Robustness: 159 

Amino acids were grouped based on their biochemical property into: 160 

• Non-Polar: glycine (Gly), alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), 161 

proline (Pro), phenylalanine (Phe), methionine (Met), and tryptophan (Trp). 162 

• Polar-uncharged: serine (Ser), threonine (Thr), cysteine (Cys), asparagine (Asn), 163 

glutamine (Gln), and tyrosine (Tyr). 164 

• Acidic: aspartate (Asp) and glutamate (Glu). 165 

• Basic: arginine (Arg), lysine (Lys), and histidine (His) 166 

 167 

Point mutational scoring system takes into account (a) biochemical property of amino acids, 168 

and (b) relative sizes of amino acids. Every point mutation belongs to one of the following 169 

three: (a) silent - no change in amino acid, (b) conservative - amino acid mutates to a 170 

biochemically similar amino acid, and (c) non-conservative. A scoring system for each code 171 

was implemented for each of the 576 mutations – each codon mutated 9 possible times. If a 172 

mutation belonged to (a) one point was awarded, if it belonged to (b) 0.5 was awarded, and 173 

no points were awarded for (c). Additionally, amino acids were ranked from smallest to 174 

largest amino acid by size (using molecular weight as proxy). The fraction of size conserved, 175 

or fraction of size changed subtracted from unity, was also added to the score of a codon. 176 

This was done only for cases excluding the stop codon. The biochemical property and amino 177 

acid sizes were given equal weights. The cumulative score is the score of a genetic code. All 178 

generated genetic codes were scored similarly. 179 

 180 

Frameshift robustness: 181 
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Second, to search for codes better at frame-shift robustness an altered genetic algorithm 182 

was devised. A fitness function was implemented which quantifies the probability with which 183 

a faulty peptide translation will be terminated, taking into account the amino acid frequencies 184 

of E.coli.  185 

 186 

We calculate the theoretical probability of encountering a stop in a misread frame, by using 187 

di-codon sequences (9). We consider all 61x61 combinations of codons, excluding the three 188 

stop codons. Stop is encountered in 2-4 position for +1 frame shift and 3-5 position for -189 

1frame shift. Probability of encountering a Stop codon in an insertion frame is the sum of all 190 

probabilities of di-codons with Stop in 3-5 positions. Similarly, probability of encountering a 191 

Stop codon in a deletion frame is the sum of all probabilities of di-codons with Stop in 2-4 192 

positions. Probability of a di-codon sequence is calculated as follows. A codon C coding for 193 

an amino acid A, occurs with a probability of frequency(A)/(Number of synonymous codons 194 

of A). Probability of a di-codon is product of probabilities of the two codons. Here, we 195 

assume uniform codon-usage for ease of calculations, without compromising on the 196 

accuracy of the scoring systems. 197 

 198 

Parallel coding ability: 199 

Here we calculate the probability of encoding N-base sequences in the coding regions of 200 

E.coli (9). We considered a value of five for N in this work. We take the fitness score of a 201 

code as the probability to encode its top 20% most difficult N-base sequences or N-mers (for 202 

N=5). Probability of each 5-mer is the combined probability with which it can be incorporated 203 

in three reading frames - correct Open Reading Frame, insertion, and deletion reading 204 

frames. In each frame, probability of a 5-mer is the sum of probabilities of all possible 205 

codons with which it can occur (See above for probability of codon occurrence). 206 
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Results 207 

 208 

The standard genetic code is nearly optimal at minimizing point mutational errors.  209 

To start the analysis, we generated 30,000 genetic codes (10,000 each belonging to the 210 

group RC1, RC2, and RC3), and analyzed their performance by a point mutational scoring 211 

system (see methods section for more details on details of RC1, RC2, and RC3 codes; and 212 

the scoring system used). From our analysis, we note that upon introduction of a point 213 

mutation, the standard genetic code leads to minimum number of cases, where an amino 214 

acid is maximally replaced with another one. As shown in Table 1, a majority of the times, an 215 

amino acid is replaced by itself, after a point mutation. In addition, even if a point mutation 216 

was to lead to a change in the amino acid, the standard genetic code leads to maximal 217 

replacements such that the biochemical properties of the amino acid are conserved. Among 218 

the 30,000 codes we tested in this section only 38 genetic codes outperformed the standard 219 

code with respect to their resistance to change in amino acids as a result of point mutations. 220 

This indicates that the standard genetic code is nearly optimal for minimizing the point 221 

mutational errors. 222 

 223 

Standard Genetic Code is nearly optimal at minimizing frameshift errors. 224 

Next we compared the performance of the 30,000 genetic codes with that of the standard 225 

genetic code at minimizing frameshift errors. The genetic codes were scored by introduction 226 

of a frameshift mutation, and noting the number of amino acids that are added to the faulty 227 

peptide chain before the ribosome encounters a stop codon. The score is inversely 228 

proportional to the length of this peptide chain. In our analysis, we note that of the 30,000 229 

codes tested only 84 outperformed the standard genetic code (2 in RC1, 2 in RC3, and 80 in 230 

RC3). This corresponds to the standard genetic code outperforming 99.72% of all codes in 231 

the three groups at frameshift error minimization. 232 

 233 
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In a previous work (9), the ability of the standard genetic code to be nearly optimal at 234 

frameshift robustness was attributed to the allocation of stop codons. Upon generating all 235 

genetic codes with three stop codons (but with the wobble constraint), we note that the 236 

standard genetic code is nearly optimal among 5472 codes (including the standard genetic 237 

code) generated this way. In this analysis, 61 of all the codes outperformed the standard 238 

genetic code at frameshift robustness. 239 

 240 

In the same work, Alon and coworkers show that the standard genetic code is also optimal 241 

for encoding additional information in the coding regions of the genomes. This additional 242 

information is thought to include: (a) binding sites for regulatory proteins that bind coding 243 

region (10-12, 19); (b) DNA and mRNA binding proteins (20); (c) histones binding sites (21-244 

23); (d) Splicing signals (24); and (e) mRNA secondary structure signals (13-15, 25). Testing 245 

the ability of the standard genetic code to encode additional information in the coding 246 

sequence and its robustness to frameshift mutation against all 5472 codes, we note that the 247 

standard genetic code is nearly optimal for these two features (Figure 1). Here, the addition 248 

information encoding ability is quantified as the average probability of encoding an N-base 249 

sequence (N=6 and averaged over all 4^6 = 4096 sequences). The proteome considered, 250 

was average amino acid frequencies from 134 organisms as previously reported. 251 

 252 

However, we note that the standard genetic code is average at encoding additional 253 

information in the coding sequences, when the ease of a genetic code to encode the most 254 

difficult X-percent of the N-mers in the coding region is analyzed. We note that for both N = 5 255 

and N = 6, the standard genetic code performs around the average for the most difficult 5% 256 

N-mers, among the 5472 codes (Figure 2).  These results hold independent of the choice of 257 

“most difficult X%”, as shown in Figure Supplement 1. 258 

 259 

As a result of these conflicting conclusions regarding the optimality of the genetic code, we 260 

developed a genetic algorithm to scan a much larger pool of genetic codes, and compare the 261 
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performance. This was done to ensure that the genetic codes being analyzed were from 262 

different sections of the fitness landscape associated with the sequence space 263 

corresponding 1083 codes, and that the fitness landscapes, in general, tend to be rugged 264 

with multiple peaks (26). By scanning a very small sub-set of these genetic codes in a 265 

systematic manner, we were likely only scanning a small, biased set of genetic codes. This 266 

set, we speculate, is not representative of the entire space defined by all genetic codes, and 267 

hence, our choice to use a genetic algorithm.  268 

 269 

Search for genetic codes which out-perform the Standard Genetic Code  270 

Robustness to point mutational load. 271 

We first used the genetic algorithm to search for codes that can minimize point mutational 272 

errors better than standard genetic code. We implemented a scoring system that takes into 273 

account the biochemical property and the size of an amino acid, as these two properties play 274 

key roles in dictating protein functionality (see methods for more details). Through the 275 

genetic algorithm, we sampled approximately 15 million distinct genetic codes. Among 276 

these, we were specifically interested in those genetic codes with scores more than 616.26, 277 

which corresponds to the score of the standard genetic code at point mutational load 278 

minimization. Among all the codes scanned, only 64 genetic codes were found that 279 

outperformed the standard genetic code at this feature. This set of genetic codes had scores 280 

ranging from 616.39 to 635, and hence, outscored the standard genetic code by less than 281 

five percent. The distribution of scores for codes which outperformed the standard genetic 282 

code is as shown in Figure 3. As shown, among these codes, a majority are better than the 283 

standard genetic code by less than one percent. The performance of standard genetic code 284 

was found to be statistically significant and highly optimal when compared to other possible 285 

theoretical codes (P = 1.22e-5). 286 

 287 

Standard genetic code is sub-optimal but non-random at minimizing frameshift errors 288 
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Next, we used the genetic algorithm to score genetic codes for their ability to minimize 289 

frameshift errors (See methods). Our analysis with codes RC1, RC2, and RC3 indicates that 290 

the standard genetic code is selected for minimizing frameshift mutational errors. Similar 291 

results were found when we generated codes by randomizing the stop codons where only 292 

1.1% percent of the codes out-performed the standard genetic code. 293 

 294 

To search for codes with better scores at frameshift robustness than the standard genetic 295 

code, we used a genetic algorithm (with a modified fitness function as compared to the last 296 

section, see methods). Upon scanning approximately 1.6 million codes, we note that more 297 

than 90% codes (about 1.5 million) out-perform the standard genetic code. While the 298 

standard genetic code scores 0.062 in our scheme, of all the genetic codes analyzed, the 299 

mean score was about 0.22, and the highest 0.34. The distribution associated with the codes 300 

is as shown in Figure 4. Contrary to previous reports (9), and our analysis with the RC1, 301 

RC2, and RC3 codes, these results show that the standard genetic code is sub-optimal for 302 

robustness to frameshift mutations.  Our results indicate that robustness to frameshift 303 

mutation has not been specifically selected for. We speculate that the possible reason(s) for 304 

this could be because frameshift errors are likely to only have a small effect on cellular 305 

fitness, as faulty peptides will simply be broken down by proteases before causing harm; in 306 

addition, translational errors are an order of magnitudes higher than transcriptional errors 307 

(27), because they allow faster sampling and hence evolution of proteins, without 308 

compromising the DNA. However, regardless, these results indicate the significance of 309 

scanning different regions of the fitness landscape associated with the genetic code space. 310 

While a local scan of this region might show the local optimality of the standard genetic 311 

code, a more comprehensive search of the landscape throws up totally different 312 

features/results. 313 

 314 

Standard Genetic Code is sub-optimal at encoding additional information. 315 
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Our analysis with shuffling of the stop codons shows that the standard genetic code is 316 

average at incorporating additional information in the coding region. This was independent of 317 

the percent of the most difficult N-mers that was taken for scoring, and also independent of 318 

the length of the N-mer (for both N = 5, and N = 6). We next used the genetic algorithm to 319 

scan parts of the sequence space which outperforms the standard genetic code at encoding 320 

additional information. For this purpose, we used the scoring system for N-mers of length 321 

five.  322 

 323 

The standard genetic code was able to outperform roughly six percent of all genetic codes 324 

tested in our algorithm. Of the roughly 105,000 genetic codes tested, the standard genetic 325 

code fared worse off than 99,000 of these codes. The distribution of score among these 326 

codes represents a normal curve, and the standard genetic code lies at one end of this 327 

distribution (Figure 5). Our results show that there are many (in fact, most) locations in the 328 

sequence space where the genetic codes outperform the standard genetic code at encoding 329 

additional information in the coding regions of the genome. While previous results show that 330 

the standard genetic code might be a local optimum, but globally many peaks exist, and 331 

most of them perform better than the standard genetic code. 332 

 333 

Robustness to frameshift mutation, robustness to point mutation, and ability to 334 

encode additional information – taken together, the standard genetic code is 335 

significantly better than other genetic codes. 336 

Lastly, we compared the performance of the genetic codes that outperformed the standard 337 

genetic code on any one of the three indices, by testing on the other two indices. For 338 

instance, we scored all 64 codes that outperformed the standard genetic code on their 339 

robustness to point mutations on their robustness to frameshift mutation and their ability to 340 

encode N-mers. The same process was followed for the other two scoring indices. Four 341 

codes out of 64 were found to outperform the standard genetic code on the other two indices 342 

as well. On the other hand, no genetic code from the other two sets outperformed the 343 
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standard genetic code on all three scoring systems. Thus, of a total of roughly 16.9 million 344 

genetic codes tested, 4 outperformed the standard genetic code on all three indices tested 345 

here. The fact that only four out of 64 (only about six percent) were able to outperform the 346 

standard genetic code (on robustness to frameshift mutation and ability to encode additional 347 

information) is likely significant since in a random sampling of codes by the genetic 348 

algorithm, 90% outperform the standard genetic code. However, when selecting for genetic 349 

codes which outperform the standard genetic code at robustness for point mutation, and 350 

checking for the score of the selected codes for their ability to robustness to frameshift 351 

mutation and encode additional information, only about 6% of the codes satisfy the criteria. 352 

Thus, these results appear to indicate a trade-off while optimizing performance for multiple 353 

criteria. 354 

 355 

This trade-off was again observed in a preliminary analysis when comparing performance of 356 

codes for their ability to encode information and robustness to frameshift mutation. On 357 

sampling a small set of 5,000 randomly generated codes (Figure 6), we note two distinct 358 

features: (a) there is a statistically significant inverse correlation between the ability of the 359 

code to encode additional information and its robustness to frameshift mutation, and (b) 360 

randomly generated codes form clusters in a plain indicating performance across the two 361 

criteria. The significance and the evolutionary relevance of this trade-off between 362 

performance criteria for genetic codes are being currently explored.  363 

 364 

On running the genetic code with all three objective functions combined into one, our 365 

preliminary scan of 52,000 genetic codes resulted in identification of 14 codes which 366 

outperform the standard genetic codes at all three performance indicators. Interestingly, 367 

multiple runs of the genetic algorithm lead to 186 genetic codes which outperform the 368 

standard genetic code. However, this group contained only 14 unique genetic codes (the 369 

rest being repeats). We are currently exploring (a) as to why the genetic algorithm leads to 370 

so many repeated solutions when optimized for all three performance indices, and (b) what 371 
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is the allocation of codons to amino acid pattern in genetic codes which outperform the 372 

standard genetic code.   373 
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Conclusions. 374 

 375 

In this work, we analyze the optimality of the standard genetic code across three features: 376 

(1) ability to truncate translation in case of frameshift, (2) ability to resist change in amino 377 

acid in case of a point mutation, and (3) ability to encode additional information in coding 378 

sequences. Our simulations suggest that the genetic code is nearly optimal in performance 379 

across these three criteria. However, looking at individual performance indicators, our results 380 

demonstrate that the standard genetic code is sub-average when compared randomly 381 

across codes for robustness to frameshift mutation, and ability to encode additional 382 

information. In fact, the near-optimality of the standard genetic code was observed largely 383 

due to its performance at robustness to point mutations. We also present some preliminary 384 

evidence for trade-off for a genetic code between the different performance criteria. 385 

 386 

The performance of the genetic code likely was optimized across a number of criteria – like 387 

ability to incorporate or avoid short sequences in the coding region, control mRNA stability 388 

and structure, translational rates (9). Work in this direction has shown that the standard code 389 

performs close to the optimal level, when compared with other randomly generated codes. 390 

Presumably, the translation machinery emerged first for the amino acids which were 391 

synthesized first in the primitive atmosphere (28). How the later amino acids integrated into 392 

this translation machinery, giving shape to the fitness landscape associated with codon-393 

amino acid assignment space, to produce an “optimal” genetic code remains an open 394 

question. 395 

 396 

 397 

  398 
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Figures. 478 

 479 

 480 

 481 

Figure 1. Performance of 5472 codes (from shuffling Stop codons with Wobble constraint) in 482 

frameshift robustness and additional information encoding ability. Expected faulty peptide 483 

length before termination and average probability of encoding an N-mer of size 6 are plotted. 484 

Amino acid profiles taken into consideration were averaged from 134 organisms.  485 

 486 

  487 
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 488 

Figure 2. Performance of the 5472 codes at encoding additional information, when different 489 

parameters are considered. For each code, probability of encoding its top X% most difficult 490 

N-mers is plotted for N = 5 and N = 5, and X = 5  491 

  492 
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 493 

Figure 3. Histogram Plot of point mutational scores of genetic codes found, which 494 

outperformed Standard Genetic Code at the Genetic Algorithm with point mutational scoring 495 

fitness function.   496 

  497 
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 499 

Figure 4. Histogram Plot of frameshift robustness scores of genetic codes found which 500 

outperformed Standard Genetic Code at the Genetic Algorithm with frameshift robustness 501 

fitness function.   502 

 503 
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 505 

 506 

Figure 5. Histogram Plot of parallel coding ability of genetic codes found which 507 

outperformed Standard Genetic Code at the Genetic Algorithm with parallel coding ability 508 

fitness function.   509 
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 511 

 512 

Figure 6. Performance of 5000 randomly generated genetic codes at encoding additional 513 

information (N = 5) and robustness to frameshift mutations. 514 
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Table 1: Analysis of point mutations to the codons encoding for all twenty amino acids 516 

(column 1). The columns 2-5 give the amino acid encoded most often after introduction of 517 

point mutation to each amino acid.  518 

 519 

Amino acids Standard  RC1 RC2 RC3 

Alanine Alanine  Leucine  Leucine Proline 

Arginine Arginine Leucine Leucine Leucine 

Asparagine Lysine Serine Threonine  Serine 

Aspartate Glutamate Arginine Serine Arginine 

Cysteine Arginine Arginine  Leucine Arginine 

Glutamate Aspartate Arginine Arginine Arginine 

Glutamine Serine Arginine  Serine Threonine 

Glycine Glycine Leucine Leucine Leucine 

Histidine Glutamine Arginine Leucine Arginine 

Isoleucine Isoleucine Arginine Lysine  Leucine 

Leucine Leucine Arginine Arginine Isoleucine 

Lysine Asparagine Leucine Isoleucine Arginine 

Methionine Isoleucine Isoleucine Leucine Leucine 

Phenylalanine Leucine Leucine Arginine Aspartate 

Proline Proline Arginine Leucine Alanine 

Serine Serine Arginine  Arginine Threonine 

Threonine Threonine Arginine Leucine Serine 

Tryptophan Arginine Isoleucine Arginine Glycine 

Tyrosine Tyrosine Arginine  Arginine Serine 

Valine Valine Arginine Leucine Leucine 

 520 
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