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Abstract 
Sequencing pathogen samples during a communicable disease outbreak 
is becoming an increasingly common procedure in epidemiological 
investigations. Identifying who infected whom sheds considerable light on 
transmission patterns, high-risk settings and subpopulations, and 
infection control effectiveness. Genomic data shed new light on 
transmission dynamics, and can be used to identify clusters of individuals 
likely to be linked by direct transmission. However, identification of 
individual routes of infection via single genome samples typically remains 
uncertain. Here, we investigate the potential of deep sequence data to 
provide greater resolution on transmission routes, via the identification of 
shared genomic variants. We assess several easily implemented 
methods to identify transmission routes using both shared variants and 
genetic distance, demonstrating that shared variants can provide 
considerable additional information in most scenarios. While shared 
variant approaches identify relatively few links in the presence of a small 
transmission bottleneck, these links are highly confident. Furthermore, we 
proposed hybrid approach additionally incorporating phylogenetic 
distance to provide greater resolution. We apply our methods to data 
collected during the 2014 Ebola outbreak, identifying several likely routes 
of transmission. Our study highlights the power of pathogen deep 
sequence data as a component of outbreak investigation and 
epidemiological analyses. 
 
Keywords: Infectious disease outbreaks; infection control; Ebola virus; 
genomics; epidemics; Molecular epidemiology 
 
Introduction 
 
Genomic data offer new insights into epidemiological and evolutionary 
dynamics, and sequencing pathogen samples is becoming increasingly 
routine. Pathogen genomic data allow us to determine the phylogeny of 
isolates, which in turn sheds light on the potential transmission networks 
between the hosts from whom they were collected. As such, inference of 
transmission trees using genomic data is an increasingly well-studied 
field (1-7). While low-resolution pathogen typing has been used for some 
time to discriminate between independent outbreaks (8-10), whole 
genome sequencing provides additional resolution with which genetic 
distance between identical phenotypes may be ascertained (11-13). This 
too, however, has limits. Studies have shown that while transmission 
clusters may be identified with genomic data, individual-level transmission 
routes can rarely be identified with a great degree of certainty (2, 3). 
Characterizing an infected host by a single pathogen genome (isolation 
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and purification of a single colony for bacteria, or using the consensus 
sequence for viral pathogens) is common practice, yet neglects within-
host diversity. The variation in sampled genetic distances can be large 
relative to the expected number of mutations between hosts, rendering 
the number of SNPs a rather crude measure of relatedness on an 
individual level (14). As such, particularly for rapidly evolving pathogens, 
or those whose mode of transmission is associated with a large and 
potentially diverse inoculum (‘transmission bottleneck’), single genome 
sampling can cause hosts to appear misleadingly similar or dissimilar.  
 
Deep sequencing can potentially provide new insights into within-host 
diversity. Currently, sequencing a mixed population sample to sufficient 
depth to identify minor nucleotide variants has mostly been limited to viral 
samples. While consensus sequences may appear identical for two 
samples, comparing minor variants can offer additional resolution. For 
instance, if the same nucleotide variation is observed at the same locus in 
pathogen samples from two individuals (henceforth referred to as a 
‘shared variant’ (SV)), this could be considered as strong evidence for 
direct transmission, particularly if the variant is not observed in any other 
host. This naturally relies on the possibility that a pathogen population of 
size greater than one survives the transmission bottleneck; otherwise 
each infection must initially be monoclonal, implying that any variation 
found within distinct hosts must have arisen independently. There is 
evidence for larger bottlenecks occurring in viral pathogens such as 
influenza (15, 16) and Ebola (17), and it is plausible that this is also the 
case for bacterial pathogens (18). 
 
The connection between SV presence and direct transmission has 
previously been suggested. Gire et al. noted the presence of SVs in 
Ebola virus samples from individuals who were potentially linked by 
transmission (19). Data collected from two influenza A animal 
transmission studies were used to explore the presence of SVs between 
hosts, and it was shown that such data were consistent with known 
contact patterns (20). This study used known contact patterns to identify 
characteristics of SVs which were more likely to be associated with 
transmission, allowing variants to be split into those consistent and 
inconsistent with transmission, minimizing false connections. Poon et al. 
identified routes of influenza transmission occurring during a household 
contact study using both consensus whole genome sequence data and 
the presence of SVs (21). In the case of bacterial pathogens the diversity 
in S. aureus infections, which can be considerable, has been linked to 
transmission in a veterinary hospital (22). 
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Pathogens vary considerably in their bottleneck size, mutation rates and 
transmission dynamics. It remains unclear how methods based on SVs 
are expected to perform in different regions of this parameter space. 
Establishing this is a crucial component of the interpretation of SVs and 
the value of the approach.  
In this study, we investigated the predictive power of SVs for identifying 
transmission routes. In addition to pathogen genomes, many other 
sources of data many contribute information towards inference of 
transmission routes, including temporal and spatial data, contact patterns 
and expression of symptoms. However, here we aimed to examine the 
information contributed by genomic data alone and in particular the 
additional benefit offered by considering SVs.  
 
Methods 
We generated infectious disease outbreaks with within-host pathogen 
evolution under various mutation rates and bottleneck sizes by simulation. 
We expanded upon methods previously used to infer transmission routes 
using deep sequence data (19-21), comparing their performance with 
analogous genetic distance based approaches. We additionally proposed 
hybrid approaches which combine SV information with phylogenetic 
distance data. We considered the following approaches: 
 

a) Weighted variant tree. For each host, we weight potential sources 
by the number of observed SVs, such that the host sharing the 
largest number of variants is attributed the largest weight. Hosts 
sharing no variants with any other are not assigned a source. 
Weighting edges provides an extension to previous approaches 
(19-21). 

b) Maximum variant tree. For each host, we define the source to be 
the individual with whom the largest number of SVs are observed. 
Hosts sharing no variants with any other host are not assigned a 
source. 

c) Weighted distance tree. Using consensus sequences, the genetic 
distance (number of single nucleotide polymorphisms [SNPs]) 
between isolates is calculated, and potential sources are weighted 
inversely by this metric. This approach has been described 
previously (2). 

d) Minimum distance tree. Using consensus sequences, the source 
of a given host is defined to be carrier of the genetically closest 
isolate to that of the host. This approach, with the incorporation of 
sampling times to provide directionality, has been described 
previously (6). 
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e) Hybrid weighted tree. First, the weighted variant tree is 
constructed. Hosts with no source are then assigned potential 
sources based upon weighted genetic distance. 

f) Hybrid maximum tree. First, the maximum variant tree is 
constructed. Hosts with no source are then assigned potential 
sources based upon minimum genetic distance. 

 
These six simple heuristics by no means comprise an exhaustive list of 
approaches to identify routes of transmission, but are instead a range of 
readily-implemented distance-based approaches, which require neither 
knowledge of evolutionary dynamics, nor infection or sampling times. As 
has previously been demonstrated, simple methods based on genomic 
data alone can provide powerful insights into transmission dynamics (23). 
Further details of the approaches used here, as well as the metrics used 
to assess the accuracy of tree reconstruction and reliability of estimated 
transmission routes, are provided in the Appendix. We additionally 
applied SV methods to previously published data collected during the 
Ebola virus outbreak in West Africa in 2014 (19, 24). 
 
Results 
Simulation Studies 
As expected, the proportion of cases in which a SV was observed in at 
least one other host increased rapidly with mutation rate and bottleneck 
size (Figure 1A). The majority of SVs were observed in exactly two 
individuals, with the proportion shared among larger groups declining 
rapidly as the size of the group increased (Figure 1B). For each 
simulation, we constructed a weighted transmission tree according to the 
six methods outlined previously. An example simulated outbreak of a 
pathogen with similar characteristics to S. aureus (see Appendix) is 
shown in Figure 2, along with reconstructions based upon two of these 
methods. While many edges are bidirectional and symmetric, asymmetry 
can occur under most methods due to the lack of commutativity – i.e. 
even if B is the closest host to A, A may not be the closest host to B. 
 
We used two metrics to assess the reliability of individual estimated 
transmission routes and compare the different methods described above. 
Firstly, we considered the true path distance between inferred 
transmission pairs. We found that under the maximum variant tree, the 
mean path distance was typically less than 2, outperforming the minimum 
distance approach (Figure 3A). Secondly, we examined the mean weight 
assigned to the true source of each host. In the case of small (<5) 
bottleneck sizes, methods based on SVs perform poorly since the 
likelihood of a monoclonal infection is high, resulting in most true links 
being assigned a weight of zero. Furthermore, those links which are 
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inferred by SVs in small-bottleneck settings identify direct transmission 
with high confidence. The hybrid approaches perform best for small 
bottlenecks, incorporating SV information when available but not relying 
upon it. For larger bottlenecks, the distance-based approaches were 
markedly outperformed by the variant-based approaches (Figure 3B). As 
the rate of mutation increases, SV approaches outperform those based 
on distance alone to an increasing degree as mutation generates 
increasing diversity in the infecting population (Figures S1A-C). 
 
In addition to the reliability of individual links, we also considered the 
overall accuracy of a transmission tree reconstruction. This was 
measured by the area under the receiver operating characteristic curve 
(AUC) statistic. For small bottlenecks, variant-based methods provide a 
poor tree reconstruction by this metric (Figure 4); values below 0.5 
indicate a worse performance than random selection; an inevitability 
when only a small proportion of nodes are assigned sources. A tight 
bottleneck leads to little diversity persisting across transmission events, 
and as such, SVs are rarely observed, leading to a sparsity of informed 
links across the network. However, larger bottlenecks lead to rapidly 
improving AUC statistics for the variant-based approaches, which even 
exceed the weighted distance approach with a sufficiently large 
bottleneck size and mutation rate (Figure 4, Figures S1D-F). In contrast, 
distance-based approaches typically decline in accuracy as the 
bottleneck size increases, for reasons that are well understood (2, 25) 
We additionally investigated the effect of ‘mutational hotspots’, which can 
generate potentially confounding homoplasy. We found that while variant 
approaches performed less well, they generally continued to outperform 
distance based approaches for larger (>10) bottleneck sizes (see 
Appendix, Figures S2 & S3 for further details).  
Ebola virus data 
We next examined previously published Sierra Leone Ebola datasets, for 
which raw reads are available and we can determine the presence and 
properties of intra-host variants. In order to reduce the risk of counting 
variant calling errors as true intra-host variants, we identified only variants 
in which the minor frequency was at least 5% (routes estimated under a 
1% threshold are shown in Figure S4). Figure 5 shows the transmission 
trees reconstructed for each dataset under the weighted variant 
approach, using no epidemiological information. In the first dataset 
(Figure 5A, (24)) 19/78 hosts were found to share a variant with at least 
one other individual. Four pairs of patients shared more than one variant 
(three pairs with two SVs, and one pair with four), while one additional 
pair shared one unique variant. Consistent with transmission, each of 
these pairs originated from the same geographic location, and 
permutation testing revealed this geographic similarity was significantly 
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higher than would be expected via random selection (P=0.0075). Pairs 
were also temporally clustered; three of these links were sampled two or 
fewer days apart, while the remaining two were sampled 12 and 22 days 
apart, which are plausible given serial interval estimates for Ebola virus 
infection of 15.3 ± 9.3 days (26). Under the minimum distance tree, two of 
these pairs were reproduced, two pairs belonged to a much larger group 
of samples with identical consensus sequences, and one pair, differing by 
one SNP according to consensus sequences, remained unconnected due 
to the presence of other identical sequences (Figure S5).  
 
While a consistent result of our simulations was the sharing of variants 
among small numbers of hosts, rarely more than two, in the Ebola data 
collected by Gire et al., one variant was shared by 11 hosts. Samples with 
this variant are highly clustered geographically (10/11 same chiefdom, 
P=0.022) and temporally (observed within 18 day period), as well as 
phylogenetically (19), lending support to this group representing a 
transmission cluster. 
 
In the second dataset (Park et al.) 26/150 (for which replicate sequencing 
and variant calling was performed) shared a variant with at least one 
other host (Figure 5B, (24)). There were five pairs of individuals sharing a 
unique variant. As before, one variant was shared by multiple hosts,, but 
unlike the previous dataset these were not geographically or temporally 
clustered, coming from different villages and spanning several weeks. 
Furthermore, while some of these samples cluster on the phylogenetic 
tree, many fall in different clades (24).suggesting the group is unlikely to 
represent a single transmission cluster, rather multiple transmission 
events in combination with homoplasy. Four of the five ‘unambiguous’ 
transmission pairs joined patients from the same geographic location, 
consistent with transmission, significantly greater similarity than would be 
expected by random selection (P=0.0073). 
 
Discussion 
We have described some simple methods for reconstructing transmission 
trees using shared variants, testing how well this approach performs for a 
range of parameters governing the rates of diversification within and 
between hosts. We have then applied the methods to data from the recent 
Ebola outbreak to ask whether it identifies links, using the genomic data 
alone, that are likely to be consistent with transmission given time and 
location. 
 
For the great majority of parameter space, excluding only very low 
mutation rates and tight bottlenecks, these methods outperform genetic 
distance comparison methods, which have increasingly been used to 
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identify potential transmission events (6, 27, 28). The limitations of 
distance-based methods that characterize a single genome are well 
appreciated. We note that while for the purpose of comparison, additional 
data sources were not included in our inference of transmission routes, 
incorporating these independently would be a relatively straightforward 
step with these methods. Most simply, sampling dates could be used to 
provide directionality to inferred connections. 
 
The additional information we derive from SVs can inform the transmission 
tree in two distinct ways, depending on the region of parameter space. 
Firstly, small but non-singular bottlenecks (eg. for airborne influenza 
transmission (29), sexually transmitted HIV (30)) produce few inferred 
transmission pairs, but these are highly accurate. The small bottleneck 
means that the probability of observing a SV between individuals who are 
in the same transmission cluster, but not directly linked, is negligible. 
Secondly, SV data for pathogens with larger transmission bottlenecks (eg. 
Ebola (17), influenza transmitted via contact (29), intravenous drug 
associated HIV transmission (31)) provide good information on the overall 
tree structure and transmission clusters, but individual links may be more 
uncertain. In all cases, higher mutation rates allow for a greater probability 
of variants emerging in the first place, and this typically results in better 
inference of transmission routes.   
 
A hybrid approach that combines SVs and the sequence of either an 
individual sequenced genome or the consensus, offers substantial benefit 
in the case of small bottleneck sizes (<5), where we predict a method 
based on SV alone will struggle. Since transmission routes are assessed 
independently of one another, estimated transmission trees frequently 
comprise several unconnected nodes or clusters. Such unconnected 
clusters could be linked to one another if further structure is required, using 
the weighted distance approach on pooled within-cluster samples. We 
have here simply used genetic distance, which is predicted to be efficient 
and reliable under the relatively short time scale of an outbreak, but more 
sophisticated models of sequence evolution could be applied. 
 
We applied these methods to Ebola data collected from Sierra Leone in 
2014. While the first dataset is thought to represent relatively dense 
coverage of the initial stages of the epidemic in the country, with estimates 
of around 70% of cases sampled (19, 32), the later dataset comprised a 
sparser sample. While sparse sampling reduces the number of true links 
one would expect to find via any method, the reliability of transmission 
routes identified via SVs remains largely unaffected (Figures S6 and S7). 
As such, while only relatively few transmission routes were identified in the 
datasets, this is likely a function of both the proportion of missing data, and 
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the relatively low mutation rate of Ebola virus (19, 33). Confidence in the 
transmission pairs identified was reinforced by investigating temporal and 
geographic clustering, which proved to be significant, and while the aim of 
our study was to assess the accuracy of transmission route identification 
via genomic data alone, methodology combining spatial and temporal data 
sources will naturally provide further insight. Identifying even a small 
proportion of direct transmission pairs can be of great interest in terms of 
studying pathogen level transmission dynamics and outbreak 
investigations. 
 
Studying the Ebola data revealed both datasets contained a large group of 
hosts sharing the same variant, which was rare in all our simulations. The 
observation can be explained in at least two ways – recurrent mutation 
(such as might arise through selection) or an anomalously large number of 
contacts with large bottleneck size (such as might be associated with a 
funeral based exposure). Park et al. suggest that the large group in the 
second dataset likely arose through a combination of patient-to-patient 
transmission and recurrent mutation (24). Subsets of this group do cluster 
on the phylogenetic tree, which suggests that an alternative hybrid 
approach, in which large groups are partitioned by genetic background, 
may prove insightful. 
 
Sample contamination may be an additional source of error. Cross 
contamination may potentially lead to shared variants observed between 
unlinked hosts. However, in most settings we do not believe this would 
present a major concern. In many cases, contamination will not lead to 
shared variants. If a genotype from sample A contaminates sample B, they 
will not be linked if the sample A genotype differs from sample B 
genotypes only at positions invariant in sample A. If no minor variants are 
contained in the contaminating sample, shared variants will not link this to 
the contaminated sample. However, it remains important to verify that 
observed shared variants are consistent with transmission, and to 
minimize the risk of contamination occurring as much as possible. As 
before, one can check the genetic background upon which variants are 
observed. If consensus sequences differ by more than a small degree, 
then it is likely that homoplasy or contamination may be a confounding 
issue. 
 
Another deliberate simplification in the present work is the assumption of 
neutral evolution. While this is plainly faulty over longer time scales, over 
the relatively short timescale of an outbreak it is a first approximation, and 
this is supported by real data from outbreaks (19, 24) and even longer 
periods (34) showing evidence of incomplete purifying selection. Selection 
may not however have as severe an effect on these methods as we might 
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assume. If a specific variant is maintained through balancing selection it is 
likely to be found in multiple hosts, and as a result will be less informative 
as to specific transmission links; if several hosts are connected by the 
same SV, this will be misleading only if no additional variants are 
observed. In contrast diversifying selection at antigens, for example, is 
expected to produce the mutational hotspots we have studied here, which 
again have little impact. A similar argument can be made that sequencing 
errors will be less important than expected, because they are likely to be 
found in just one sample and hence be uninformative as to links to other 
samples. A more formal approach to this problem would be to test for 
selection and down weight the identified loci from the analysis. 
 
As yet, there are still few studies in which adequate data have been 
collected in order to use SVs as a feature to identify transmission routes. 
Deep and high quality sequencing is required to reliably call minor 
variants, as well as dense sampling of the outbreak population such that 
the majority of infection sources are included in the study population. It is 
likely that such data will become more commonly collected in the near 
future, for both viral and bacterial pathogens, as the associated 
sequencing costs fall and the benefits become more evident. This work 
should motivate research to determine the mutation rates and bottleneck 
sizes for more pathogens. It is noticeable that bottleneck size in nature, as 
opposed to minimal infectious dose, has not received the attention is 
deserves. The importance of this parameter for these methods, as well as 
other factors like the evolution of virulence (35) should motivate further 
study. 
 
We have demonstrated the power of deep sequencing data to identify 
transmission routes with greater resolution than analogous methods using 
the genome of a single isolate. We have intentionally omitted the 
incorporation of additional data sources (such as times of sampling, 
symptom onset, recovery/death, as well as geographic location and 
contact tracing) in order to evaluate the information provided by the 
genomic data alone. While this is impressive in itself, incorporating 
additional data sources will only improve estimates and allow further 
potential transmission links to be ruled out. Rigorous collection of 
epidemiological data remains a crucial component of outbreak 
investigation, and combining this with deep sequencing and SV analysis 
can provide unprecedented insight into individual-level transmission 
dynamics.  
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Figure 1. Summary of genetic variant frequency across the simulated 
outbreaks. We simulated 10 outbreaks for each combination of six bottleneck 
sizes and three mutation rates (180 in total). (A) Mean proportion of cases in 
outbreak for whom at least one shared variant was observed. (B) Distribution of 
shared variant group size for different bottlenecks, with a mutation rate of 
5 ×10−4  per genome per generation.  
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Figure 2. Simulated and reconstructed transmission trees. The simulated 
tree (A) was generated with bottleneck size 10 and mutation rate 0.001 per 
genome per generation. Trees were reconstructed according to the maximum 
variant (B) and the minimum genetic distance (C) approaches described in 
Methods. Edges are weighted according to the weight attributed to that potential 
transmission route. Networks were plotted with the igraph package in R. 
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Figure 3. Reliability of estimated transmission routes. (A) The true path 
distance between estimated transmission pairs gives insight into the extent to 
which transmission links are misspecified. Here we compare the minimum 
distance (black) and the maximum variant (gray) approaches. A perfect 
reconstruction would have mean path length 1. Maximum variant path lengths 
are averaged over identified transmission pairs, that is, excluding hosts with no 
shared variants. (B) The mean weight attributed to each true transmission link 
for each tree reconstruction method, under a range of scenarios and 
methodologies. Results are shown for a mutation rate of 5 ×10−4  per genome 
per generation, and were averaged across 10 simulated outbreaks for each 
scenario. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2016. ; https://doi.org/10.1101/032458doi: bioRxiv preprint 

https://doi.org/10.1101/032458
http://creativecommons.org/licenses/by-nc/4.0/


	 18	

2 5 10 20 50

0.0

0.2

0.4

0.6

0.8

1.0

Bottleneck size

A
U

C

Distance weight

Min. distance

Variant weight

Max. variant Hybrid max.

Hybrid weight

 
Figure 4. Transmission tree reconstruction accuracy. The area under the 
receiver operating characteristic curve (AUC) metric provides an overall 
measure of network accuracy. Results for a mutation rate of 5 ×10−4  per 
genome per generation are shown here. The mean AUC across 10 simulations 
was measured for each scenario. 
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Figure 5. Estimated Ebola transmission routes. Transmission links between 
sampled hosts in the 2014 Ebola outbreak under the maximum variant 
approach. Colors denote chiefdoms to which hosts belong, while the weight and 
thickness of the arrows denote the relative weight attributed to each potential 
transmission event, with bold arrows denoting a higher weight than light arrows. 
Variant detection threshold 5%. 
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Figure S1. Impact of mutation rates. We generated outbreak data under 
mutation rates of 2.5, 5 and 10 ×10−4 . (A-C) The area under the receiver 
operating characteristic curve (AUC) metric provides an overall measure of 
network accuracy. (D-F) The mean weight attributed to each true transmission 
link for each tree reconstruction method.  
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Figure S2. Impact of mutational hotspots. For each scenario, a small 
proportion of the genome (0.1%) experiences hypermutation, a factor of 1, 100 
or 1000 greater than mutation occurs on the remainder of the genome. (A) 
Proportion of cases in outbreak for whom at least one shared variant was 
observed. (B) The true path distance between estimated transmission pairs 
gives insight into the extent to which transmission links are misspecified. A 
perfect reconstruction would have mean path length 1. Maximum variant path 
lengths are averaged over identified transmission pairs, that is, excluding hosts 
with no shared variants. 
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Figure S3. Impact of mutational hotspots. For each scenario, a small 
proportion of the genome (0.1%) experiences hypermutation, a factor of 1, 100 
or 1000 greater than mutation occurs on the remainder of the genome. (A-C) 
The weight attributed to the true source of infection. (D-F) The area under the 
receiver-operator curve (AUC), a metric to determine the overall accuracy of 
network reconstruction. 
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Figure S4. Ebola transmission routes. Estimated transmission links between 
sampled hosts in the Ebola outbreak under the maximum variant approach. 
Colors denote the chiefdom to which each host belongs, while the color and 
thickness of the arrows denote the relative weight attributed to each potential 
transmission event. Variant detection threshold 1%. 
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Figure S5. Comparison of Ebola transmission trees using genetic distance 
and shared variants. All 78 sequenced patients in the first dataset (Gire et al.) 
are denoted as nodes, colored according to chiefdom. Colored arrows denote 
edges inferred by the minimum distance approach, with red, bold arrows 
representing a greater weight than light, green arrows. Black arrows denote 
edges identified by presence of shared variants, corresponding to Figure 5A. 
Nodes with a dashed bold outline all share the same variant, corresponding 
to the large connected group in Figure 5A.  
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Figure S6. Summary of genetic variant frequency across imperfectly 
sampled simulated outbreaks. Summary of genetic variant frequency across 
the simulated outbreaks with 30% of infected hosts unsampled. (A) Total 
number of shared variants across the simulated outbreak. Bottleneck size is 
illustrated by circle size. (B) Distribution of shared variant group size for different 
bottlenecks and mutations rates.  
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Figure S7. Transmission tree reconstruction accuracy for imperfectly 
sampled outbreaks. Data were simulated in which 30% of cases were not 
observed in order to assess the impact on transmission route identification. (A) 
The area under the ROC (AUC) metric provides an overall measure of network 
accuracy. Results for a mutation rate of 0.001 are shown here. (B) The true path 
distance between estimated transmission pairs gives insight into the extent to 
which transmission links are misspecified. A perfect reconstruction would have 
mean path length 1. Maximum variant path lengths are averaged over identified 
transmission pairs, that is, excluding hosts with no shared variants. 
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Appendix 
 
Tree construction methods 
Let x1,…, xn  denote deep-sequence samples collected from hosts 1,…,n . 
For each sample xi , let f1(i ),…, fG(i )  be the frequency of the majority 
nucleotide at loci 1,…,G , such that polymorphisms exist where f j(i ) <1 . 
For each host, identify the set of polymorphisms Vi = { j : f j(i ) <1} . Now 
calculate the variant score Sij  between each pair of hosts i  and j  to be 
the number of SVs belonging to the samples xi  and x j ; Sij = Vi ∩Vj . If 
we allow for the possibility of different mutations at a given locus, we must 
further restrict to the set of variant positions sharing the same mutant 
nucleotide. The matrix (Sij )i, j≤n  can then be transformed into a weighted 
adjacency matrix defining an estimated transmission tree (which we call 
the weighted variant tree), in which the weight for an arrow from i  to j  is 
Sij Sik

k
∑ . While the symmetry of Sij  implies edges between a given pair 

of nodes must exist in both directions, these may not be of equal weight. 
We further define the maximum variant tree, in which we identify for each 
host the individual sharing the greatest number of variants. If multiple 
individuals share the maximum number of variants, these are attributed 
equal weight. If no individual shares any variant with a host, it is not 
assigned a source.  
 
These approaches are analogous to existing methods using single 
genome samples. For instance, the minimum distance tree (or 
equivalently, the minimum spanning tree) is defined by assigning the 
source to be the individual carrying the most genetically similar sample 
(i.e. fewest number of SNPs). A similar approach in which temporal 
restrictions were additionally implemented was described in (6). Similarly, 
the weighted distance tree is defined by weighting each network edge by 
inverse genetic distance, such that more similar samples are given a 
greater weight. Variations of this method were explored in (2). 
 
Finally we propose two hybrid approaches. In some cases, a host may 
share no variants with any other host in the population, such that the 
maximum and weighted variant approaches assign no weight to any 
potential sources of infection. As such, we may instead attempt to draw 
information from genetic distance measures where no SVs exist. The 
hybrid maximum tree and the hybrid weighted tree attribute sources to 
hosts lacking SVs according to the minimum distance and weighted 
distance approaches respectively. Genetic distance can be calculated 
using the consensus sequence of the deep sequenced sample, or with 
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additional single genome samples. We tried both approaches, and found 
little difference in average performance. As such, we present results 
using consensus sequences only. 
 
Simulations 
We simulated outbreaks using the R package seedy v1.2 (36), 
introducing a single infectious individual into a susceptible, 
homogeneously mixing population of size 100, retaining only those 
epidemics with final size at least 50. Genomic samples (perfectly 
observed deep sequence samples) were generated at a random time 
during each individual’s infectious period. We constructed the consensus 
sequence for each sample, and additionally sampled single genomes 
from each host in order to compare transmission route estimation using 
each type of data. Infection dynamics were simulated under a standard 
SIR (susceptible-infected-removed) model, with R0 = 2 . Multiple infections 
were not permitted. Infections were generated by selecting nB  genotypes 
at random from the source’s pathogen population, and allowing this 
inoculum to grow within the new host under neutral evolution. We varied 
transmission bottleneck size nB  as well as mutation rate in order to 
simulate a range of different outbreaks. Transmission trees were 
visualized using the igraph package in R (37). We allowed mutation rates 
of 0.00025, 0.0005 and 0.001 per genome per pathogen generation, 
which are approximately in line with rates found for some bacterial 
pathogens. Staphylococcus aureus, for instance, has a mutation rate of 
0.0005 (assuming a rate of 3×10−6  per nucleotide per year (38, 39) and a 
generation time of 30 minutes (40, 41)).  
 
Few estimates exist for transmission bottleneck sizes, and those that do 
exist exhibit uncertainty – Emmett et al. estimated Ebola virus bottleneck 
sizes in the range of 1-800 viral particles (17), while estimates for 
influenza range between 100 and 250 (21). In contrast, it is thought that 
Clostridium difficile is associated with bottleneck size close to 1 (42). In 
our simulation studies, we explored the lower end of this range, allowing 
the bottleneck size to vary between 1 and 50. In practice, we found little 
change in outcome as the bottleneck size was allowed to be larger than 
this value. It is worth noting that while our simulated transmission events 
are a random sample of the donor’s pathogen population, in reality this 
may not be the case. As such, a small randomly drawn bottleneck size 
may be equivalent in terms of diversity to a much larger non-random 
sample.  
 
Measuring reconstruction accuracy 
We used various metrics to compare the performances of the 
transmission route identification methods. We assumed that infection and 
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removal times were not observed from the simulated outbreaks, and 
investigated the ability of the genomic data alone to contribute to 
transmission route identification. We used a variety of metrics to measure 
both the overall accuracy of the reconstructed tree, as well as the 
reliability of individually estimated transmission routes. 
 
The receiver operating characteristic (ROC) curve describes the change 
in false positive and true positive rate for identifying a source of infection 
as the weight threshold for this identification varies between 0 and 1. The 
area under the ROC curve (AUC) is a summary statistic of this function, 
measuring the overall discriminatory power of the tree reconstruction, in 
which values closer to 1 indicate a more accurate network (43).  
For the unweighted reconstructions (minimum distance and maximum 
similarity tree), we calculated the path distance in the true network for 
each proposed transmission link (ignoring directionality of edges). For 
instance, if we identify the route A-B, and in reality the transmission chain 
was A-C-B, the path distance in the true network is 2. A perfect 
reconstruction would thus have a mean path distance of 1. While the 
ROC curve treats edges as either correct or incorrect, the latter metric 
provides a measure of the extent to which false links are misleading (i.e. 
an incorrect edge with a true path length of 2 is better than an incorrect 
edge with a true path length of 10). This allows us to determine the risk of 
classifying a pair of individuals as a transmission pair, when in reality 
there exist intermediate hosts in the chain. 
 
Finally, we considered the mean weight attributed to the true source of 
infection across an outbreak. While the path distance metric did not factor 
in hosts for whom no source could be attributed (due to a lack of SVs), 
this measure includes such hosts with a weight of zero. 
 
Data 
We applied the SV approach to identifying potential transmission routes 
during the 2014 Ebola outbreak in Sierra Leone. We used samples 
collected from 78 patients in May-June 2014, representing a large 
proportion of the earliest cases in the country, sequenced to 
approximately 2000x coverage (19). Furthermore, we considered 
samples from a further 150 patients collected between June and 
December in the same country, sequenced with a median coverage of 
374x (24). Further details of data collection, sequencing and variant 
calling are described in the respective original studies. 
 
Impact of Mutational Hotspots 
To this point, simulations were performed under the assumption that 
mutations accumulated uniformly across the genome. However in reality 
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polymorphisms are often concentrated in certain regions as a 
consequence of diversifying selection or a proportion of nucleotides which 
experience a heightened mutation rate. In order to explore the impact of 
so-called ‘mutational hotspots’, we repeated simulations with the mutation 
rate increased by a factor of up to 1000 in a small proportion of the 
genome (0.1%). As this hypermutation factor increased, a much larger 
proportion of samples shared at least one variant with one other case 
(Figure S2A), but a proportion of these SVs did not occur between true 
transmission pairs which impedes our ability to detect the true 
transmission routes, particularly when combined with small bottleneck 
sizes (Figure S2B). While distance-based methods were largely 
unaffected by the presence of hotspots, variant-based methods continued 
to outperform them for larger bottleneck sizes (>10) (Figure S3). In fact, 
for some metrics, there was a slight increase in accuracy under low 
bottleneck conditions with a hypermutation factor of 100 as the increased 
probability of mutations occurring and being transmitted outweighed the 
misclassification of routes due to homoplasy (Figures S4B, S4E). 
However, this effect was lost with a hotspot factor of 1000. 
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